ITUWorkshop

The future of television for Europe

7 November 2024 Geneve, Switzerland

itu.int/en/ITU-R/seminars/Future-of-TV-Europe

ITU Workshop on "Future of television for Europe"

Energy and spectral efficiency of MIMO for Digital Terrestrial Television Broadcasting

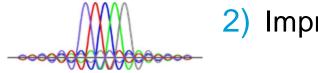
Luiz Fausto Technology & Regulatory Specialist -TV Globo / Brazil

Introduction to DTTB efficiency

DTTB is more **energy-** and **spectrum-efficient** than unicast systems for delivering audiovisual content to large audiences.

Can we make it even more efficient?

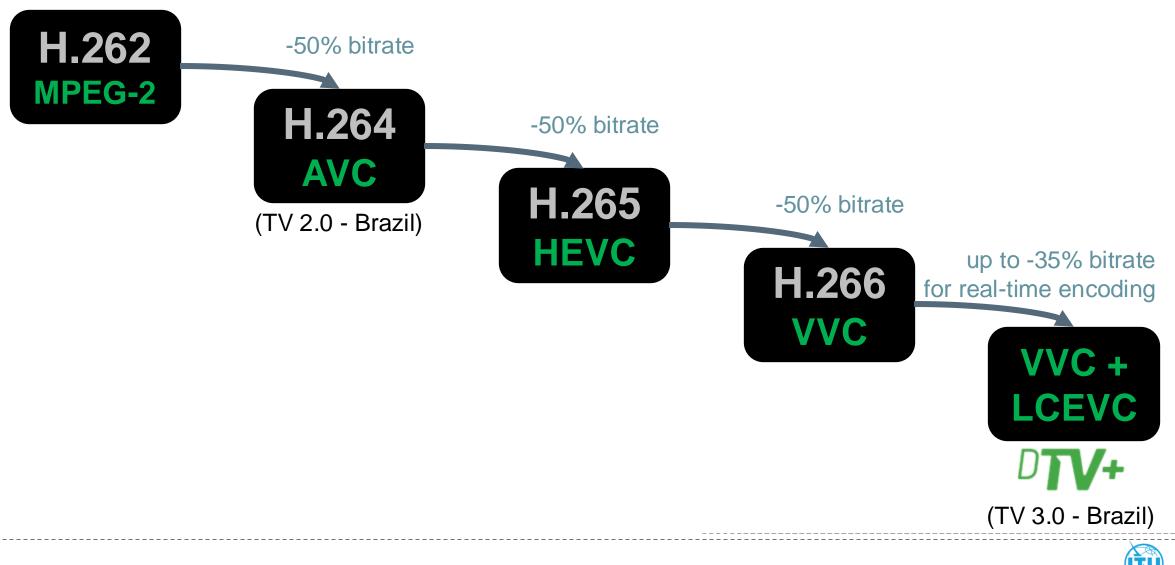
Yes, we can!



Ways to improve efficiency in DTTB

There are two main approaches for **improving DTTB efficiency**:

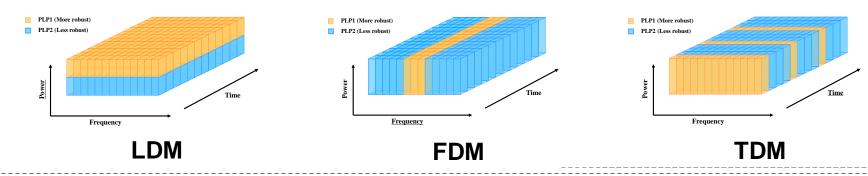
1) Improving source coding efficiency; and



2) Improving physical layer efficiency.

Improving **energy efficiency** in DTTB also enhances **spectrum efficiency** and vice-versa.

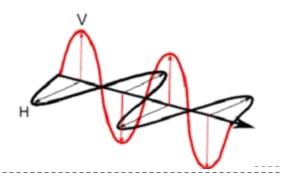
Improving source coding efficiency



Improving physical layer efficiency

Second-generation DTTB systems (as defined in Rec. ITU-R BT.1877) offer higher spectral and energy efficiency than first-generation DTTB systems (as defined in Rec. ITU-R BT.1306). For example, in the case of the Brazilian TV 3.0 Project (DTV+), the ATSC 3.0 physical layer provides about **1.4x** the bitrate of the ISBD-Tb system used for TV 2.0 in Brazil for the same C/N requirement.

Furthermore, when operating DTTB systems with more than one PLP for service-specific robustness, **LDM** enables significantly higher spectral and energy efficiency than FDM and TDM.



Further improving physical layer efficiency

While second-generation DTTB systems are already close to the theoretical efficiency limit (the Shannon limit), another card is still on our sleeve: **MIMO** (Multiple Input, Multiple Output).

In the TV 3.0 Project (DTV+), cross-polarized (horizontal/vertical) 2x2 MIMO demonstrated its **feasibility** and **robustness** even for indoor reception at non-line-of-sight conditions. This feature is already supported in the currently published ATSC 3.0 physical layer specification, which is recommended for adoption in the TV 3.0 Project.

It nearly **doubles the bitrate** of SISO (Single Input, Single Output) for the same C/N requirement. (ATSC 3.0 MIMO = 2x ATSC 3.0 SISO = 2.8x ISDB-Tb SISO)

The table below shows examples of **transmission power** required for the same coverage at different bitrates in SISO and MIMO, using a 6 MHz channel with ATSC 3.0.

transmission mode	bitrate (Mbps)	C/N AWGN (dB)	transmitter power (kW ERP)
SISO	16	12.8	1 x 10
MIMO	16	6.6	2 x 2.4
SISO	32	23.4	1 x 114.8
MIMO	32	12.8	2 x 10

MIMO for DTTB

MIMO has been used in many other wireless systems for many years for a very good reason. Now, the time has come for it to be used in **Digital Terrestrial Television Broadcasting**.

Many TV 3.0 (DTV+) trials with MIMO have been performed in Brazil already, and we plan to have **experimental transmissions** running **24x7** in **2025** and **commercial operations** starting in **2026**.

The combination of cross-polarized (horizontal/vertical) 2x2 MIMO ATSC 3.0 physical layer with VVC+LCEVC (which is 15x more efficient than the current Brazilian DTTB system configuration) will enable us to provide UHD HDR free-to-air services for indoor reception, at the highest possible spectral and energy efficiency.

For more information about the TV 3.0 Project (DTV+), please visit https://forumsbtvd.org.br/tv3_0

Thank you for your attention!

luiz.fausto@g.globo

