

GomSpace at a Glance

- A space company situated in Denmark established in 2007
- Experienced management team with background in defence, cyber and space
- Has export of space hardware to customers in more than 45 countries spanning the globe
- Focus on product design, mission design and mission implementation
- Manufacturing with network of aerospace manufacturers (AS9100C QA)
- 30+ highly qualified international staff

GomSpace Main Activities

Nano-Satellite Subsystems off the shelf

- Batteries, solar panels, power supply & distribution
- On-board computers and software
- Radio communication systems and antennas
- Attitude control hardware and software

Complete nanosat platforms

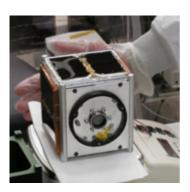
- Reference platforms for payload integration by customers
- Platform design, integration and test to customer requirements

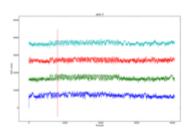
Payloads

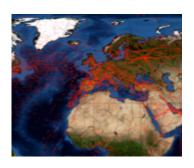
Software defined radio technology and applications

Nano-Satellite Applications

First wave: Launch something into space


- Educational satellites, student satellites
- Technological development
- Amateur-satellite service bands

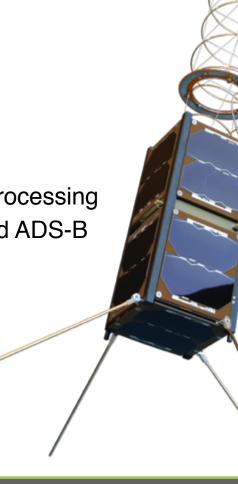



- Small, non-critical, science missions
- Demonstrate new applications of space
- Amateur-satellite service bands or Earth Exploration bands

- Monitoring & com for national security needs
- Commercial applications and ambitious science missions
- Space radio service bands

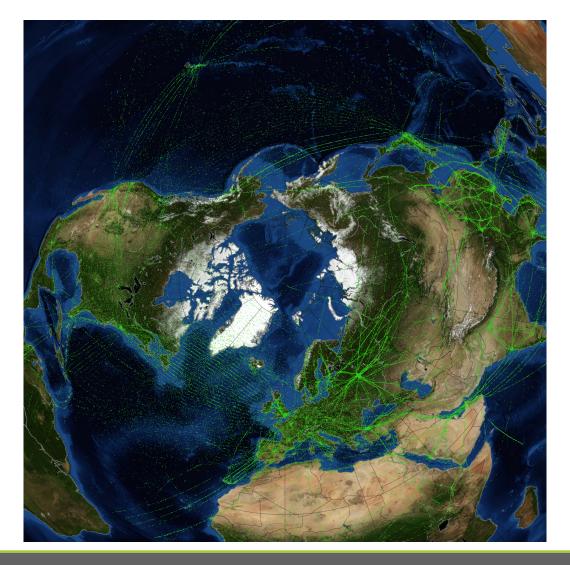
GOMX-1 Application Example

Platform


- Based on GomSpace's COTS port-folio
- 20x10x10 cm in stowed configuration. 2 kg
- 9k6 downlink in UHF

Payload

- Deployable helical antenna, ~10dBi
- Discrete front-end, FPGA based baseband processing
- On board database in uC of raw and decoded ADS-B
- FPGA and uC in orbit reconfigurable


Launch & Orbit

- Near SSO, 598km x 835km
- Launched by DNEPR in November 2013

GOMX-1 Results - Polar View

GOMX-3 Our Next Mission

- Collaboration between GomSpace and ESA
- Satellite platform:
 - 3U with new GomSpace products
 - 1 degree pointing capability
- Payloads:
 - ADS-B 2nd generation receiver
 - L-band receiver for SATCOM signals intercept
 - X-band transmitter with 2MBPS downlink
- Schedule:
 - Launch to ISS in June 2015
 - Deployment in space September 2015

GOMX-2

Never do a number "2"

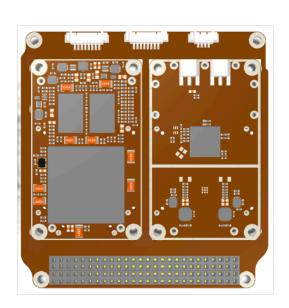
VHF/UHF Radio

NanoCom U482C

- 1200-9600 baud half duplex FM Radio
- UHF band with fixed frequency
- Flight heritage from several missions

NanoCom AX100/GS100

- High Performance narrow-band transceiver for UHF and VHF bands
- FSK/MSK/GFSK/GMSK
- Data rates from 0.5 kbps to 115.2 kbps
- Sensitivity down to –137 dBm
- RF carrier frequency programmable in 1 Hz steps

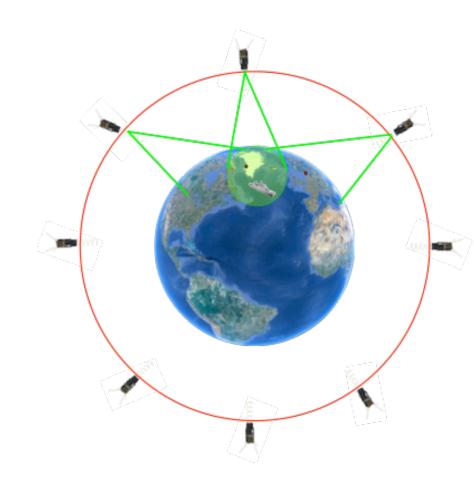

Software Defined Radio

Applications

- Advanced multi node communications systems
- Spectrum monitoring and interference analysis
- Signal source location

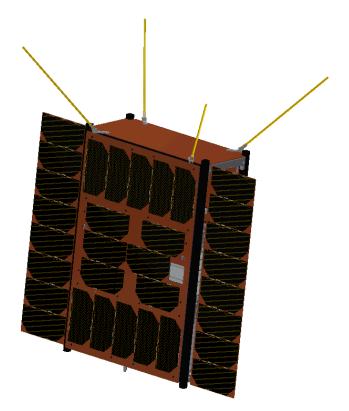
Platform

- Xilinx Synq 7000 Series (7030 & 7045)
 - Dual ARM Cortex A9 MPCore (up to 1 GHz)
 - DSP blocks, 1 GB DDR3, up to 32GB storage
 - Linux operating system
- Mission specific RF modules
 - Dual Band 70 MHz 6.0 GHz
 - Tuneable channel bandwidth: <200 kHz to 56 MHz
- Reprogrammable in orbit
- Full space qualification programme


The Future - Missions

A network of Satellites

- 8-10 nanosats in polar orbit
- 6-10 kg per satellite
- Situational awareness and communication services


Characteristics

- Advanced propulsion and orbit control systems
- Enhanced life-time in orbit 5-7 years

The Future – Communication Systems

- Satellite systems will have several communication systems
- Secure low-speed communication system for TT&C (omnidirectional)
- High speed data to ground segment(s) using directional antenna
- Inter satellite communication links

 Objective - Real-time communication between satellites and ground stations

Concluding Remarks

- Communication systems and bandwidth requirements increases
- Frequency Allocation process in the critical path for market success
- Looking forward to "challenge" the ITU system with 9 month frequency allocation process time
- Learn from terrestrial communication industry

 congestion and interference handled
 through standardization
- GomSpace would like to join the work in standardization of communications systems and frequency allocation procedures

