Etude de faisabilité pour la mise en place d'un centre de test de conformité

Décembre 2013
Ce rapport a été rédigé par Telecom Italia laboratory, Tilab Telecommunication Technologies, sous la coordination de la Division du développement des technologies et des réseaux de télécommunication (TND) du BDT. Pour de plus amples renseignements, veuillez communiquer avec la personne responsable du sujet à l’UIT, M. Riccardo Passerini, à l’adresse Riccardo.Passerini@itu.int.
Avant-propos

Cette étude de faisabilité pour la mise en place d'un centre de test de conformité décrit les environnements, les procédures et les méthodologies à adopter pour créer, gérer et exploiter un centre de test. Traitant d'une grande variété de domaines liés aux tests de conformité et d'interopérabilité, elle présente des meilleures pratiques relatives à tous les aspects pertinents pour des tests de ce type, depuis les activités d'une campagne de tests jusqu'à la gestion et l'entretien d'un grand centre de test.

Nous sommes certains que ce rapport sur la mise en place d'un centre de test de conformité sera utile aux décideurs, régulateurs, fabricants, fournisseurs de services et entrepreneurs.

Ce rapport traite de multiples enjeux, difficultés, questions et possibilités. Il offre un aperçu des évolutions technologiques et des questions administratives auxquelles tous les Etats Membres de l'UIT doivent faire face et présente les tendances en la matière, à la lumière des résultats obtenus en laboratoire dans des domaines comme la sécurité, la compatibilité et l'interopérabilité.

Outre les travaux actuels du BDT sur la définition de spécifications en matière de conformité et d'infrastructures d'interopérabilité, les tendances décrites dans ce rapport s'inscrivent dans le cadre des travaux intégrés de l'UIT en vue de promouvoir des bonnes pratiques. Cette étude de faisabilité fait partie du programme de conformité et d'interopérabilité de l'UIT et reflète les travaux récemment menés dans ce domaine, notamment les *Lignes directrices pour les pays en développement sur l'établissement de laboratoires d'essai destinés aux évaluations de conformité dans différentes régions* en 2012 et les nouvelles *Lignes directrices relatives à l'élaboration, à la mise en œuvre et à la gestion d'arrangements ou d'accords de reconnaissance mutuelle sur l'évaluation de la conformité* en 2013.

Convaincus que ces intéressantes sources d’information seront d’un grand profit pour tous les utilisateurs des TIC, nous encourageons les lecteurs de ce rapport à les exploiter pleinement. Nous espérons que les conseils, les étapes et les calendriers présentés dans cette étude en vue de la mise en place d’un centre de test de conformité permettront d’aider et de guider les membres de l’UIT, pour le plus grand bénéfice de leurs citoyens.

Brahima Sanou
Directeur
Bureau de développement des télécommunications
Table des matières

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Objectif de l’étude de faisabilité</td>
<td>7</td>
</tr>
<tr>
<td>1.1</td>
<td>Portée</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Aperçu du contenu</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Nécessité de mettre en œuvre des tests de conformité et d’interopérabilité</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Tests de conformité et tests de protocoles</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Processus de test</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Gestion et organisation des ressources</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Organisation</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>Personnel d’un centre de test</td>
<td>14</td>
</tr>
<tr>
<td>3.3</td>
<td>Procédures de gestion</td>
<td>18</td>
</tr>
<tr>
<td>3.4</td>
<td>Qualifications et formation du personnel</td>
<td>19</td>
</tr>
<tr>
<td>3.5</td>
<td>Rapports périodiques</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Gestion des fournisseurs</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Relations avec les fournisseurs</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Tests conjoints (externalisation – internalisation)</td>
<td>20</td>
</tr>
<tr>
<td>4.3</td>
<td>Parc de tests</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Gestion et cycle de vie des listes de tests</td>
<td>21</td>
</tr>
<tr>
<td>5.1</td>
<td>Conception</td>
<td>21</td>
</tr>
<tr>
<td>5.2</td>
<td>Maintenance</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Investissements et estimation des coûts</td>
<td>23</td>
</tr>
<tr>
<td>6.1</td>
<td>Domaines d’investissement</td>
<td>23</td>
</tr>
<tr>
<td>6.2</td>
<td>Priorité des investissements selon les domaines d’investissement</td>
<td>25</td>
</tr>
<tr>
<td>6.3</td>
<td>Dépenses d’immobilisation: coût total de possession lié à un nouvel investissement</td>
<td>25</td>
</tr>
<tr>
<td>6.4</td>
<td>Dépenses de fonctionnement: maintenance des instruments et externalisation de services</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Gestion des campagnes de tests</td>
<td>27</td>
</tr>
<tr>
<td>7.1</td>
<td>Processus de test</td>
<td>27</td>
</tr>
<tr>
<td>7.2</td>
<td>Suivi des bogues et gestion de la campagne de tests</td>
<td>32</td>
</tr>
<tr>
<td>7.3</td>
<td>Gestion des versions</td>
<td>34</td>
</tr>
<tr>
<td>7.4</td>
<td>Utilisation des listes de diffusion</td>
<td>35</td>
</tr>
<tr>
<td>7.5</td>
<td>Gestion de la réalisation à tester (IUT)</td>
<td>36</td>
</tr>
<tr>
<td>7.6</td>
<td>Evaluation de l’incertitude de mesure</td>
<td>36</td>
</tr>
</tbody>
</table>
Gestion des installations et des laboratoires de tests

8.1 Economies d’énergie
8.2 Impact environnemental
8.3 Aspects liés à la sécurité
8.4 Sécurité et contrôle des accès
8.5 Contrôle à distance des instruments

Maintenance et gestion des instruments

9.1 Laboratoire d’étalonnage (LE)
9.2 Laboratoire d’instrumentation et de gestion (LIG)
9.3 Instruments régis par le système de qualité

Aspects liés à la qualité (UNI CEI NE ISO/CEI 17025)

10.1 Manuel de qualité
10.2 Gestion de la qualité
10.3 Documentation
10.4 Dérogation aux procédures documentées

Annexe A: Infrastructures des laboratoires et des installations de tests

A Laboratoire sur le débit d’absorption spécifique (DAS)
B Laboratoire sur l’expérience utilisateur (EXU)
C Laboratoire sur l’accès à large bande (ALB)
D Laboratoire sur les services à valeur ajoutée (SVA)
E Laboratoire sur la sécurité et la protection électriques (SPE)
F Laboratoire électroacoustique (ELA)
G Laboratoire sur la CEM (CEM)
H Laboratoires sur la radio et la signalisation (RSL)
I Laboratoire sur le rendement énergétique (REN)
J Laboratoire sur la qualité des matériels (QML)
K Laboratoire sur les réseaux personnels (RPE)
L Installations de tests

Annexe B: Evaluation des coûts

Références
Liste des acronymes
1 Objectif de l'étude de faisabilité

1.1 Portée
La présente étude de faisabilité décrit les environnements, les procédures et les méthodologies à adopter pour créer, gérer et exploiter un centre de test et traite de différents domaines liés aux tests de conformité et d'interopérabilité, y compris en présentant des bonnes pratiques et recommandations en la matière.

La valeur des tests
La manière la plus directe d’estimer la valeur des tests consiste à calculer les pertes qu’ils permettent d’éviter, en termes d’argent, de temps ou de vies humaines. Une analyse des risques permet de déterminer la stratégie de tests la plus appropriée en évaluant les impacts de dysfonctionnements potentiels concernant les spécifications les plus importantes. Une telle évaluation peut être qualitative; toutefois, lorsque c'est possible, il est raisonnable de fournir également une évaluation quantitative en comparant les avantages des tests – c'est-à-dire les sommes économisées en évitant les dommages et les pertes qui auraient été induits par les anomalies détectées – aux coûts des activités de tests, notamment calculés à partir des ressources qu’elles mobilisent. Une analyse ultérieure prendrait en considération les impacts de futurs dommages et les coûts induits à partir du moment où une telle anomalie serait détectée en exploitation.

Connaissances acquises
Le savoir-faire et l'expertise acquis lors de la mise en œuvre des activités de tests s’avèrent également intéressants, notamment en ce qui concerne l'analyse des spécifications traduites en une solution réelle, les aspects liés à la configuration par rapport aux services visés, les équipements et l'environnement, la connaissance des interfaces et des protocoles connexes et le comportement attendu. Il est souvent intéressant, pour un opérateur de télécommunication, que son personnel ait la possibilité d'avoir un contact technique et matériel direct avec les équipements dans un environnement de test.

