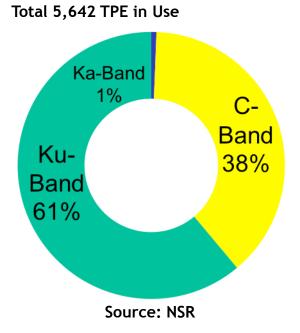
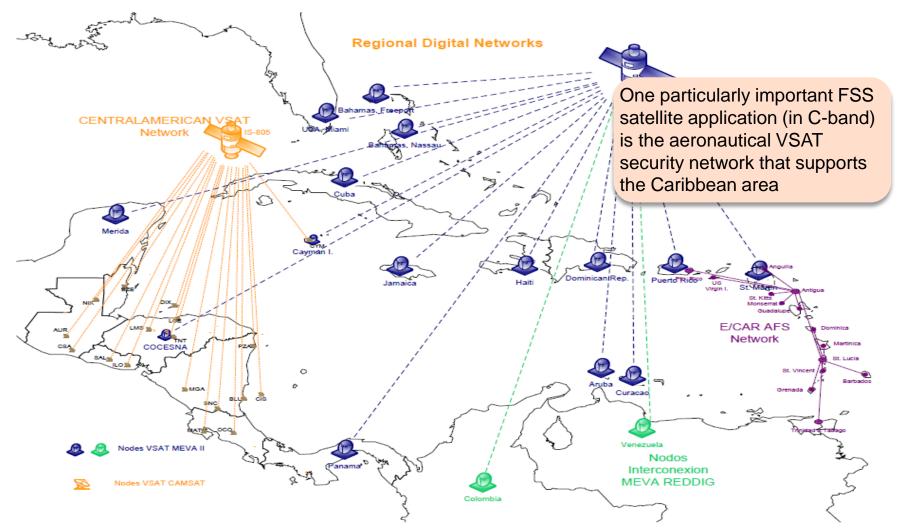


Future IMT Bands: WRC-15 & C-band Satellite Solutions for the Caribbean

David Hartshorn Secretary General GVF



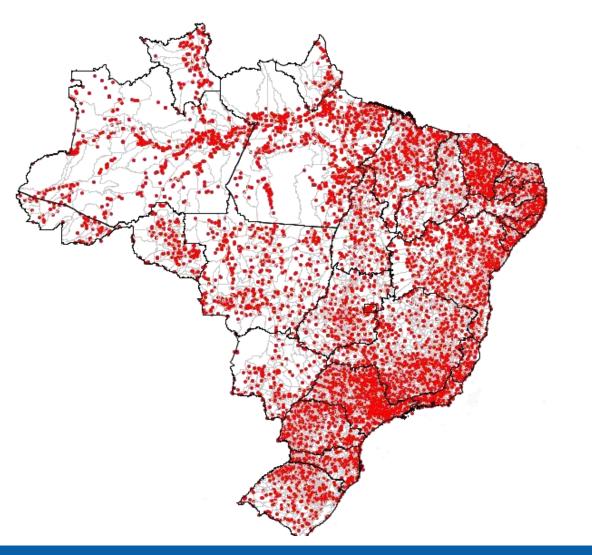
C-Band Satellites in Service


Global Distribution of 36 MHz Transponder-Equivalents

Note: TPE count does not include multispot beam high throughput satellites At least 169 C-band satellites in geostationary orbit today

- Represents about \$42-51 billion of inorbit investment, not including the investments in ground infrastructure.
- Substantial ongoing investment in Cband satellite capacity worldwide
 - At least 52 satellites with C-band payloads have been launched in 2007-2012, representing \$12-15 billion in investments.
 - At least 35 satellites with C-band payloads are under construction and are scheduled to be launched in 2012-2015, representing \$9-10 billion in investments.
- GEOs are long-lived assets; typical operational life is 15 years or more.
 - Stable, consistent regulatory environment required throughout

