# TUWRS **GENEVA2024**

2-6 December 2024 Geneva, Switzerland



# **Introduction to BSS & FSS Plans**



# **ITU Constitution Articles 44 and 45**

- Radio frequencies and any associated orbits are limited natural resources
- Must be used rationally, efficiently and economically in conformity with the Radio Regulations (RR)
- To have equitable access to those resources
- Not to cause harmful interference to services operating in accordance with the RR

# **Two Different Approaches**

#### Coordination

First come, first served based on current requirements

Efficient /economical

Late comers may not have access to (the early users have consumed all

#### Plan

Distribution of resources based on current and future requirement

✤ Equitable access



To guarantee equitable access, it is based on a reservation of capacity for future use by the ITU Member States

Not all Planned resources are currently in operation, BUT will not be cancelled and are protected from harmful interference from other networks

### **Two Space Plans in RR**

Broadcasting-Satellite Service and Feeder-link Plans (Appendix 30/30A)

11.7-12.2 GHz (Region 3)
11.7-12.5 GHz (Region 1)
12.2-12.7 GHz (Region 2)



17.3-18.1 GHz (Region 1&3)
17.3-17.8 GHz (Region 2)
14.5-14.8 GHz (Region 1&3 except Europe)

Fixed Satellite Service Plans (Appendix 30B)





#### Appendix 30

- Article 10: Plan for BSS in Region 2
- Article 11: Plan for BSS in Regions 1 &3

#### Appendix 30A

- Article 9: Plan for feeder links in region2
- Article 9A: Plan for feeder links in Region 1 &3

#### Appendix 30B

• Article 10 : Plan for FSS



#### Article 10 of AP30

| Beam<br>Name                                                                                                                                                                                                                 | Orbital<br>Position                                                                                                                                            |   | Boresight<br>Coordinates                                                                                                                                       |                                                                                                                                                       | Antenna<br>Beamwidth                                                                                                         |                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max. EIRP                                                                                                                            |                                                                                                                                                                                 |                                                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
|                                                                                                                                                                                                                              |                                                                                                                                                                |   |                                                                                                                                                                |                                                                                                                                                       |                                                                                                                              |                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 224.00 MHz (1)                                                                                                                    |                                                                                                                                                                                 |                                                                |  |
| 1                                                                                                                                                                                                                            | 2                                                                                                                                                              | 3 | √ 4                                                                                                                                                            |                                                                                                                                                       | 5 V                                                                                                                          |                                                                                                                              | 6                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>v</sup> 8                                                                                                                       | 9                                                                                                                                                                               |                                                                |  |
| ALS00002<br>ALS00003<br>ARGINSU4<br>ARGSUR04<br>B CE311<br>B CE312<br>B CE411<br>B CE412<br>B CE412<br>B CE511<br>B NO611<br>B NO611<br>B NO611<br>B NO611<br>B NO711<br>B SU111<br>B SU112<br>B SU112<br>B SU211<br>B SU212 | -166.20<br>-175.20<br>-94.20<br>-94.20<br>-64.20<br>-64.20<br>-64.20<br>-64.20<br>-74.20<br>-74.20<br>-74.20<br>-74.20<br>-81.20<br>-81.20<br>-81.20<br>-45.20 |   | -149.66<br>-150.98<br>-52.98<br>-65.04<br>-40.60<br>-40.27<br>-50.97<br>-50.71<br>-53.10<br>-59.60<br>-60.70<br>-68.76<br>-51.12<br>-50.75<br>-44.51<br>-44.00 | 58.37<br>58.53<br>-59.81<br>-43.33<br>-6.07<br>-6.06<br>-15.27<br>-15.30<br>-2.90<br>-11.62<br>-1.78<br>-4.71<br>-25.63<br>-25.62<br>-16.95<br>-16.95 | 3.76<br>3.77<br>3.40<br>3.32<br>3.04<br>3.44<br>3.86<br>3.57<br>2.44<br>2.85<br>3.54<br>2.37<br>2.76<br>2.47<br>3.22<br>3.20 | 1.24<br>1.11<br>0.80<br>1.50<br>2.06<br>2.09<br>1.38<br>1.56<br>2.13<br>1.69<br>1.78<br>1.65<br>1.05<br>1.48<br>1.36<br>1.48 | 170<br>167<br>19<br>40<br>174<br>174<br>49<br>52<br>104<br>165<br>126<br>73<br>50<br>56<br>60<br>58 | $     \begin{array}{c}       1 \\       1 \\       1 \\       1 \\       1 \\       2 \\       2 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\       1 \\     $ | 59.7<br>60.0<br>59.9<br>60.7<br>61.6<br>61.0<br>62.6<br>62.7<br>63.0<br>62.8<br>62.8<br>62.8<br>62.8<br>62.8<br>62.8<br>62.8<br>62.8 | 9/GR1<br>9/GR2<br>9/GR3<br>9/GR3<br>8 9/GR7<br>8 9/GR9<br>8 9/GR9<br>8 9/GR9<br>8 9/GR8<br>8 9/GR8<br>8 9/GR8<br>8 9/GR8<br>8 9/GR8<br>8 9/GR8<br>8 9/GR9<br>8 9/GR9<br>8 9/GR9 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |  |
| BAHIFRB1<br>BERBERMU<br>BERBER02<br>BOLAND01<br>CAN01101<br>CAN01201<br>CAN01202                                                                                                                                             | -43.20<br>-87.20<br>-96.20<br>-31.00<br>-115.20<br>-138.20<br>-138.20<br>-72.70                                                                                |   | -76.06<br>-64.77<br>-64.77<br>-65.04<br>-125.63<br>-112.04<br>-107.70                                                                                          | -10.87<br>24.16<br>32.32<br>-16.76<br>57.24<br>55.95<br>55.63                                                                                         | 1.81<br>0.80<br>2.49<br>3.45<br>3.35<br>2.74                                                                                 | 1.90<br>0.80<br>0.80<br>1.27<br>1.27<br>0.97<br>1.12                                                                         | 142<br>90<br>90<br>76<br>157<br>151<br>32                                                           | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61.6<br>56.8<br>56.9<br>67.9<br>59.5<br>59.6<br>59.6                                                                                 | 2<br>9/GR5<br>9/GR10<br>9/GR10                                                                                                                                                  | 10<br>10<br>10                                                 |  |