Une vision intégrée
Etant donné que les activités de test visent à simuler efficacement l'ensemble des fonctionnalités des réseaux TIC (équipements, services, interopérabilité, environnement externe, etc.), elles constituent souvent la première occasion de rassembler les différents éléments de la chaîne. C'est donc au cours de la phase de conception de l'environnement de test qu'il est possible et nécessaire d'approfondir l'analyse détaillée et la définition des combinaisons architecturales ainsi que de repérer les situations critiques.

Importance capitale des tests en situation de maturité
Les tests effectués dans une situation de maturité selon les normes internationales permettent aux testeurs d'assumer un rôle particulier en repérant les risques et en prévenant les anomalies susceptibles d'avoir des conséquences graves sur la sécurité du déploiement dans des conditions d'exploitation réelle.
Il est ainsi possible d'effectuer en amont une évaluation de la fiabilité des fournisseurs et de repérer les produits susceptibles de générer des coûts et des délais inacceptables. De tels tests permettent également aux fournisseurs d'affiner leurs prévisions concernant la disponibilité des produits et des services, sur la base d'expériences et de statistiques précédentes.

Environnement de test – résolution des problèmes
La construction d'un tel environnement de test permet de repérer, à l'occasion des activités de résolution de problèmes lors de situations critiques au cours de la mise en œuvre, des pannes ou des dysfonctionnements impossibles à anticiper au moment des spécifications initiales. Etant donné le temps nécessaire pour analyser et mettre en place un environnement de résolution de problèmes, seules des installations de tests qui fonctionnent, mises en place à l'occasion des phases précédentes, s'avèrent justifiées d'un point de vue économique.
Documentation de l'historique

La documentation des résultats de tests peut s'avérer extrêmement précieuse pour les clients. Il peut s'agir, par exemple, d'aider les départements acheteurs des opérateurs à choisir des fournisseurs et à négocier avec eux, à repérer les points faibles des services et des produits fournis (notamment les défauts d'interopérabilité) et à mettre en évidence la probabilité d'un retard de fourniture. Une telle documentation peut également servir de base pour la mise en place d'un processus efficace de vérification de la qualité des produits et des services entrants.

Sur un marché réglementé, les résultats des tests, susceptibles d'apporter des informations pertinentes dans le cadre de l'établissement de dossiers d'évaluations globales de conformité, peuvent être utilisés à l'occasion d'activités de surveillance ou d'enquête.

1.2 Aperçu du contenu

Ce document est organisé de manière à traiter au mieux les différents aspects liés à la gestion et à l'entretien d'un centre de test:

- gestion et organisation des ressources;
- gestion des fournisseurs;
- gestion et cycle de vie des listes de tests;
- investissements et estimation des coûts;
- gestion des campagnes de tests;
- gestion des installations et des laboratoires de tests;
- aspects liés à la qualité;
- infrastructures des laboratoires et des installations de tests.

Gestion et organisation des ressources

Cette section traite de tous les aspects liés à la gestion des ressources du centre de test sur le plan du savoir-faire, de la maintenance, de la sélection et de l'organisation des compétences ainsi que de l'exploitation des activités de normalisation internationale et des projets européens permettant au centre de profiter des dernières informations en la matière. Elle offre également des renseignements relatifs à l'organisation et à la structure du personnel ainsi qu'à toutes les procédures de gestion des ressources humaines.

Gestion des fournisseurs

Cette section présente des suggestions à prendre en compte dans le domaine de la gestion des fournisseurs. Lors du transfert des activités de test aux fournisseurs en particulier, il est extrêmement important d'éviter de déléguer une part excessive des activités les plus critiques et il convient de maintenir un juste équilibre entre le traitement interne ou externe des activités principales. Les procédures de test à forte valeur ajoutée doivent être maîtrisées par le centre de test, tandis que les procédures de configuration ayant un caractère plus opérationnel peuvent être laissées aux soins de ressources externes. Une répartition adaptée s'avère capitale pour maintenir un savoir-faire et une maîtrise du marché appropriés.

Gestion et cycle de vie des listes de tests

Dans le cadre d'un processus de test, une conception et une gestion adéquates de listes de tests utilisées par les différents laboratoires jouent un rôle essentiel. D'une part, une liste de tests doit être suffisamment détaillée pour prendre en compte toutes les fonctionnalités et réduire au maximum le risque de laisser des domaines non testés; mais d'autre part, plus une liste est détaillée, plus la durée des tests sera longue et coûteuse. Il peut être parfois nécessaire de travailler à partir de listes de tests réduites afin d'accélérer la mise sur le marché et de diminuer la durée globale des tests. Il peut donc être
pertinent, dans certains cas, d'effectuer des tests de crédibilité allégés n'évaluant que les fonctionnalités les plus critiques ayant été recensées.

Investissements et estimation des coûts

Une bonne estimation des investissements et des coûts constitue un aspect important de la gestion d'un centre de test. Pour ce faire, il convient de recenser les domaines d'investissement pertinents en relation avec l'évolution des réseaux et des équipements à tester, compte tenu de l'évolution rapide qui caractérise le secteur des TIC. Habituellement, la courbe d'investissement d'un centre de test n'est pas linéaire mais présente des écarts par rapport à l'évolution des technologies, comme en atteste l'exemple des réseaux mobiles (GSM, HSDPA, LTE, etc.). Pour déterminer la pertinence d'un investissement, il faut prendre en compte le coût total de possession lors de l'évaluation du cycle de vie complet de chaque investissement individuel. Il est également nécessaire de porter une attention particulière au processus d'achat, de définir des spécifications détaillées et d'organiser de façon appropriée le processus de demande de soumissions.

Gestion des campagnes de tests

La capacité à traiter correctement une campagne de tests constitue un aspect essentiel de la gestion d'un centre de test. Pour évaluer efficacement un produit, il convient de suivre différentes étapes permettant de repérer toutes les anomalies possibles. La procédure habituelle consiste à effectuer, dans un premier temps, des tests unitaires (tests de conformité) évaluant les fonctionnalités et les spécifications techniques d'un équipement individuel faisant office de "boîte noire" par rapport à des normes nationales, internationales ou régionales puis, dans un deuxième temps, des tests "de bout en bout", émulant le réseau réel dans des installations de tests offrant la possibilité de tester les performances du produit TIC (évaluation comparative). Une telle démarche permet de repérer les anomalies logicielles ou matérielles durant la première phase, puis l'ensemble des problèmes possibles liés aux modèles de services dans la deuxième phase. Il est en général nécessaire, à l'issue de ces deux phases, d'effectuer des essais sur le terrain chez les clients et des évaluations de la stabilité des services.

Cette section présente également une analyse détaillée de l'ensemble des outils nécessaires en soutien à la gestion d'une campagne de tests comme les procédures de suivi des bogues, l'utilisation de listes d'envoi spécifiques et les méthodes de mise à niveau des versions logiciels.

Gestion des installations et des laboratoires de tests

Parallèlement aux activités de tests, de nombreux aspects connexes doivent être maîtrisés dans un centre de test. Cette section propose un aperçu des procédures de sécurité à adopter sur le plan des risques et du contrôle des accès durant les activités de tests. Le document offre également, en relation avec les aspects techniques et environnementaux, des lignes directrices en matière de maintenance des laboratoires, des installations de tests et des instruments.

Aspects liés à la qualité

Cette section décrit les procédures et les méthodologies à adopter afin de maintenir le centre de test en conformité avec les normes internationales en matière de qualité, une attention particulière ayant été portée, à cet égard, à l'application de la norme ISO/CEI 17025 qui constitue la référence internationale de gestion des laboratoires. En se référant à cette norme, il est possible de définir les ressources et de tester de façon adéquate les configurations, les processus, la documentation et, d'une façon générale, tous les aspects liés au maintien et à l'amélioration de la qualité.