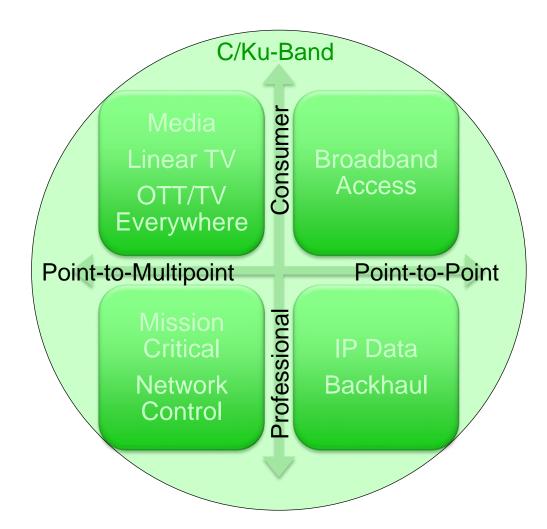
Aviation Security in the Caribbean


SAMPLE USE OF 3625 – 4200 MHz BY THE FSS IN BRAZIL

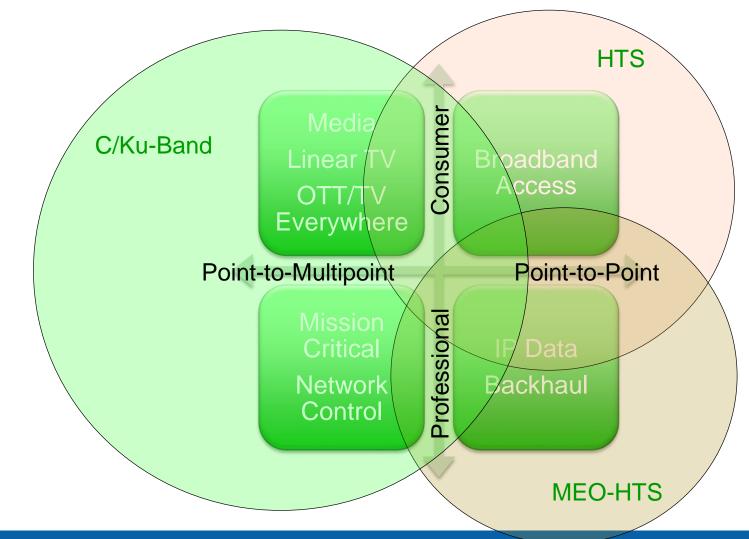
Brazilian Contribution at June CITEL Meeting (OEA/Ser.L/XVII .4.2 CCP.II-RADIO/doc. 974/06):

No Better Band to Address Rain Attenuation

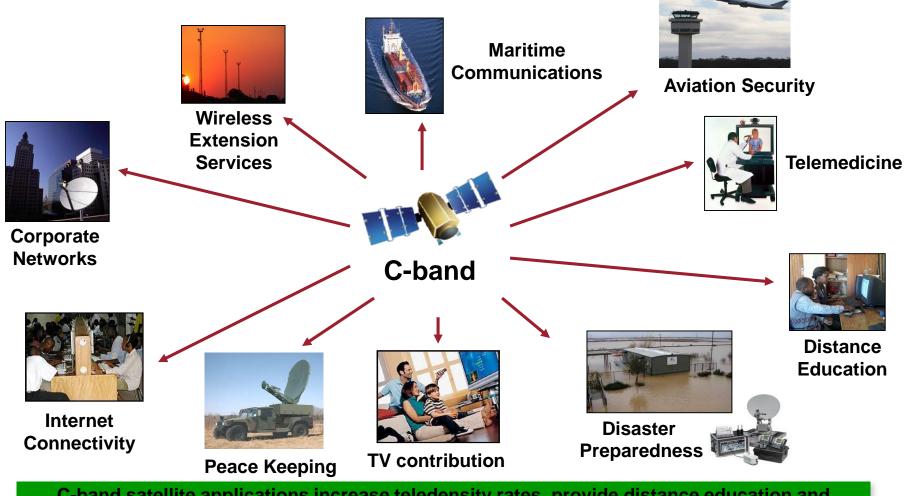
ExclusionZonesUnworkable


Developing
Countries Can't
Afford Equipment
Changeout

Conclusion: 3625-4200 & 4500 – 4800 MHz Should Not Be Considered for IMT



The C-band Value Proposition



The New Value Proposition

C-band Satellite Applications: Achieving Policy Goals and Business Objectives

C-band satellite applications increase teledensity rates, provide distance education and telemedicine, enable broadband to rural areas, and more

IMT Interests Claim They Need C-band

- Studies Show Sharing Would Create Interference
- Millions Depend on C-band for Satellite Connectivity
- Economic Contribution Is Massive
- Wireless Spectrum Demand Estimates are Wrong

Stakes & Stakeholders

The Issue

WRC-15 Agenda Item 1.1 will consider additional spectrum generally for International Mobile Telecommunications (IMT) and other mobile broadband applications ... including C-band

What More Can Be Done to Save the C-band User Community?

The Problem

Such use is not compatible with the existing operations in C-band, including FSS, radar systems and fixed point-to-point links.

