

Modelling received power from wireless networks in Greece using machine learning

by

Prof. George Tsoulos^a, Prof. Sotirios Goudos^b

^aDept. of Informatics & Telecommunications, University of Peloponnese, Tripoli, Greece gtsoulos@uop.gr

bSchool of Physics
Aristotle University of
Thessaloniki, Thessaloniki
Greece
sgoudo@physics.auth.gr

Presentation Outline

- Measurement Campaign
- Machine Learning Methods basics
- Problem Definition
- Results
- Conclusions

Motivation and objectives

 To predict RSRP from Base Stations based on Machine Learning for 4G and 5G Networks

To reduce prediction error for extreme cases

To provide a prediction framework for similar cases

Wireless and Mobile Communications Lab

- Established in 2002; Based on more than 30 years of experience in R&D projects
- Lab members: G. Tsoulos (Director), G. Athanasiadou, A. Kaloxylos, D. Zarbouti,
 D. Kontaxis, more than 10 postgraduates
- Equipped with state-of-the-art wireless network and system measurement tools (9 test mobiles, 2 scanners), EMF testing equipment (Narda SRM3006, AMB8059, AMS8061), and multiple drones (4)
- Current focus on modern wireless technologies, propagation EMF system measurements, and the development of smart wireless networks that utilize multiple sensors and drones

AUTH Wireless Systems Measurements

UoP

- Echo Suite from Enhancell
 - Echo One
 - Echo Studio
 - Echo Cloud
- Analyzes the radio link and captures systemic parameters such Beams, Cell ID, Channel Frequency, Connectivity Mode, Modulation, RSRP, RSRQ, SINR, neighbor RSRP, Latency, Throughput, etc.
- Simultaneous measurements for the three wireless networks in Greece (Cosmote, Vodafone, Nova)

Measurement Campaign (1)

Vehicle based data collection across different operators

- 3 smartphones on the car's dashboard
- Routes
 - cities (urban-suburban)
 - Highways (rural)

2000 Km Cities

2500 Km Highways -Peloponnese 5500 Km National -Highways

Continuous measurements
 for signal/network/service
 quality (power, interference,
 throughput, latency, etc.)

Measurement Campaign (2)

Drone-assisted data collection across different operators

- Industrial Hexacopters with 3 smartphones
- Max payload 10 kg, max speed 15 m/s, max flight duration 75 min, max range 10 km
- Ground station monitored and controlled the experimental process. Mission Planner for planning, configuring, simulating, and monitoring autonomous missions.
- Continuous measurements for signal/network/service quality (power, interference, throughput, latency, etc.)

Field Trials (1)

• SYSTEM AVAILABILITY

Coverage Quality

Field Trials (2)

• 4G-5G RSRP COLOR MAPS

Field Trials (3)

• 4G-5G RSRP statistics – different days/time of day

Machine Learning Methods

ELEDIA@AUTH, Department of Physics, AUTH Director: Prof. Sotirios K. Goudos

ELEDIA@AUTH is a Research Group in the AUTH, Department of Physics consisting of 5 faculty members, 5 PhD students, and several MSc students

ML Methods used

- Bagging methods
 - Random Forest, Extra trees
- Boosting methods
 - CatBoost, XGBoost, LGBM
- ANN

ML Methods: Random Forest (2)

ML Methods: Extremely Randomized Trees

Problem Definition

Goal: to use ML
for SS-RSRP
prediction (linear
average of power
contributions (in [W]) of
resource elements that
carry secondary
synchronization signals)

Problem Definition (2)

- Tripoli, a city in southern Greece 12Km route
- Enhancell's Echo One
- UE device assesses all cellular networks (2G-5G), examining various parameters
- Two datasets are constructed based on the 4G (5062 vectors) and 5G data (3236 vectors)
- Optuna for hyperparameter optimization
- 80% 20% training-test split

Machine Learning Model

Performance metrics for Regression

Real
RSRP
Predicted
RSRP

RSRP

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \overline{y}_i|$$

$$RMSE = \sqrt{(\frac{1}{n}) \sum_{i=1}^{n} (y_i - \overline{y}_i)^2}$$

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \overline{y}_i}{y_i} \right| x100\%$$