#### Space Plans features (1)

To guarantee equitable access, the beams cover the national territory of each Administration:

National service area

National coverage (minimum beams)



#### Space Plans features (2)

To use the space resources rationally, efficiently and economically, the Aggregate C/I method is used to identify potential interference.





#### Space Plans features (3)

Protection from harmful interference is provided based on the Plan characteristics and NOT on the characteristics entered into the Master Register at notification stage. This is different for networks operating in the non-plan frequency bands.



#### Space Plans features (4)

Standard parameters (assumptions) are used to ensure equity amongst Administrations and possible future use

- Same amount of frequency for each beam
- ✤ Elliptical beam using defined space station antenna pattern
- ✤ Defined C/N

.....

- ✤ Same values of system noise temperature
- Similar power level
- ✤ Defined earth station antenna size and pattern

BSS Plans and FSS Plan Some distinct features

BSS Plans (Appendix 30/30A)

- Plans separated by Regions
- Assignments Plans
- Shared with other space services in other Regions
- List for R1&3 only
- Cluster concept in Region 2 Plan

FSS Plan (Appendix 30B)

- $\clubsuit$  Worldwide plan
- Allotment Plans (conversion to assignments before use)
- ✤ List for all 3 regions
- Protection based on grid points in service areas for downlinks



#### AP30/30A BSS Plan Procedure

#### AP30B FSS Plan Procedure



Article 6 of AP30B Article 8 of AP30B



#### **Time limits for Plans**

#### Appendix 30/30A

**8 years** for completing provisions of Articles 4&5 of AP30/30A: inclusion in the Plan/List, bringing into use (BIU) .

RES 49 information within **30 days** after BIU date limit.

Confirmation of BIU within 90 days.

**4 months** for comments after publication. Bringing back into use within **3 years** after suspension of Region 1&3 List assignments.

**15 years** operation for R1&3 List.

#### Appendix 30B

**8 years** for completing provisions of Articles 6&8 of AP30B: inclusion in the Plan/List, bringing into use (BIU).

RES 49 information within **30 days** after BIU date limit.

Confirmation of BIU within 90 days.

**4 months** for comments after publication. Bringing back into use within **3 years** after suspension.

#### Space Plans, a long HISTORY

- •WARC-77 established the Region 1&3 BSS Plan
- •RARC-83 established the Region 2 BSS and associated feeder-link Plan
- •WARC ORB-85 included the Region 2 BSS and associated feeder-link Plan into the Radio Regulations
- •WARC ORB-88 established the FSS Plan and Region 1 &3 BSS feeder-link Plan
- •WRC-97 revised the Region 1&3 BSS and associated feeder-link Plans
- •WRC-2000 revised the Region 1&3 BSS and associated feeder-link Plans
- •WRC-07 revised the FSS Plan standard parameters, procedure and protection criteria
- WRC-12, WRC-15 and WRC-19 Revised provisions in order to improve the procedures and consider the development of technology
- WRC-19 approved Resolution170 and Resolution 559

#### Modifications to Plans Made by WRC-23

Application of RES.559

- Approve 40 new entries in AP30/30A Plans in replacement of 40 corresponding degraded entries;
- Addition of one new entry for a new ITU Member States ;

MOD to AP30B Plan

 Addition of 8 new entries in the AP30B Plan and one allotment is modified consequently

#### Some Modifications to Provisions made by WRC-23

- Resolution 121: Use of 12.75-13.25 GHz (one of AP30B Bands) by earth stations in motion (ESIM) on aircraft and vessels
- Modification to Article 7 of AP30B (with an addition of new Annex) to facilitate the new Member States to obtain new allotments in the FSS Plan
- New provisions in AP30A (R1&3) for excluding territory of an objecting Administration from feeder-link service area of a network with possible relocation of feeder-link test-points
- New provisions in AP30A/AP30B to enhance the frequency compatibility in feeder-link/uplink
- Introduction of a "Special Agreement" mechanism to ensure the protection of assignments/allotments in the AP30/30A (R1&3) and AP30B Plans, and to provide possibility to restore degraded reference situation of an allotment in the AP30B Plan (Resolution 126)

#### Details see presentation "Modifications made by WRC-23 to Planned services and relevant new RoPs " in WRS-24 Workshop

#### **General information relating to Space Plan services:**

## http://www.itu.int/ITU-R/go/space-plans/en

# Thank you!

ITU – Radiocommunication Bureau Questions to <u>brmail@itu.int</u> or <u>jian.wang@itu.int</u>