Next Steps

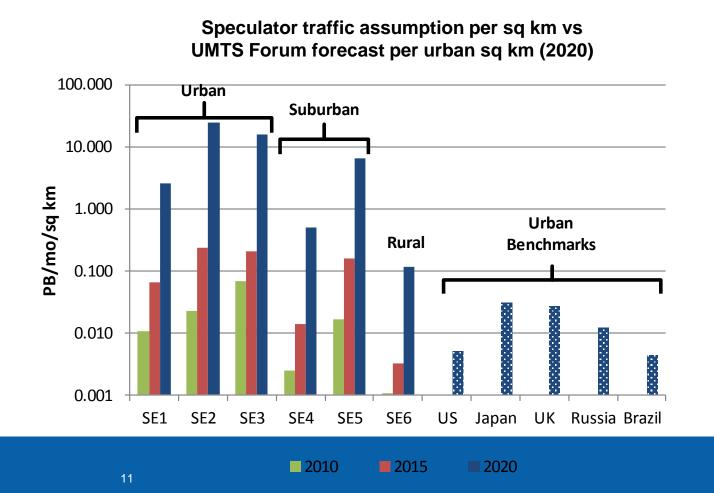
The Satellite Industry and Its User Community – Representing Billions in Economic and Social Impact -- Are Standing Together... Again

- Broadcasters
- Humanitarian Organisations
- The United Nations
- Civil Aviation
- Military

ITU Spectrum Demand Model

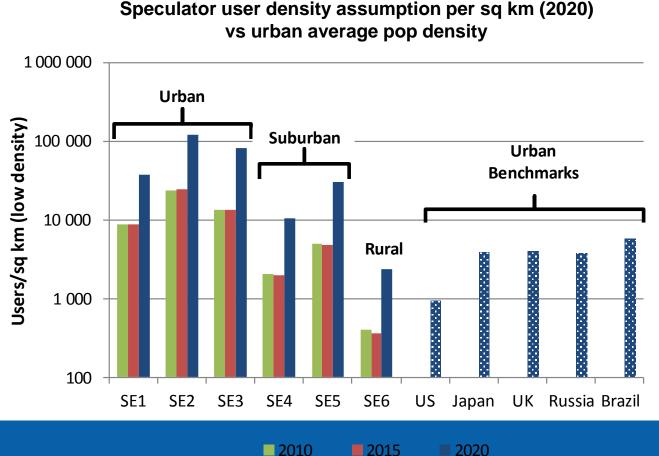
- ITU WP-5D has developed a model, referred to as the Speculator, to project future IMT requirements for additional spectrum
- The model predicted that between 760 and 840 MHz of spectrum would be required for IMT by 2010

– No country was using more than 400MHz by 2010

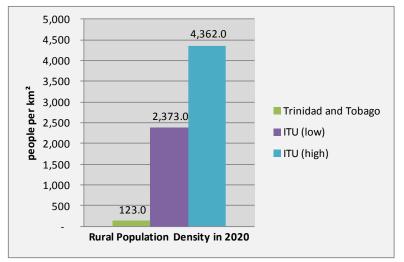

 The current version of the model, prepared for WRC-15, predicts that between 1340 and 1960MHz of spectrum will be required for IMT services by 2020

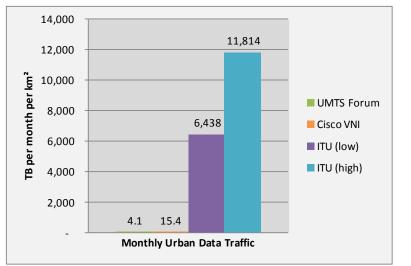
Traffic Density Comparison

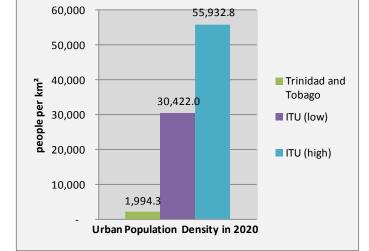
 Speculator assumptions exceed the UMTS Forum projections of urban traffic per sq km by two or three orders of magnitude

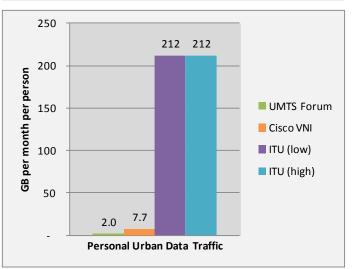


User Density Comparison






User density is much higher than <u>urban</u> average even in suburban environments



