BRITE Constellation – A Case Study

Otto Koudelka
Graz University of Technology
koudelka@tugraz.at
BRITE (BRImght Target Explorer)

- First nanosatellite constellation dedicated to an astronomy mission (astereoseismology)
- 5 spacecraft operational in Space
  - Austria (BRITE-Austria/TUGSAT-1 & UniBRITE)
  - Poland (BRITE-PL1 „Lem“ & BRITE-PL2 „Heveliusz“)
  - Canada (BRITE-CAN1 „Toronto“)
Scientific Goals

- Photometric measurement of brightness and temperature variations of massive luminous stars (up to visual magnitude 4)
- Fastest data cadence: few minutes
- Time base: up to 2 years
- high duty cycle
- 2-colour (blue and red)
- 24° field of view
- Deliberately defocused
BRITE Flight Model

- magnetometer
- S-band antenna
- solar cells
- telescope
- star tracker

Size: 20 x 20 x 20 cm
Mass: 6.8 kg
Power: 6…10 W
Attitude Control System

Precise alignment of camera to target stars

3 miniature momentum wheels, magnetorquer, sun sensors, magnetometer, star sensor and attitude control computer provide alignment at arc minute level
Communications System

Frequencies
- UHF: command uplink (amateur radio)
- Science S-Band: science and telemetry data downlink

Data rates:
- Downlink: 32 - 256 kbit/s
- Uplink: 9.6 kbit/s

Data volume / day: ~ 20 Megabyte (spec: 2 MB)
TUGSAT-1/BRITE-Austria and UniBRITE were launched by PSLV-C20 of ISRO/ANTRIX on 25 February 2013 from the Satish Dhawan Space Centre in Sriharikota.

- Sun-synchrononous LEO orbit

Courtesy: ISRO
Mission Operations

• 14 orbits per day
  • 3 orbits in morning sequence
  • 3 - 4 orbits in evening sequence
• Automatic & remote ground stations operations supported
• BRITE-Austria operated from Graz
• UniBRITE operated from Toronto
UHF Interference

Persistent since October 2013
Green: TUGSAT-1 (Austria)
Red: LEM (Poland)
UHF Interference
Management

- BRITE Executive Science Team (BEST)
  - Scientists from Austria, Canada, Poland
  - Defines targets
- Operation teams
  - Prepare commands for spacecraft,
  - up- and downloads
Satellite Performance

- RMS pointing stability in X / Y: 1.6 / 1.5 pixels (2 – 3 pixels)
- Up to 20 subrasters: 32x32 to 24x24 pixels
- Typical 1 sec integrations, stacking available
- CCD deterioration due to radiation -> chopping
Results for Eta Orionis

Variation of mean brightness:
Pulsations of the star

2013 - 12 - 05

eta Orionis
Light Curve for Orion

Gray curve: TUGSAT-1/BRITE-Austria (blue filter)
Blue curve: UniBRITE (red filter)
Legal Matters

- Frequency coordination started nearly immediately after kick-off in 2006
- Coordination with ITU via the Austrian Administration and directly with IARU
- Registered as “constellation” (all BRITE spacecraft have same frequencies)
  - BRITE (NGSO) Satellite Network Ref. API/A/6652
- BRITE triggered implementation of Austrian Space Law (in force since December 2011)
- Notification process with Ministry of Transport, Innovation and Technology
- Registration with UN/OOSA by Austrian Foreign Ministry and Ministry of Transport, Innovation and Technology
Summary

- BRITE-Constellation is the world’s first nanosatellite constellation dedicated to astronomy
- 5 spacecraft of BRITE-Constellation operational
- BRITE-Austria and UniBRITE have each orbited 10,000 times around Earth, travelling 450 million km
- Scientific & technical requirements fully met
- Science fields: 150 days in Orion, Centaurus, Perseus, and Vela Puppis.
- Observing program developed till end 2016
- Scientific data analysis under way
Thank you for your attention!