EBU OPERATING EUROVISION AND EURORADIO

TECHNOLOGY & INNOVATION Get an edge

TMMB SYSTEM L COMPATIBILITY WITH DTT IN THE SUB-700 MHZ BAND

ITU-R WP6A WORKSHOP 08TH MARCH 2024 ELENA PUIGREFAGUT, EBU T&I

DTTB use of 470-694 MHz in Region 1

- The GE06 Agreement and Plan regulates the use of the 470-694 MHz band for DVB-T
 - The envelop concept allows other systems with same RF characteristics (e.g. DVB-T2)
- > 5G Broadcast is an OFDM signal with similar DTTB RF characteristics
 - > Transmit power, antenna patterns, bandwidths
 - > HPHT, MPMT, LPLT
 - > SFN and MFN
- > The questions we tried to answer:
 - How can 5G Broadcast transmissions be introduced in the sub-700 MHz band ?
 - > What is needed from the 5G Broadcast system designers to facilitate its implementation in the sub-700 MHz band ?

Scenarios for introduction in the sub-700 MHz band

Scenario 1: Use of coordinated GE06 DTTB entries by 5G Broadcast

Use of GE06 DTTB entries by 5G Broadcast - compatibility

- > CONDITION: The 5G Broadcast signal needs to respect the technical parameters of the DTTB entry (envelop concept)
- > <u>Co-channel case</u>:
 - No compatibility issue but the coverage area of 5G Broadcast might not be the same as the DTTB entry depending on system parameters and network configurations used
- > Adjacent channel case:
 - > **Impact on DTTB** hole punching if sites not co-sited and different antennas. Solutions:
 - Appropriate antenna patterns and power design from 5G Broadcast to avoid interference to DTTB
 - > Appropriate filtering of 5G Broadcast transmitter
 - > In some cases, notch filters in antenna feeder at DTTB reception
 - > Impact on 5G Broadcast receivers large power differences of signals received (ACS issue). Solutions:
 - > Co-siting 5G Broadcast and DTTB transmitters
 - > Adding notch filters in 5G Broadcast receivers feasible but impractical

Interleaved use by 5G Broadcast of spectrum between GE06 entries - compatibility

- CONDITION: The 5G Broadcast signal should not interfere to the existing DTTB entries and should be compatible with DTTB in neighbouring countries
- > <u>Co-channel case</u>:
 - > Reduction of power of HPHT sites compared to DTTB or/and antenna changes
 - > Selection of robust 5G Broadcast mode
 - > Addition of sites to improve coverage
- > <u>Adjacent channel case</u> (similar to previous scenario):
 - > Impact on DTTB hole punching if sites not co-sited and different antennas. Solutions:
 - Appropriate antenna patterns and power design from 5G Broadcast to avoid interference to DTTB
 - > Appropriate filtering of 5G Broadcast transmitter
 - > In some cases, notch filters in antenna feeder at DTTB reception
 - > Impact on 5G Broadcast receivers large power differences of signals received (ACS issue). Solutions:
 - > Co-siting 5G Broadcast and DTTB transmitters
 - Adding notch filters in 5G Broadcast receivers feasible but impractical

Band segmentation for 5G Broadcast - compatibility

- CONDITION: The 5G Broadcast use of the segmented band would need to coexist with the existing DTTB entries in neighbouring countries
- > <u>Co-channel case</u>:
 - > If 5G Broadcast uses an existing GE06 entry, same as scenario 1: possible coverage reduction
 - > If 5G Broadcast uses interleaved spectrum, same as scenario 2:
 - > Reduction of power of HPHT sites compared to DTTB or/and antenna changes
 - > Selection of robust 5G Broadcast mode
 - > Addition of sites to improve coverage
- Adjacent channel case (similar to LTE in 800 MHz band):
 - > Impact on DTTB Solutions:
 - > Out-of-band filtering of 5G Broadcast transmitter, in particular if not co-sited
 - > In some cases, notch filters in antenna feeder at DTTB reception
 - > **Impact on 5G Broadcast receivers** large power differences of signals received (ACS issue). Solutions:
 - Adding a filter in 5G Broadcast receivers to block all DTTB below the segmented band
 - > Adding 5G Broadcast sites to improve signal to interference ratio

The bandwidth of the 5G Broadcast signal

- GE06 Plan is based on an 8 MHz channel raster. But initially 5G Broadcast was specified for 5, 10, 15 MHz
- An assessment of different band plans was made for 5G Broadcast introduction as per GE06 entries: the potential total bandwidth and power reduction compared to DTT entry

	8 MHz	8 MHz	8 MHz	8 MHz	8 MHz	8 MHz	8 MHz	8 MHz	8 MHz
GE06 channel raster	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	СН9
DTT	DT1			DT4			DT7	.	DT9
LTE 8 MHz	L8-1	L8-2	L8-3	L8-4	L8-5	L8-6	L8-7	L8-8	L8-9
LTE 10 MHz - C	L10C-1	L10C-2	L10C-3	L10C-4	L10C-5	L10C-6	L10C-7	L10C-8	L10C-9
LTE 10 MHz - NC	L10NC-1	L10M	IC-2 l	.10NC-3	L10NC-4	L10NC-5	L10NC	C-6 L	10NC-7
LTE 5 MHz - C	L5C-1	L5C-2	L5C-3	L5C-4	L5C-5	L5C-6	L5C-7	L5C-8	L5C-9
LTE 5 MHz - NC	L5NC-1 L5	NC-2 L5NC-3	L5NC-4 L5NC	-5 L5NC-6	L5NC-7 L5NC-8	L5NC-9 L5NC	-10 L5NC-11	L5NC-12 L5NC-	13 L5NC-14
LTE 15 MHz			L15-1		L1	.5-3		L1	.5-4

Measurements of adjacent and overlapping channels Protection Ratios

Example of LTE signal at -10 MHz (No overlap with the wanted DVB service)

PR (Protection Ratio) values function of the DVB-T or LTE interferer centre frequency

Effects of overlapping Interference to DVB signals from LTE and DVB are similar.