Infrastructures des laboratoires et des installations de tests

L'annexe de ce rapport propose une liste des principaux laboratoires à mettre en place dans un centre de test afin de pouvoir traiter le spectre complet des technologies de l'information et de la communication. Elle fournit également des informations en matière de services de tests, de configurations de tests, de logistique et de normes de référence. Un certain nombre de renseignements généraux relatifs à des installations de tests fixes ou mobiles sont également fournis en vue de mettre en place un environnement susceptible de reproduire des réseaux réels.
Tableau 1: Liste de laboratoires de tests et d'installations de tests

<table>
<thead>
<tr>
<th>Acronyme du laboratoire de test</th>
<th>Domaine de compétence</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS</td>
<td>Laboratoire sur le débit d'absorption spécifique</td>
</tr>
<tr>
<td>EXU</td>
<td>Laboratoire sur l'expérience utilisateur</td>
</tr>
<tr>
<td>ALB</td>
<td>Laboratoire sur l'accès à large bande</td>
</tr>
<tr>
<td>SVA</td>
<td>Laboratoire sur les services mobiles à valeur ajoutée</td>
</tr>
<tr>
<td>SPE</td>
<td>Laboratoire sur la sécurité et la protection électriques</td>
</tr>
<tr>
<td>ELA</td>
<td>Laboratoire électroacoustique</td>
</tr>
<tr>
<td>CEM</td>
<td>Laboratoire sur la compatibilité électromagnétique</td>
</tr>
<tr>
<td>RSL</td>
<td>Laboratoire sur la radio et la signalisation</td>
</tr>
<tr>
<td>REN</td>
<td>Laboratoire sur le rendement énergétique</td>
</tr>
<tr>
<td>QML</td>
<td>Laboratoire sur la qualité des matériels</td>
</tr>
<tr>
<td>RPE</td>
<td>Laboratoire sur les réseaux personnels</td>
</tr>
<tr>
<td>ITF</td>
<td>Installations de tests fixes</td>
</tr>
<tr>
<td>ITM</td>
<td>Installations de tests mobiles</td>
</tr>
</tbody>
</table>

2 Nécessité de mettre en œuvre des tests de conformité et d'interopérabilité

2.1 Tests de conformité et tests de protocoles

L'élaboration de systèmes complexes dotés de fonctionnalités sophistiquées nécessite l'échange d'informations entre ces systèmes. Les équipements de communication exigent par exemple des règles bien définies pour réussir à communiquer. La majorité des aspects théoriques et des descriptions formelles liés à la conformité trouvent leur origine dans les tests logiciels et, en particulier, dans les tests de protocoles.

Un protocole décrit les règles auxquelles des systèmes doivent se conformer lorsqu'ils communiquent entre eux. Une entité protoculaire est la partie du système qui assure la responsabilité locale lors des communications en conformité avec le protocole. La définition de ces protocoles joue un rôle fondamental pour l'interopérabilité entre des équipements provenant de fabricants différents.

Souvent, les protocoles ne sont pas élaborés en vase clos, mais plutôt au sein de groupes de fabricants ou d'utilisateurs, aux fins de leur normalisation. Une telle démarche a, par exemple, abouti à l’élaboration du modèle de référence OSI pour les systèmes ouverts servant de cadre à un ensemble de normes qui permettent aux systèmes modernes de communiquer. Toutefois, la spécification et la normalisation de protocoles de communication ne suffisent pas à garantir le succès des communications entre les systèmes. Il faut également pouvoir vérifier que la mise en œuvre réelle ne s’écarte pas des spécifications des protocoles standard. Il est possible d'effectuer une telle vérification en testant la mise en œuvre desdits protocoles. Cette activité est connue sous le nom de tests de conformité de protocoles.

Des méthodes mathématiques formelles sont de plus en plus souvent utilisées pour la conception, la spécification et l'analyse des protocoles. Dans ce cadre, il est souhaitable et possible que les tests de protocoles, tels qu'ils sont effectivement mis en œuvre, s'appuient également sur des méthodes formelles. Ce rapport traite de l'utilisation de méthodes formelles pour les tests de conformité de protocoles.
2.2 Processus de test

Les tests sont un processus consistant à tenter de trouver les erreurs d'un système par des moyens expérimentaux.

En général, les expérimentations sont menées à bien dans un environnement particulier permettant de simuler une utilisation normale ou exceptionnelle d'un système. L'objectif des tests consiste à s'assurer que le système fonctionnera de façon satisfaisante lors d'une utilisation normale; toutefois, compte tenu de l'impossibilité de tester exhaustivement des systèmes réalistes en raison de la durée nécessairement limitée des tests, ces derniers ne peuvent jamais garantir la conformité absolue d'une mise en oeuvre. Les tests peuvent mettre en évidence des erreurs mais ne prouvent pas l'absence totale d'erreur.

Les tests de conformité sont une modalité de tests au cours desquels la réalisation d'une entité de protocole est testée par rapport à sa spécification. Il s'agit de s'assurer du fonctionnement correct de la réalisation et d'améliorer ainsi la probabilité que ladite réalisation communique efficacement avec son environnement.

La conduite de tests ou d'expérimentations doit être conçue avec méthode et rigueur. Les tests s'appliquent à une réalisation donnée et leurs résultats sont comparés avec les résultats attendus ou calculés. En fonction des résultats de cette comparaison, il est possible de formuler un verdict quant à l'adéquation de la réalisation qui, s'il est négatif, peut être utilisé pour améliorer ladite réalisation.

Lors des tests, on distingue clairement les tests de conformité et les tests d'interopérabilité.

Tests de conformité

Fondamentalement, les tests de conformité consistent en une procédure permettant de tester la conformité d'un produit aux spécifications précisées dans les normes applicables. L'objectif principal des tests de conformité de produits TIC consiste à accroître la probabilité que différentes mises en œuvre d'une même norme soient interopérables (ETS 300 406 de l'ETSI).

Les tests de conformité, que l'on appelle également tests "boîte noire", s'appuient sur la structure interne du système testé. Dans le cas d'essais logiciels, l'objectif consiste à tester le code de façon exhaustive, c'est-à-dire à s'assurer, notamment, que chacune des instructions du programme est exécutée au moins une fois. Le système à l'essai est considéré comme une boîte noire et ses capacités de fonctionnement sont vérifiées sans aucune référence à une interaction quelconque avec des entités externes, l'objectif principal consistant à déterminer si le produit construit correspond aux spécifications. Etant donné que la nature des tests de conformité à effectuer dépend des spécifications, il est indispensable de disposer de directives précises et claires pour les exécuter.

Dans la pratique, lors de tests de conformité, ni la structure interne de l'entité à l'essai, ni le système au sein duquel elle est située ne sont habituellement accessibles aux testeurs, qui se contentent d'observer le comportement de ladite entité en communiquant avec elle.

Tests d'interopérabilité

Conformément à la définition de la Recommandation UIT-T Y.101, l'interopérabilité est la capacité d'au moins deux systèmes ou deux applications à échanger des informations et à utiliser mutuellement les informations échangées.

Il s'avère qu'en pratique, les tests fonctionnels isolés d'une réalisation, c'est-à-dire les tests de conformité, ne permettent pas de garantir la possibilité d'une communication réussie entre les systèmes. Les produits sont donc également testés dans un environnement réaliste, par exemple au sein d'un modèle de réseau de communication. Ce type de test, appelé test d'interopérabilité, permet d'examiner plus en détail les interactions d'une réalisation avec les autres systèmes.

Outre les tests du comportement fonctionnel de la mise en œuvre d'un protocole, d'autres types de tests vérifient d'autres aspects d'un protocole, par exemple des tests de performances pour mesurer les aspects quantitatifs d'une réalisation, des tests de robustesse pour étudier le comportement de la réalisation dans un environnement produisant des erreurs et des tests de fiabilité pour déterminer si la réalisation fonctionne correctement dans la durée.
Acteurs des tests
Les tests de conformité peuvent être mis en œuvre par différentes entités. En général, il incombe au fournisseur d’effectuer les tests de conformité par rapport aux normes afin de tester son produit avant de le vendre (Manuel UIT "Tests des réseaux de prochaine génération«). Ces tests aident assurément les fournisseurs à atteindre et maintenir un haut niveau de qualité des produits élaborés. Les utilisateurs des produits ou les organismes qui les représentent testent quant à eux les produits pour vérifier qu’ils fonctionnent bien et qu’ils répondent donc aux attentes des utilisateurs. Les administrations responsables des télécommunications contrôlent les produits avant de les connecter à leurs réseaux afin de prévenir tout dysfonctionnement du réseau induit par des produits mis en œuvre de façon inappropriée. Enfin, des centres de test indépendants peuvent mettre en œuvre des tests de conformité au nom de l’une quelconque des parties mentionnées ci-dessus. Un système d’accréditation permet aux laboratoires de tests de certifier que les réalisations ont été testées et jugées conformes.

