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Presentation Outline

• Measurement Campaign

• Machine Learning Methods basics

• Problem Definition

• Results

• Conclusions
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Motivation and objectives

• To predict RSRP from Base Stations based on 
Machine Learning for 4G and 5G Networks

• To reduce prediction error for extreme cases

• To provide a prediction framework for similar 
cases
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• Established in 2002; Based on more than 30 years of experience in R&D projects

• Lab members: G. Tsoulos (Director), G. Athanasiadou, A. Kaloxylos, D. Zarbouti,

D. Kontaxis, more than 10 postgraduates

• Equipped with state-of-the-art wireless network and system measurement tools (9 test

mobiles, 2 scanners), EMF testing equipment (Narda SRM3006, AMB8059,

AMS8061), and multiple drones (4)

• Current focus on modern wireless technologies, propagation – EMF - system

measurements, and the development of smart wireless networks that utilize multiple

sensors and drones
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Wireless Systems Measurements
• Echo Suite from Enhancell

• Echo One

• Echo Studio

• Echo Cloud

• Analyzes the radio link and captures systemic 

parameters such Beams, Cell ID, Channel 

Frequency, Connectivity Mode, Modulation, 

RSRP, RSRQ, SINR, neighbor RSRP, Latency, 

Throughput, etc.

• Simultaneous measurements for the three 

wireless networks in Greece (Cosmote, 

Vodafone, Nova)
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● 3 smartphones on the car's 
dashboard

● Routes

○ cities (urban-suburban)
○ Highways (rural)

● Continuous measurements 
for signal/network/service 
quality (power, interference, 
throughput, latency, etc.)

5500 Km
National -
Highways

2500 Km
Highways -

Peloponnese

2000 Km
Cities

Measurement Campaign (1)
Vehicle based data collection across different operators
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Measurement Campaign (2)
Drone-assisted data collection across different 
operators

● Industrial Hexacopters with 3 smartphones

● Μax payload 10 kg, max speed 15 m/s, max
flight duration 75 min, max range 10 km

● Ground station monitored and controlled the 
experimental process. Mission Planner for 
planning, configuring, simulating, and 
monitoring autonomous missions. 

● Continuous measurements for 
signal/network/service quality (power, 
interference, throughput, latency, etc.)
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● SYSTEM AVAILABILITY

Field Trials (1)

● Coverage Quality
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● 4G-5G RSRP COLOR MAPS

Field Trials (2)
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● 4G-5G RSRP statistics – different days/time of day 

Field Trials (3)
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Machine Learning Methods
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ELEDIA@AUTH is a Research Group 
in the AUTH, Department of Physics 

consisting of 5 faculty members, 5 PhD 
students, and several MSc students  

ELEDIA@AUTH, Department 
of Physics, AUTH

Director: 
Prof. Sotirios K. Goudos
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ML Methods used

• Bagging methods
– Random Forest, Extra trees

• Boosting methods
– CatBoost, XGBoost, LGBM

• ANN
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ML Methods: Random Forest (2)

The workflow of Random Forest
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ML Methods: Extremely Randomized 
Trees
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Problem Definition

Goal: to use ML
for SS-RSRP 
prediction (linear 
average of power 
contributions (in [W]) of 
resource elements that 
carry secondary 
synchronization signals )
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Problem Definition (2)
• Tripoli, a city in southern Greece 12Km route
• Enhancell’s Echo One
• UE device assesses all cellular networks (2G-5G), 

examining various parameters
• Two datasets are constructed based on the 4G (5062 

vectors) and 5G data (3236 vectors)
• Optuna for hyperparameter optimization
• 80% - 20% training-test split
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Machine Learning Model
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Performance metrics for Regression
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UoPAUTHAUTH Numerical results  4G 
Training 

Time
(s)

SMAPE
(%)

MAPE 
(%)

RMSE 
(dBm)

MAE 
(dBm)

ML Model

119.220.761.532.211.32XGBoost

1.510.871.72.411.32LightGBM

1240.831.642.381.43CatBoost

25.170.751.512.131.28Random 
Forest

2.780.691.392.161.18Extra 
Trees

105.191.192.382.971.87ANN
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UoPAUTHAUTH Numerical results  5G 
Training 

Time
(s)

SMAPE
(%)

MAPE 
(%)

RMSE 
(dBm)

MAE 
(dBm

)

ML Model

74.120.841.72.71.29XGBoost

3.470.91.692.411.46LightGBM

134.240.891.792.331.52CatBoost

3.830.761.552.641.17Random 
Forest

2.720.711.432.181.29Extra 
Trees

101.381.232.463.011.94ANN
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Conclusions
• The simulation results indicate significant

accuracy improvements in estimation across
various ML methods

• Among these methods, ET performs best

• ML approaches offer potential solutions for RSRP
prediction challenges and can greatly assist future
wireless network planning efforts in various
environments for 4G and 5G scenarios
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• Basic idea of ensemble methods:
– Combining predictions from competing models 

often gives better predictive accuracy than 
individual models.

• Shown to be empirically successful in wide 
variety of applications.

• Popular methods:
– Bagging: individual learners trained 

independently.

– Boosting: training process is sequential and 
iterative

Ensemble methods
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• Bagging = bootstrap + aggregation
1. Create k bootstrap samples.

Example:

2. Train a regressor on each bootstrap sample.

3. Average the predictions of the k models.

Bagging

10987654321original data

9510105281087bootstrap 1

2372321941bootstrap 2

73695510581bootstrap 3

Breiman, L. “Bagging Predictors.” Machine 
Learning. Vol. 26, pp. 123–140, 1996.
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Boosting
Each classifier          is
trained from a weighted
Sample of the training
Data

( )mG x
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ML Methods: Categorical boosting 
(Catboost)

• A high-performance open-
source gradient boosting 
library.

• Optimized for categorical data 
(no need for manual 
encoding).

• Built-in handling of missing 
values.

• Automatically converts 
categorical features to 
numerical ones

L. Prokhorenkova, et al,
CatBoost: unbiased boosting with 
categorical features
Proceedings of the 32nd 
International Conference on 
Neural Information Processing 
Systems (2018), pp. 6639-6649
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ML Methods: Random Forest

• Based on Bootstrap Aggregation (Bagging)
• Each individual tree is grown indepedently from 

the others
• The final prediction is the average of the 

individual predictions
• L. Breiman, “Random forests,” Machine Learning, vol. 45, 

no. 1, pp. 5–32, Oct. 2001.
• P. Geurts, D. Ernst., and L. Wehenkel, “Extremely 

randomized trees”, Machine Learning, 63(1), 3-42, 2006.
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ML Methods: eXtreme Gradient 
Boosting (XGBoost)

• Based on Gradient Boosting
• Trees are grown sequentially
• Each tree compensates for the errors of the 

previous one
• T. Chen and C. Guestrin, “XGBoost: A scalable tree 

boosting system,” in Proceedings of the 22Nd ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining, ser. KDD ’16. NewYork, NY, 
USA: ACM, 2016, pp. 785–794
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ML Methods: XGBoost (2)
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ML Methods: Light Gradient Boosting 
Machine (LightGBM)

 Faster Training Speed and Efficiency
 High Accuracy
 Scalability 
 Leaf-wise Tree Growth

Gradient boosting framework that uses decision trees