 Main differences are due to the effective bandwidth of the signals, DVB-T (or T2) and LTE.

When the overlap is:

- 1 MHz (*), PR is becoming relevant and depends on the bandwidths involved.
- 2 MHz, PR is already greater than 10 dB (typical value 12 dB). This is a condition impractical to use.
- At full overlap, PR is of the order of the Co-Channel PR.

(*) Centre Frequencies are 658/657 and 666 MHz respectively

Compliance with GE06 provisions

1. The GE06 envelop concept:

 Signals larger than 8 MHz would require a power reduction (e.g. more than 40 dB in the whole of a 10 MHz 5G Broadcast signal)

2. The DTT Spectrum Mask:

FIGURE 3-3

Symmetrical spectrum masks for non-critical and sensitive cases

RRC06-A2-C3-3

DVB-T spectrum mask for sensitive cases

The bandwidth of the 5G Broadcast signal

- > 5 and 8 MHz signals can be implemented with minimum constraints, 8 MHz being more spectrum efficient
- > 10 MHz signal would have several constraints:
 - Power reduction to protect DTT in the adjacent channel (between 26 to 44 dB in most cases)
 - Non-compliance with GE06 provisions, coordination with neighboring countries on a case-by-case would be required
 - > Interference from DTT in adjacent channel
- > 15 MHz signal (capacity advantage) would have several constraints:
 - > Limited availability of two contiguous 8 MHz channels in a given area
 - > The position of the 15 MHz channels would need to be flexible to use contiguous 8 MHz channels where available
 - Non-compliance with GE06 provisions, coordination with neighboring countries on a case-by-case basis would be required

Latest 3GPP work on 5G Broadcast

- 1. 6, 7, 8 MHz bandwidths added to the standard (3GPP Release 17):
 - ETSI TS 103 720 V1.2.1 (2023-06) '5G Broadcast System for linear TV and radio services; LTE based 5G terrestrial broadcast system'
- 2. Band plans below 700 MHz agreed (to be included in Release 18):

E-UTRA Operating Band	Uplink (UL) operating band BS receive UE transmit	Downlink (DL) operating band BS transmit UE receive	Duplex Mode		
	$F_{UI \mid low} - F_{UI \mid high}$	F _{DL low} – F _{DL high}			
<u>107</u>	<u>N/A</u>	<u>612 MHz – 652 MHz</u>	<u>SDO (NOTE 11)</u>		
<u>108</u>	<u>N/A</u>	<u>470 MHz – 698 MHz</u>	<u>SDO (NOTE 11)</u>		
NOTE 11: This band is restricted to LTE based 5G terrestrial broadcast operation.					

Table 5.5-1 E-UTRA frequency bands

3. ACS and RefSens values agreed (to be included in 3GPP Release 18):

Rx Parameter		Units	PMCH bandwidth			
			6 MHz 7 MHz		8 MHz	
ACS		dB	29.0	30.5	31.5	
NOTE:	TE: Values in this table apply only to UE implementations					
that relies on digital filtering according to the configured						
broadcast channel bandwidth						

Table 7.5.1H-1: Adjacent channel selectivity for LTE based 5G terrestrial broadcast

Latest 3GPP work on 5G Broadcast

3. - cont. - ACS and RefSens values agreed (to be included in 3GPP Release 18):

Operating Band		Р	Dumlay			
		6 MHz (dBm)	7 MHz (dBm)	8 MHz (dBm)	Mode	
107		<mark>-</mark> 99.2]	<mark>-</mark> -98.5]	<mark>-</mark> 97.9]	SDO	
108		<mark>-</mark> 99.2]	<mark>-</mark> -98.5]	<mark>-</mark> 97.9]	SDO	
NOTE1: The signal power is specified per port NOTE2: Values in this table apply only to UE implementations that relies on digital filtering according to the configured broadcast channel bandwidth						

Table 7.3.1H-1: Reference sensitivity for LTE based 5G terrestrial broadcast

Adjacent channel PR calculation as per ACS and ACLR

Formula that relates ACS, ACLR and PR:

$$PR(\Delta f) = PR_0 + 10 \log \left[10^{-\frac{ACS(\Delta f)}{10}} + 10^{-\frac{ACLR}{10}} \right]$$
(3)

If ACS=31.5 dB And ACLR=61 dB

Conclusions

- 1. To introduce 5G Broadcast bellow 700 MHz in Region 1, reuse of coordinated GE06 DTTB frequencies when possible is the way to start with.
 - In case of non co-siting, need to apply mitigation techniques to reduce adjacent channel interference to DTTB: 5G Broadcast transmitter filtering, appropriate antenna design and power, notch filter at DTTB receiver
 - The 5G Broadcast receiver needs suitable RF characteristics to operate in the presence of high level adjacent DTTB signals in some areas – ACS value is in the standard. Mitigation techniques like co-siting are required to avoid hole punching.
- 2. An 8 MHz 5G Broadcast bandwidth has clear advantages to other channel bandwidths to be deployed within GE06 Plan.

MANY THANKS !

puigrefagut@ebu.ch

- 1. tech.ebu.ch
- 2. https://tech.ebu.ch/groups/sspt