Normalisation des tests de conformité
Lorsque des tests de multiples réalisations d’un même système ou protocole normalisé (à l’échelon international) sont effectués par différents centres de test, les décisions de ces derniers quant à la conformité de chaque réalisation particulière devraient être identiques. Idéalement, il ne devrait pas être nécessaire que le même produit soit testé plus d’une fois par différents laboratoires de tests. Un tel objectif peut être atteint si la procédure d’essai s’appuie sur des principes communément acceptés, fait appel à des tests communément acceptés et conduit à des résultats communément acceptés. C’est dans ce cadre que l’Organisation internationale de normalisation (ISO) et l’UIT ont élaboré une norme jumelle pour les tests de conformité des systèmes ouverts. Il s’agit de la Recommandation UIT-T X.290\(^2\) (ISO/CEI-9646-1), Cadre général et méthodologie des tests de conformité d’interconnexion des systèmes ouverts. Cette norme a pour objectif "de définir la méthodologie, de définir un cadre à la spécification des suites de tests de conformité et de définir les procédures de test à appliquer", conduisant ainsi "à une comparabilité et à une large reconnaissance des résultats des tests provenant de laboratoires différents et ainsi réduire au minimum la nécessité de refaire des tests de conformité sur un même système". La norme ne spécifie pas de tests à mettre en œuvre pour un système ou un protocole particulier; toutefois, elle définit un cadre au sein duquel des tests de ce type devraient être élaborés et fournis des orientations pour leur exécution. La norme recommande que des ensembles de tests, appelés suites de tests, soient élaborés et normalisés pour tous les protocoles normalisés.

Accréditation du centre de test
L’accréditation est une attestation indépendante constituant une preuve formelle qu’un organisme d’évaluation de la conformité possède les compétences requises pour effectuer des tâches spécifiques dans ce domaine. A ce titre, une accréditation est particulièrement utile pour un laboratoire de test. La norme de référence en la matière est la norme ISO/CEI 17025. L’accréditation d’un laboratoire de test est accordée par un organisme national ou international d’accréditation. L’accréditation à l’échelon international est octroyée par l’ILAC\(^3\) (International Laboratory Accreditation Cooperation), l’IAF et l’IECEE. A l’échelon national, elle est octroyée par l’organisme national d’accréditation (par exemple ACCREDIA en Italie, conformément à la directive CE 765/2008, cet organisme d’accréditation national étant reconnu par le gouvernement italien). Le respect des exigences de la norme ISO/CEI 17011 prouve que l’organisme d’accréditation dispose des compétences nécessaires pour effectuer des activités d’accréditation.

1. www.itu.int/pub/T-HDB-IMPL.09-2011
2. www.itu.int/rec/T-REC-X.290
3. www.ilac.org
L'ILAC a été créé en 1996 en vue d'une reconnaissance mutuelle des différents organismes nationaux d'accréditation. En 2010, l'accord de reconnaissance multilatérale de l'ILAC comprenait 72 organismes d'accréditation signataires (membres à part entière) de 59 pays. L'objectif de l'ILAC est de constituer un réseau mondial de laboratoires de tests accrédités, évalués et reconnus, mettant en œuvre des processus et des normes de qualité identiques. La Figure 1 montre la hiérarchie du processus d'approbation pour un service de tests accrédités.

Figure 1: Hiérarchie du processus d'approbation

La figure illustre la hiérarchie du processus d'approbation pour un service de tests accrédités.

Légende:

<table>
<thead>
<tr>
<th>International</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILAC</td>
<td>ILAC</td>
</tr>
<tr>
<td>National</td>
<td>National</td>
</tr>
<tr>
<td>National accreditation body</td>
<td>Organisme national d'accréditation</td>
</tr>
<tr>
<td>Testing lab</td>
<td>Laboratoire de test</td>
</tr>
<tr>
<td>Product</td>
<td>Produit</td>
</tr>
<tr>
<td>Supplier</td>
<td>Fournisseur</td>
</tr>
</tbody>
</table>
3 Gestion et organisation des ressources

3.1 Organisation

Un centre de test de conformité doit être indépendant de toute entreprise afin de garantir son impartialité en tant que prestataire indépendant de services de tests de conformité.

La Figure 2 montre la structure habituelle d'un organisme de ce type et son personnel clé.

Figure 2: Organigramme

![Organigramme](image)

Légende:

<table>
<thead>
<tr>
<th>Direction</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>General manager</td>
<td>Directeur général</td>
</tr>
<tr>
<td>Quality manager</td>
<td>Responsable de la qualité</td>
</tr>
<tr>
<td>Coordination</td>
<td>Coordination</td>
</tr>
<tr>
<td>Technical manager</td>
<td>Responsable technique</td>
</tr>
<tr>
<td>Marketing manager</td>
<td>Responsable marketing</td>
</tr>
<tr>
<td>Technical operation</td>
<td>Opérations techniques</td>
</tr>
<tr>
<td>Testing area resp.</td>
<td>Responsable de domaine de tests</td>
</tr>
<tr>
<td>Lab</td>
<td>Labo</td>
</tr>
<tr>
<td>TS</td>
<td>ST</td>
</tr>
<tr>
<td>TCO</td>
<td>OCT</td>
</tr>
<tr>
<td>LTE</td>
<td>ETL</td>
</tr>
</tbody>
</table>
3.2 Personnel d'un centre de test

Directeur général (DG)

Le directeur général assure la responsabilité globale de la mise en place et de l'évolution du centre de test.

Dans les détails, il ou elle doit:

- superviser et gérer l'ensemble des activités du centre de test;
- diriger la gestion administrative et financière du centre de test;
- accepter les conseils et les suggestions du responsable de la qualité et favoriser la qualité au sein du centre;
- élaborer le manuel de qualité du centre ainsi que les procédures pertinentes et les améliorer en permanence (section 10.1);
- planifier et diriger la mise en place et l'évolution du centre de test avec l'aide du responsable technique;
- définir et mettre en place la politique commerciale des services de tests;
- maintenir le contact avec les autres organismes participant aux activités de test afin d'améliorer les connaissances techniques du centre dans ce domaine;
- examiner les rapports des responsables de la qualité et des responsables techniques, fournir des orientations et prendre les décisions clés;
- signer avec le client les contrats, licences, accords, etc.;
- approuver le recrutement du personnel du centre de test et signer les contrats des nouveaux employés.

Responsable technique (RT)

Le responsable technique rend compte au directeur général pour l'ensemble des activités techniques du laboratoire conformément aux normes et procédures indiquées dans le manuel de qualité et aux exigences des organismes d'accréditation nationaux ou internationaux. En tant que responsable technique, il ou elle gère tous les aspects des résultats des activités de test. Il ou elle doit:

- planifier et superviser les services de tests, en s'assurant de la bonne mise en œuvre des activités et de la qualité du centre de test;
- assister le directeur général dans la recherche de financement et de ressources en vue d'exécuter les programmes de travail convenus;
- assister le directeur général en vue d'élaborer le plan de développement du centre de test;
- approuver et signer les rapports de test;
- autoriser l'acceptation des nouveaux outils de test et des procédures techniques connexes;
- superviser la mise en œuvre de toute mesure corrective jugée nécessaire pendant le déroulement des activités;
- assister le responsable de la qualité dans la préparation du plan de qualité;
- décider de l'affectation du personnel technique au sein du centre de test avec l'approbation du directeur général;
- s'assurer de l'adéquation et de la compétence du personnel du centre de test et planifier les programmes de formation avec l'aide du responsable de domaine de test;
- mettre en place, conjointement avec les responsables de domaine de test, les programmes d'amélioration technique des services;
• organiser et présider des réunions régulières de coordination avec les responsables de domaine de test et le responsable de la qualité en vue d'examiner les objectifs qualitatifs et techniques et de proposer d'éventuelles mesures correctives;

• assumer la responsabilité globale de la sécurité du site du centre de test.

Responsable de domaine de test (RDT)
Le responsable de domaine de test rend compte, pour son domaine, au responsable technique pour la coordination et la supervision des activités de tests mises en œuvre par le personnel conformément aux exigences spécifiées dans le manuel de qualité du laboratoire. Il lui incombe notamment:

• de vérifier les rapports de tests produits par son domaine;

• de répartir le travail entre les différents spécialistes des tests;

• d'être l'interlocuteur privilégié pour les spécialistes des tests en cas de questions;

• d'assister le responsable technique dans la mise en place de programmes pour l'amélioration technique des services de test;

• d'assister le responsable technique dans la planification des programmes de formation du personnel et de mettre en œuvre ces programmes;

• d'élaborer l'annexe technique du manuel de qualité relative à son domaine, de vérifier que cette annexe est toujours tenue à jour et d'en assurer l'actualisation conformément aux exigences;

• d'assurer l'archivage, la mise à jour et la suppression de la documentation technique relative à son domaine;

• de présider des réunions régulières avec le personnel de son domaine en vue d'examiner les objectifs et de proposer d'éventuelles mesures correctives;

• d'assumer la responsabilité du contrôle d'accès au laboratoire de son domaine de test.