SMAPE =
$$\frac{100\%}{n} \sum_{i=1}^{n} \frac{|\bar{y}_i - y_i|}{(|\bar{y}_i| + |y_i|)/2}$$

	ML Model	MAE (dBm)	RMSE (dBm)	MAPE (%)	SMAPE (%)	Training Time (s)
	XGBoost	1.32	2.21	1.53	0.76	119.22
	LightGBM	1.32	2.41	1.7	0.87	1.51
	CatBoost	1.43	2.38	1.64	0.83	124
	Random Forest	1.28	2.13	1.51	0.75	25.17
	Extra Trees	1.18	2.16	1.39	0.69	2.78
)	ANN	1.87	2.97	2.38	1.19	105.19

Mean Absolute Percentage Error distribution Extra Trees 4G

	ML Model	MAE (dBm	RMSE (dBm)	MAPE (%)	SMAPE (%)	Training Time (s)
	XGBoost	1.29	2.7	1.7	0.84	74.12
	LightGBM	1.46	2.41	1.69	0.9	3.47
	CatBoost	1.52	2.33	1.79	0.89	134.24
	Random Forest	1.17	2.64	1.55	0.76	3.83
	Extra Trees	1.29	2.18	1.43	0.71	2.72
)	ANN	1.94	3.01	2.46	1.23	101.38

Mean Absolute Percentage Error distribution Extra Trees 5G

Conclusions

- The simulation results indicate significant accuracy improvements in estimation across various ML methods
- Among these methods, ET performs best
- ML approaches offer potential solutions for RSRP prediction challenges and can greatly assist future wireless network planning efforts in various environments for 4G and 5G scenarios

Ensemble methods

- Basic idea of ensemble methods:
 - Combining predictions from competing models often gives better predictive accuracy than individual models.
- Shown to be empirically successful in wide variety of applications.
- Popular methods:
 - Bagging: individual learners trained independently.
 - Boosting: training process is <u>sequential</u> and <u>iterative</u>

Bagging

- Bagging = bootstrap + aggregation
- 1. Create *k* bootstrap samples.

Example:

original data	1	2	3	4	5	6	7	8	9	10
bootstrap 1	7	8	10	8	2	5	10	10	5	9
bootstrap 2	1	4	9	1	2	3	2	7	3	2
bootstrap 3	1	8	5	10	5	5	9	6	3	7

- 2. Train a regressor on each bootstrap sample.
- 3. Average the predictions of the *k* models.

Breiman, L. "Bagging Predictors." *Machine Learning*. Vol. 26, pp. 123–140, 1996.

FINAL CLASSIFIER

Each classifier $G_m(\mathbf{x})$ is trained from a weighted Sample of the training Data

ML Methods: Categorical boosting (Catboost)

- A high-performance opensource gradient boosting library.
- Optimized for categorical data (no need for manual encoding).
- Built-in handling of missing values.
- Automatically converts categorical features to numerical ones

L. Prokhorenkova, et al, CatBoost: unbiased boosting with categorical features Proceedings of the 32nd International Conference on Neural Information Processing Systems (2018), pp. 6639-6649

ML Methods: Random Forest

- Based on Bootstrap Aggregation (Bagging)
- Each individual tree is grown indepedently from the others
- The final prediction is the average of the individual predictions
- L. Breiman, "Random forests," *Machine Learning*, vol. 45, no. 1, pp. 5–32, Oct. 2001.
- P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006.

ML Methods: eXtreme Gradient Boosting (XGBoost)

- Based on Gradient Boosting
- Trees are grown sequentially
- Each tree compensates for the errors of the previous one
- T. Chen and C. Guestrin, "XGBoost: A scalable tree boosting system," in *Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, ser. KDD '16. NewYork, NY, USA: ACM, 2016, pp. 785–794

ML Methods: XGBoost (2)

ML Methods: Light Gradient Boosting Machine (LightGBM)

Gradient boosting framework that uses decision trees

- ☐ Faster Training Speed and Efficiency
- ☐ High Accuracy
- ☐ Scalability
- ☐ Leaf-wise Tree Growth

LightGBM leaf-wise