Comparison – Trinidad & Tobago

LS telcom

Conclusion

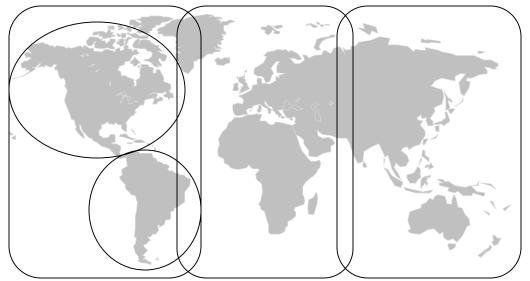
- The Caribbean Depends on C-band Satellite
- Wireless Spectrum-Demand Estimates...
 - Appear Grossly Over Stated
 - Need to be Examined Prior to WRC-15
- "No Change" to 3.4-4.2 GHz for WRC AI 1.1

Key Services Supported by C-band Satellites

▲ Media Distribution

- C-band is used to distribute media content around the world, including, e.g.
 - Cable distribution to 7038 cable head-ends around the United States, serving 60 million U.S. households
 - Cable distribution to 4711 cable head-ends in Latin America and the Caribbean, serving more than 29 million cable homes (2012)
 - 20 million receive-only C-band television dishes in Brazil alone
- ▲ Media Contribution
 - Special events coverage (e.g. Olympics)
 - · Satellite news gathering
- ▲ Feeder Links for mobile-satellite services (MSS)
 - · Supporting public safety and emergency relief missions around the world.

Key Services Supported by C-band Satellites



- Rural and remote communications
 - Internet and basic connectivity
 - Cellular backhaul applications
- Mobility
 - 3510 C-band Earth Stations on Vessels (ESVs) in 2012, providing video distribution, Internet and mobile backhaul
- ▲ Other C-band services, including
 - Disaster recovery and preparedness
 - Tracking, Telemetry & Command (TT&C) for many satellite systems in other frequency bands, for example, for launches

Unique Attributes of C-Band Satellite Services

- C-band satellite services cannot easily be replicated at other satellite bands or via terrestrial means
 - **Geographic reach**. C-band easily covers entire continents and oceans and offers an economically viable way of providing intercontinental and global communications
 - Smaller or hard-to-reach markets and low density regions are covered as easily as metropolitan areas
 - Particularly ideal for point-to-multipoint applications (broadcast, widely-dispersed networks), and remote/rural deployment
 - Resistance to rain-fade
 - C-band is less susceptible to signal interruptions from heavy rains than higher bands (Ku, Ka), making it better suited for tropical or high-rain areas at high availabilities

WRC-15 and IMT

 Under Agenda Item 1.1, ITU is tasked with identifying additional frequency bands for IMT

• Working Party 5D (WP 5D) is to identify suitable IMT frequency ranges

- Consider only the technical feasibility of operating IMT in the specified frequency range. Will NOT consider impact to/from other incumbent services
- Update IMT bandwidth requirements
- Provide/Update IMT parameters

• Joint Task Group 4-5-6-7 (JTG 4-5-6-7)

- Perform sharing studies
- Generate Conference Preparatory Meeting (CPM) Report
- Identify candidate frequency bands for IMT from the frequency ranges provided by WP 5D
 - Administrations can propose IMT frequency bands separate from the frequency ranges proposed by WP 5D

Sharing between FSS & BWA/IMT is not feasible

- ▲ ITU studies Studies have concluded that protection distances of between 51 430 km are necessary to allow co-frequency sharing between BWA/IMT systems and FSS earth stations, i.e. co-coverage sharing is not feasible
 - Adjacent band protection distances to avoid LNB overload of FSS receivers are between 10 31 km
 - Considering that a typical city has a radius of 15 to 30 km, sharing between BWA/IMT systems and FSS receive earth stations is not realistic
 - See Reports ITU-R M.2109 & S.2199

▲ Government, strategic, and commercial FSS services in the C-band will suffer

- Resulting interference can cause signal delays, synchronization loss, blackout periods, blackout areas, and total loss of transmission
- Many countries Bolivia, Hong Kong, Indonesia, Fiji, to name a few have experienced interference when deploying BWA systems in C-band
 - WiMAX testing led to 30% of TV households in Bolivia missing some of World Cup 2006
 - Similar testing in Hong Kong led to 300,000 households across Asia to lose their TV service

Sharing between FSS & BWA/IMT is not feasible

- Sharing is exacerbated by a large number of receive only earth stations already deployed – many of which are unregistered
 - Shielding, for example, requires knowing the location of every earth station
 - Further, site shielding is expensive and infeasible on a regional or worldwide basis

Satellite Industry Concerns

- Renewed efforts to identify the 3.4 4.2 GHz band for IMT
 - WRC-07 studies demonstrated incompatibility of satellite services with IMT
 - Interference from IMT transmissions into FSS receive stations
 - Requires large distance separations between IMT stations and FSS earth stations
 - No technology developments that change the compatibility analysis since 2007 to warrant different outcome at WRC-15