Spécialiste des tests (ST) – responsable de campagne de tests
Le spécialiste des tests rend compte au responsable de domaine de test pour la réalisation des évaluations de conformité liées à ce domaine conformément aux exigences spécifiées dans le manuel de qualité. Il lui incombe notamment:

• de respecter les exigences spécifiées dans le manuel de qualité et de mettre en œuvre les spécifications des services de test offerts par le centre de test;

• de rester, après la signature des contrats, en relation avec les clients à propos des aspects techniques;

• de coordonner la campagne de tests;

• de mettre en œuvre les tests de conformité, notamment la mise en place de l'environnement de test du client, de fournir au client toutes les informations et tous les contenus nécessaires, de passer en revue les contenus (PICS, PIXIT, etc.) transmis par le client, d'exécuter les tests, d'analyser les résultats des tests et de rédiger les rapports de tests.

Opérateur de campagne de tests (OCT)
L'opérateur de campagne de tests est responsable de l'exécution de la campagne de tests. Il lui incombe notamment:

• d'accepter et d'installer les équipements de test neufs ou réparés;

• d'assumer la responsabilité des travaux de maintenance quotidienne des équipements de test et de les consigner dans le carnet de maintenance;

• d'être responsable de l'exécution de la campagne de tests;
de s'assurer que les sauvegardes sont réalisées conformément aux procédures pertinentes;
• d'assurer la fonction de bibliothécaire pour les manuels des équipements et la documentation technique du domaine.

Experts techniques du laboratoire (ETL)
Ces experts peuvent être externes au laboratoire et, dans les organismes complexes, ne pas participer aux activités de test, mais être intégrés au département responsable de l’innovation ou de l’ingénierie. Ils sont les experts de référence du laboratoire pour un sujet particulier sur le plan de l’évolution des connaissances.

Responsable de la qualité (RQ)
Il incombe au responsable de la qualité de mettre en place et de vérifier le système de qualité décrit dans le manuel de qualité en s'assurant que les spécifications de la norme ISO/CEI 17025 sont respectées au quotidien et en conseillant le responsable technique et le directeur général en conséquence. Le responsable de la qualité rend compte au directeur général et au directeur technique. Il ou elle doit notamment:
• mettre en place et maintenir une vision globale du système de qualité du centre de test;
• vérifier les procédures de qualité utilisées par le centre de test et par ses différents domaines en analysant leur adéquation;
• organiser, au moins une fois par an, un examen de qualité formel par rapport aux spécifications de la norme ISO/CEI 17025 et des normes connexes;
• planifier et organiser des audits de qualité en s'assurant qu'au moins un audit formel de ce type est conduit chaque année pour chacun des aspects du système de qualité;
• examiner les résultats des audits en s'assurant que les mesures correctives préconisées sont mises en place;
• organiser des réunions régulières pour informer l'ensemble du personnel sur les exigences en matière de qualité;
• superviser la gestion, la mise à jour et la diffusion du manuel de qualité et des procédures de contrôle de qualité.

Responsable de la qualité adjoint (RQA)
Le responsable de la qualité adjoint rend compte au responsable de la qualité et l'assiste dans la réalisation des tâches qui lui incombent. En l'absence du responsable de la qualité, le responsable adjoint le remplace pour tous les aspects liés à la qualité et assume ses responsabilités. Il ou elle doit:
• assister le responsable de la qualité dans la planification et l'organisation des examens de qualité;
• assister le responsable de la qualité dans la planification, l'organisation et la conduite des audits de qualité;
• examiner avec le responsable de la qualité les résultats des audits;
• superviser la mise en œuvre des mesures correctives;
• actualiser le résumé et la partie générale du manuel de qualité ainsi que d'autres documents liés à la qualité.

Responsable de l'USC
Le responsable de l'USC (unité des services centraux) rend compte au directeur général des travaux de l'USC, notamment en matière de commercialisation, d'administration et de secrétariat. Il doit:
• promouvoir la commercialisation des services de test;
• rencontrer les clients afin de leur présenter les services fournis par le centre de test;
répondre à toute question soulevée par les clients par rapport aux procédures et aux règles;
• aider les clients à produire les demandes et à les consulter;
• transmettre les demandes au directeur général;
• envoyer et réceptionner les contrats;
• planifier les campagnes de tests en leur affectant un numéro;
• vérifier que le dossier de campagne de tests a bien été rempli à l’issue de chaque campagne;
• réceptionner les réclamations éventuelles des clients;
• fournir à chaque client une explication adéquate suite à une réclamation, en maintenant informés le directeur général, le responsable technique et le responsable de la qualité;
• assumer la responsabilité de la réception et du retour du système testé (ST);
• assurer un rôle d’interface avec les fournisseurs d’équipements;
• tenir un registre de tous les organismes externes auprès desquels le centre de test acquiert des biens et des services;
• superviser les travaux du secrétaire du centre de test.

Secrétaire
Le secrétaire rend compte au responsable de l’USC pour la coordination des activités administratives internes et fournit au directeur général, au responsable technique et au responsable de la qualité un soutien opérationnel en matière de secrétariat. Il ou elle doit:

• effectuer les activités administratives quotidiennes pour différents domaines;
• rédiger les documents administratifs pertinents pour les services (contrats, etc.);
• créer et maintenir une liste des membres du personnel du centre de test ainsi que des dossiers relatifs aux qualifications et aux formations de chacun d’entre eux;
• enregistrer les équipements de test et maintenir les registres de ces équipements;
• enregistrer, sauvegarder et stocker la copie principale de tous les logiciels PC utilisés pour la rédaction des rapports de tests;
• mettre en œuvre les évolutions du contenu du manuel et des procédures de qualité et assurer la distribution des nouvelles versions;
• s’assurer que la documentation relative au système de qualité est complète et à jour;
• assurer la fonction de bibliothécaire archiviste pour les archives administratives et relatives à la qualité.

3.3 Procédures de gestion
Les paragraphes suivants décrivent les procédures de gestion à adopter en cas d’absence de certains membres du personnel.

• En l’absence du responsable technique, le directeur général assume la responsabilité du fonctionnement du centre de test.
• En l’absence du responsable de domaine de test, le responsable technique assume la responsabilité du fonctionnement du domaine concerné.
• En l’absence du responsable de la qualité, le responsable de la qualité adjoint le remplace pour tous les aspects liés à la qualité et assume ses responsabilités.
• En l’absence d’autres membres du personnel, c’est le supérieur immédiat de la personne absente qui assume les tâches incombant à cette dernière.
Chaque membre du personnel du centre de test reçoit un exemplaire du manuel de qualité ainsi qu'un ensemble complet des procédures de qualité. Les membres du personnel doivent lire soigneusement ces documents, se familiariser avec leur contenu (plus particulièrement pour tout ce qui concerne leurs responsabilités et les tâches qui leur incombent) et les appliquer dans leur travail quotidien. Des réunions régulières sont organisées par le responsable de la qualité en vue d'informer l'ensemble du personnel des exigences relatives à la qualité.

Le centre de test ne doit participer à aucune activité susceptible de remettre en cause la confiance qu'il inspire en matière d'indépendance de jugement et d'intégrité pour ce qui a trait aux activités de test. Il incombe à la direction du centre de test de s'assurer que l'indépendance des membres du personnel est préservée tout au long de leur travail.

Les membres du personnel du centre de test ne doivent subir aucune pression commerciale, financière ou d'une autre nature susceptible d'influencer leur jugement technique. Il ne doit y avoir aucun lien entre la rémunération des membres du personnel participant aux activités de test et le nombre ou l'issue des tests réalisés. Tous doivent pouvoir exercer un jugement indépendant et ne doivent subir l'influence d'aucun facteur externe. Ils doivent être informés de la gravité d'accepter des récompenses. En cas de proposition indue, ils doivent informer dans les meilleurs délais la direction du centre de test, sous peine d'être tenus entièrement responsables des conséquences.

Chaque membre du personnel doit bien comprendre l'importance de la protection des droits et des renseignements en matière de propriété ainsi que faire tout ce qui est en leur pouvoir pour garantir que les procédures de sécurité sont bien mises en œuvre.

3.4 Qualifications et formation du personnel

Les membres du personnel participant aux services de tests doivent être formés pour la réalisation des tâches que l'on attend d'eux. Le responsable technique doit planifier les formations nécessaires, avec l'aide du responsable de domaine de test, afin que les membres du personnel opérationnel atteignent un niveau élevé de qualification professionnelle et qu'ils puissent s'y maintenir. Une telle formation doit porter sur les méthodes de tests de conformité dans les différents domaines techniques, sur les outils utilisés ainsi que sur les aspects généraux de la gestion de la qualité. Outre ces cours qui sont habituellement gérés en interne par le laboratoire, le personnel doit participer à des formations supplémentaires proposées par des organismes ou des fabricants d'équipements de test extérieurs. De même, il doit assister à des conférences et à des séminaires portant sur différents aspects des tests et de la qualité.

Du fait que le responsable technique assume la responsabilité globale des activités techniques du laboratoire, il doit répondre à un certain nombre d'exigences supplémentaires:

- Familiarité avec le processus des services, les spécifications et les techniques de test.
- Très bonne connaissance de tous les services de tests fournis par le laboratoire ainsi que des spécialistes des tests auxquels il fait appel.
- Très bonne connaissance de l'état de la configuration de test utilisée pour les services de tests.
- Très bonne connaissance des spécifications de la norme ISO/CEI 17025 et des normes connexes.

Des dossiers portant sur les qualifications et la formation de tous les membres du personnel participant aux activités du centre de test doivent être créés et tenus à jour. Ils doivent comprendre les éléments suivants:

- Expérience professionnelle à chacun des postes occupés.
- Études et formation.
- Niveau de formation continue.
- Publications.
- Participation à des séminaires, réunions et visites à d'autres laboratoires.
Etude de faisabilité pour la mise en place d'un centre de tests de conformité

- Qualifications professionnelles.

3.5 Rapports périodiques

L'organisation périodique de réunions d'information entre le RT et le RDT permettant de vérifier la situation des différentes activités constitue une excellente procédure à adopter afin de gérer efficacement le centre de test. Le RQ peut effectuer une synthèse des résultats de la réunion d'information hebdomadaire dans un rapport de situation. Le rapport de situation doit être structuré afin de conserver la trace:

- de la situation de chaque campagne;
- des principaux défauts identifiés et de leur degré de gravité respectif;
- des principaux problèmes de la semaine;
- des points critiques à résoudre;
- des relations avec les autres organismes ou entreprises et avec les autres départements.

4 Gestion des fournisseurs

4.1 Relations avec les fournisseurs

Les relations avec les fournisseurs d’équipements dépendent du type d’organisme auquel appartient le centre de test. Pour un laboratoire indépendant, un vendeur d’équipements est simplement un client et son engagement vis-à-vis du centre de test est défini par un accord bilatéral entre les deux parties. Pour un laboratoire faisant partie d’une organisation plus importante, par exemple lorsqu’un centre de test est un département d’un opérateur de réseau, le vendeur d’équipements peut être considéré comme un “fournisseur” de cette organisation. En ce sens, la relation avec le vendeur d’équipements n’est pas exclusivement gérée au niveau du centre de test, mais également prise en compte à un niveau plus élevé.

Un opérateur de réseau peut souhaiter faire appel à de nouveaux fournisseurs. Dans ce cadre, le vendeur d’équipements peut jouer le rôle de ”partenaire” pour l’élaboration et la mise au point de nouveaux services. Dans ce cas, les clients du centre de test sont des départements de sa propre organisation souhaitant introduire de nouveaux services ou de nouveaux équipements, le fournisseur ne payant alors aucun frais pour les campagnes de tests relatives aux nouveaux produits concernés. Le département qui formule la demande doit considérer que les coûts des tests constituent une partie des coûts de développement et de déploiement.

Dans d’autres cas, un fournisseur d’équipements peut lui-même souhaiter soumettre de nouveaux produits à l’opérateur de réseau; dans ce cas, ledit fournisseur est susceptible d’assumer, au moins partiellement, les coûts des tests de ces nouveautés.

4.2 Tests conjoints (externalisation – internalisation)

Lorsque la relation avec un fournisseur d’équipements prend la forme d’un partenariat, la charge de travail liée aux tests peut, d’une certaine façon, être ”partagée” entre le centre de test et le fournisseur d’équipements.

Dans ce cadre, différentes modalités sont possibles:

- Le fournisseur présente les résultats de ses propres tests; le centre de test les examine et décide des tests à programmer, par exemple des tests en chaîne ou des tests essentiels.
- Des membres du personnel du fournisseur se rendent au centre de test afin d’effectuer les tests prévus avec le personnel du centre.
Les tests (les plus importants) sont intégralement réalisés par le centre de test lui-même, le fournisseur ayant ses efforts sur l'évolution du nouveau produit ou du nouveau service (en tenant compte des résultats des tests).

Cependant, le centre de test doit se polariser sur les tests les plus importants, afin de mieux maîtriser les résultats de tests essentiels, et de faire évoluer les compétences de son personnel en adoptant les technologies de pointe.

4.3 Parc de tests

La démarche que nous appelons "parc de tests" constitue une façon innovante d'utiliser les installations d'un centre de test.

Dans ce cadre, une société fournissant des équipements ou des conseils et ne disposant pas en interne d'installations de tests adéquates peut louer les installations du centre de test afin de conduire ses propres tests (avec le soutien éventuel du personnel du centre de test).

Si une telle démarche est relativement connue lorsque le centre de test est une entité indépendante, elle est assez nouvelle dans le cas d'un laboratoire d'un opérateur de réseau.

Au-delà d'une meilleure exploitation des installations du laboratoire, un parc de tests peut également permettre au centre de test d'étendre ses connaissances à des domaines de test connexes aux siens, n'entrant pas directement dans son portefeuille d'activités habituelles.

5 Gestion et cycle de vie des listes de tests

Cette section propose un certain nombre de concepts généraux concernant la conception et la maintenance de listes de tests. Les détails concernant chaque laboratoire individuel ne sont pas traités ici, mais dans l'annexe sur les services du centre de test.

5.1 Conception

La conception d'une liste de tests doit tenir compte en premier lieu de l'objectif des tests.

Tests d'homologation

Une campagne de tests visant à produire un certificat formel d'homologation nécessite une liste de tests définie par les normes associées, qui devra prendre en compte tous les sujets prévus par chaque norme. Dans certains cas, la norme elle-même définit la liste de tests devant être suivie ainsi que les spécifications minimales (réglementées à échelle nationale ou régionale).

Systèmes de certification volontaire

Les systèmes de certification volontaire ressemblent à la démarche d'homologation: il existe un document approuvé précisant les spécifications à tester et contenant parfois la liste de tests elle-même. La liste de tests doit suivre précisément les spécifications mentionnées.

Introduction de nouveaux équipements ou services pour une utilisation commerciale

Lorsque le test a pour objectif de vérifier un nouvel équipement ou un nouveau service avant son introduction au sein d'un système plus complexe, par exemple le réseau d'un opérateur, ou son lancement sur le marché, la liste de tests doit être méticuleusement conçue.

Il faut d'abord prévoir une phase de tests de non-régression, c'est-à-dire que la liste de tests doit permettre de s'assurer que le nouvel équipement ou le nouveau service ne remet pas en cause le bon fonctionnement antérieur.

Dans un deuxième temps, les nouvelles fonctionnalités doivent être testées et la liste de tests doit permettre de vérifier, d'un point de vue fonctionnel, chacun des nouveaux aspects introduits par le
nouveau produit ou le nouveau service. Au cours de cette phase, il est possible de prévoir une analyse des protocoles de communication.
Enfin, lorsqu’il y a lieu, les aspects liés aux performances doivent être testés, par exemple la vitesse de transfert des données dans différents environnements, le temps de propagation, la qualité audio, etc.

La conception de la liste de tests doit également prendre en compte le calendrier de l'activité, c'est-à-dire qu'il convient de trouver un équilibre entre la profondeur de l'analyse et le délai planifié pour la phase de tests. Toutefois, la liste de tests doit traiter tous les aspects principaux recensés en tant compte des besoins de l'utilisateur final.

Tests de crédibilité

On appelle tests de crédibilité des tests conduits en amont du développement du produit, c'est-à-dire bien avant son introduction sur le marché. Dans ce cas, l'objectif des tests consiste à évaluer le potentiel de la nouvelle technologie ou du nouveau produit. Dans ce contexte, la liste de tests devrait donc essentiellement porter sur les fonctionnalités innovantes et sur les performances s'il s'agit d'une caractéristique marquante de cette nouvelle technologie ou de ce nouveau produit. Les tests de non-régression peuvent être reportés à une phase de déploiement plus avancée du produit.

Dans le cas d'une comparaison entre différents produits ou fournisseurs, la liste de tests doit permettre de s'assurer que les résultats sont objectivement mesurables et comparables.

5.2 Maintenance

Dans le cas des homologations ou des systèmes de certification volontaire, la liste de tests doit être tenue à jour et modifiée au fur et à mesure de l'évolution des normes pertinentes.

Dans le cas de tests en vue d'une introduction pour une utilisation commerciale, la liste de tests doit être "personnalisée" en fonction des caractéristiques du nouveau service ou équipement, afin de permettre effective la vérification des fonctionnalités les plus innovantes. La compatibilité avec l'écosystème existant doit être garantie dans tous les cas, les tests de non-régression pouvant souvent être adaptés à partir de listes de tests précédentes.

Dans le cas des tests de crédibilité, la liste de tests doit toujours être adaptée aux caractéristiques aux quelles on s'intéresse.

6 Investissements et estimation des coûts

La disponibilité d'actifs adéquats est un aspect crucial pour un centre de test. Le large spectre des domaines de compétence et la rapidité des évolutions technologiques déterminent, en particulier, la nécessité d'acquérir et d'entretenir les équipements de test adéquats requis pour la configuration des bancs d'essai souhaités.

Les décisions relatives à de nouveaux investissements doivent toujours tenir compte du coût total de possession du nouvel équipement, certains équipements nécessitant une maintenance régulière pour rester pleinement fonctionnels et offrir les performances requises.

6.1 Domaines d'investissement

Les principaux investissements d'un centre de test se répartissent entre les différents domaines suivants:

- Lacunes technologiques.
- Maintenance évolutive.
- Doublement d'instruments (amélioration de l'efficacité).
- Systèmes de soutien (simplification et automatisation).
Lacunes technologiques

Les lacunes technologiques apparaissant dans un centre de test avec l'émergence d'une nouvelle technologie représentent, pour ce dernier, une étape clé durant laquelle il doit décider s'il offrira ou non des services de tests sur cette nouvelle technologie. D'un côté, ces lacunes nécessitent souvent l'allocation d'un budget conséquent pour être comblées, mais, d'un autre côté, il existe un risque d'obsolescence rapide des installations de tests si le centre ne se met pas à niveau par rapport à ces nouvelles technologies et ces nouvelles normes.

L'introduction de la norme LTE dans les réseaux de radiocommunication mobile représente un exemple significatif de situation requérant des investissements dans ce domaine. Lorsqu'une norme de ce type apparaît, un centre de test doit prévoir l'acquisition non seulement de nouveaux équipements de test (terminaux de test, simulateurs de réseau, analyseurs de protocole, etc.) capables de gérer le nouveau système, mais également, pour que son offre de tests soit complète, d'installations spécifiques. Par exemple, dans le cas de la norme LTE, on pourrait installer une chambre anéchoïque équipée avec une configuration de test MIMO (entrées multiples, sorties multiples).

Maintenance évolutive

Le domaine de la maintenance évolutive concerne des améliorations technologiques plus "douces", mais tout aussi importantes. Le terme "évolutive" fait référence à tous les types de maintenance qui ne sont habituellement pas compris dans les contrats de maintenance souvent souscrits par un centre de test.

On peut, par exemple, envisager le cas d'un analyseur de protocole n'ayant pas besoin d'être remplacé à l'occasion de l'introduction d'une nouvelle norme, mais devant être mis à niveau avec de nouvelles cartes et de nouvelles licences logicielles. S'il est vrai que cet exemple reste relativement semblable à la situation des lacunes technologiques, on pourrait mentionner le remplacement d'un étalon de référence par un étalon plus récent ou le changement d'un récepteur de tests de CEM. Dans ces deux derniers cas, l'ancien instrument est toujours en mesure d'exécuter les tâches requises; toutefois, son vieillissement suggère de le remplacer par un instrument plus récent qui pourra effectivement être plus précis ou plus efficace, voire être en mesure d'exécuter d'autres tâches.

Doublement d'instruments (amélioration de l'efficacité)

Un centre de test ne peut réaliser qu'un nombre maximal de campagnes de tests déterminé en fonction des équipements et des installations de tests dont il dispose et de la liste de tests devant être suivie. Lorsque le volume des tests requis s'accroît dans un domaine de test particulier et que l'utilisation des bancs de tests est déjà optimisée, le centre de test a la possibilité de doubler un banc de test particulier.

Lorsque l'on effectue un tel doublement en vue d'améliorer les capacités de production de tests, la solution la plus sûre consiste souvent à dupliquer le banc de tests en conservant une instrumentation identique. En effet, lorsque les programmes de commande automatique des mesures sont en place, il n'est pas nécessairement possible de remplacer directement un instrument donné par un autre sans avoir à effectuer un travail conséquent d'adaptation des suites de tests. Il convient, en outre, de prendre en compte l'expertise du personnel dans l'utilisation d'instruments particuliers.

A l'inverse, le choix d'instruments différents peut s'avérer utile si les nouveaux équipements de test représentent une valeur ajoutée par rapport aux anciens dans le cadre de la mesure spécifique effectuée ou si des instruments dotés de capacités légèrement différentes offrent une plus grande souplesse. De plus, durant la phase d'achat, la possibilité d'acquérir des instruments différents peut souvent permettre d'obtenir de meilleurs prix.
Systèmes de soutien (simplification et automatisation)

Parallèlement aux investissements obligatoires pour pouvoir effectuer des mesures dans des domaines particuliers, par exemple sur de nouvelles technologies ou sur de nouvelles normes, un certain nombre d'autres investissements peuvent grandement simplifier les activités du laboratoire. Les investissements dans l'automatisation des bancs d'essai sont à prendre en considération dans le cadre de ce domaine d'investissement. Il peut s'agir de l'acquisition de logiciels susceptibles de commander les instruments, de l'élaboration de suites de tests automatisées ou de l'achat, sous la forme de solutions directement prêtes à l'emploi, de suites de tests automatisées ou de systèmes de test.

Ce type d'investissement ne dote pas un centre de test de la capacité de réaliser des tests particuliers supplémentaires, mais lui permet d'effectuer les mêmes tests en moins de temps. Dans certaines situations, l'automatisation des suites de tests améliore l'efficacité des tests et peut éviter d'avoir à doubler les bancs de tests.

L'automatisation des tests revêt une grande importance pour les suites de tests répétées de nombreuses fois selon une procédure identique, par exemple pour les tests de terminaux normalisés ou pour l'exécution de tests de non-régression. Dans ces situations, une amélioration du rendement peut conférer au centre de test un avantage concurrentiel important.

6.2 Priorité des investissements selon les domaines d'investissement

Les priorités d'investissement doivent être fixées en ayant à l'esprit les objectifs du centre de test ainsi que les objectifs et les besoins de ses clients. D'une façon générale, un centre de test devrait commencer par évaluer s'il est nécessaire de proposer des tests sur des technologies nouvellement apparues et, dans l'affirmative, déterminer les instruments requis pour mettre en place des bancs de mesure sur ces technologies, tout en élaborant un plan lui permettant de suivre le rythme des nouvelles tendances technologiques.

La maintenance évolutive étant indispensable à un centre de test pour maintenir ses capacités, une partie du budget d'investissement sera nécessairement consacrée à ce domaine.

La nécessité de doubler des bancs d'essai existants ne dépend que du volume des tests demandés au centre de test pour tel ou tel type de test. Lorsque l'amélioration des processus et l'automatisation des tests ne s'avèrent pas suffisantes, le centre de test doit s'efforcer de déterminer si la demande de campagnes de tests dans un domaine particulier va, à l'avenir, rester soutenue ou même augmenter. En cas de réponse positive, le doublement des bancs s'avère un bon choix.

L'automatisation des tests exige souvent un investissement en temps et en travail supérieur à l'investissement purement financier. Lorsque le laboratoire se voit commander des campagnes de tests dont l'exécution peut être automatisée, cela s'avère, en général, un bon investissement; en effet, cela permet non seulement d'améliorer la quantité de tests produits, mais également la répétabilité et, souvent, la précision de la campagne de tests.

6.3 Dépenses d'immobilisation: coût total de possession lié à un nouvel investissement

Lorsqu'un centre de test envisage l'acquisition de nouveaux instruments, il doit prendre en compte non seulement le coût d'achat initial, mais également le coût total de possession (CTP).

Un certain nombre d’instruments nécessitent une maintenance logicielle régulière pour rester conformes aux évolutions les plus récentes en matière de normes internationales. Un analyseur de protocole doit, par exemple, toujours rester adapté aux derniers logiciels. Un contrat de maintenance logicielle peut représenter 10% à 15% du coût d’acquisition initiale pour chaque année d'utilisation du logiciel.
Dans certains cas, un contrat de maintenance matérielle peut s'avérer utile, particulièrement sur les instruments essentiels et lorsque le centre de test ne dispose pas de solution de rechange pour compléter le banc de tests suite à une panne. À défaut d'un contrat de ce type, la gestion des problèmes matériels au moment où ils surviennent peut, en fonction de la souplesse et de l'efficacité du processus d'achat interne, constituer un processus relativement long et chronophage.

Un certain nombre d'années de mises à niveau et de maintenance gratuites peuvent être incluses lors de l'achat initial d'un instrument, un avantage qu'il convient de prendre en compte lors de la comparaison entre différentes offres pour l'achat d'un instrument.

6.4 Dépenses de fonctionnement: maintenance des instruments et externalisation de services

Le budget d'un centre de test doit inclure deux catégories principales de dépenses de fonctionnement: la maintenance des instruments et l'externalisation, s'il y a lieu, d'un certain nombre d'activités.

Maintenance des instruments

La maintenance adéquate des instruments constitue un enjeu de première importance pour un centre de test, qui doit disposer d'un plan minutieux concernant les instruments:

• qui requièrent une maintenance logicielle régulière, sous forme de contrats de maintenance, pour conserver leur efficacité;
• qui nécessitent un étalonnage périodique, en prenant en compte les étalonnages que le centre de test réalise lui-même en interne (sous réserve qu'il dispose d'un service de métrologie) et ceux qui exigent l'intervention d'un laboratoire extérieur;
• qui revêtent un caractère essentiel et requièrent un contrat de maintenance matérielle doté d'un engagement de niveau de service (SLA).

Les dépenses de maintenance et d'étalonnage sont relativement prévisibles et font partie de l'exploitation normale d'un centre de test.

Externalisation de services

Un centre de test devrait déterminer son coeur de métier et ses capacités de test et compétences principales pour pouvoir décider de sous-traiter auprès de laboratoires externes un certain nombre de tests pour lesquels il n'est pas équipé.

Un centre de test spécialisé en télécommunications pourrait, par exemple, choisir d'externaliser des tests physico-chimiques sur la qualité des matériels qui ne lui sont demandés que quelques fois par an et qui exigent des équipements de test très spécifiques.

Gestion des achats

Dans le cadre du processus d'achat d'un nouvel instrument, il peut être opportun de soumettre au service interne responsable des achats différentes solutions susceptibles de répondre aux besoins, afin de pouvoir mettre en concurrence plusieurs fournisseurs possibles et d'obtenir les meilleures conditions.

Pour ce faire, les besoins doivent être exprimés sous la forme de spécifications techniques apparaissant dans une "liste de spécifications" précisant, pour chacune de ces exigences, si elle est obligatoire ou optionnelle. Le centre de test peut également déterminer une liste d'instruments susceptibles de satisfaire ses besoins et adresser cette liste, avec les spécifications techniques, au service responsable des achats, ce dernier pouvant alors envoyer un appel d'offres aux fournisseurs potentiels à l'issue duquel l'instrument le moins cher parmi tous ceux qui satisfont aux exigences techniques pourra être retenu.
Il arrive que le centre de test ait intérêt, lors de l'achat de nouveaux instruments, à prendre en considération ce qui existe, c'est-à-dire les technologies en place, par exemple le fait de disposer de suites de tests automatisés pour certains instruments. Dans ce cas, le lancement d'un défi pour promouvoir l'innovation sur les suites de tests automatisés pourrait également favoriser l'obtention de meilleures conditions économiques.

7 Gestion des campagnes de tests

La gestion des campagnes de tests représente un processus essentiel pour tout centre de test. L'efficacité de ce processus a un impact direct sur les coûts de traitement et sur la date de mise sur le marché des produits testés. De plus, l'ordre dans lequel les tests sont effectués revêt une grande importance pour repérer des anomalies sur le produit testé. La plupart des centres de test adoptent l'enchâinement de tests décrits à la Figure 3:

1) **Tests unitaires**: lors de cette phase, le produit est évalué en tant qu'élément indépendant déconnecté des autres équipements (tests réalisés en laboratoire).

2) **Tests "de bout en bout"**: le produit est ici évalué en tant que partie d'un réseau en conformité avec un modèle de service défini (tests réalisés dans des installations de tests). L'estimation des performances réelles d'un produit TIC peut être incluse dans cette phase; il faut alors disposer d'un équipement pour charge spéciale.

3) **Essais sur le terrain**: le produit est testé dans des conditions réelles (tests réalisés sur le terrain).

4) **Évaluation de la stabilité du service**: il s'agit de l'évaluation finale du service de bout en bout réalisée à partir des informations transmises par les clients ou les utilisateurs finaux (tests sur le terrain).

Figure 3: Processus de test en quatre étapes

7.1 Processus de test

Le processus de spécification des rôles et des responsabilités du personnel du centre de test constitue un autre aspect important qu'il convient de définir, particulièrement si le centre fait partie d'une organisation plus importante.

La Figure 4 décrit le processus habituel lié à la création d'un nouveau service et le rôle des différents départements. Habitulement, le département marketing définit le concept de service, en ce qui concerne les besoins en personnel et les aspects financiers, en collaboration avec le département ingénierie pour les aspects et les limitations techniques du service.

Une fois que le concept de service et le plan de déploiement sont en place, les caractéristiques et paramètres précis nécessaires à la production du modèle de service et au lancement du service sont élaborés, le centre de test étant alors chargé d'évaluer la bonne réalisation du service; le processus de validation peut alors commencer.

Le processus de validation (en laboratoire et dans les installations de tests) peut être structuré en trois séquences initiales de tests: les tests unitaires de l'élément isolé; les tests "de bout en bout" ou tests en chaîne; les essais sur le terrain.
Une fois le service validé et mis en place, des essais visant à évaluer sa stabilité peuvent être organisés pour détecter l'existence de problèmes éventuels liés à son degré de maturité. Une fois le service stabilisé, la phase d'exploitation et de maintenance peut commencer.

Figure 4: Processus de création d'un service

![Diagram of service creation process]

Source: UIT

Légende:

<table>
<thead>
<tr>
<th>Testing Labs</th>
<th>Laboratoires de tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>New service concept</td>
<td>Nouveau concept de service</td>
</tr>
<tr>
<td>Deployment plan</td>
<td>Plan de déploiement</td>
</tr>
<tr>
<td>Service development</td>
<td>Développement du service</td>
</tr>
<tr>
<td>Stand alone</td>
<td>Tests unitaires</td>
</tr>
<tr>
<td>End to end</td>
<td>Tests "de bout en bout"</td>
</tr>
<tr>
<td>Trial</td>
<td>Essai (sur le terrain)</td>
</tr>
<tr>
<td>Commercial launch</td>
<td>Lancement commercial</td>
</tr>
<tr>
<td>O&M</td>
<td>E&M</td>
</tr>
<tr>
<td>Go/No go</td>
<td>Feu vert/rouge</td>
</tr>
<tr>
<td>Design and Planning of a new service</td>
<td>Conception et planification d'un nouveau service</td>
</tr>
</tbody>
</table>

Tests unitaires

Les tests unitaires constituent la première phase du processus de test, au cours de laquelle les fonctions et les caractéristiques de la réalisation à tester (IUT) sont vérifiées. En particulier, différents aspects liés aux matériels et aux logiciels sont vérifiés de façon isolée. Les tests sont exécutés en stimulant le matériau à l'essai (MAE) à partir d'interfaces externes normalisées avec des instruments adaptés émulant les protocoles ou effectuant des mesures physiques.

Habituellement, les tests unitaires s'organisent en deux temps :

- Les **tests relatifs au matériel** concernent les paramètres physiques, notamment la CEM, la sécurité et la protection électriques, les paramètres radio, environnementaux (température et vibration) électriques et optiques.

- Les **tests relatifs aux logiciels et aux réseaux** concernent les fonctionnalités liées au protocole, qui sont habituellement vérifiées à l'aide d'analyseurs de protocoles.
Tests "de bout en bout"

Après la phase des tests unitaires, il est souvent nécessaire d'évaluer la bonne interopérabilité entre le matériel à l'essai et les autres éléments. Afin de pouvoir mettre en œuvre ces tests, il est nécessaire de reproduire un environnement de travail, par exemple un réseau de télécommunication, dans des installations de tests, en utilisant les éléments les plus importants du réseau interconnectés conformément au modèle de service défini durant la phase de création du service. Durant cette phase de test, tous les éléments, toutes les caractéristiques et toutes les fonctions du réseau doivent être représentés, depuis les équipements liés à la fourniture du service jusqu'aux équipements de transport et de mise à disposition.

La Figure 5 présente la chaîne de tests nécessaire pour valider un équipement visant à offrir des services d'accès de prochaine génération (architecture NGA).

Figure 5: Chaîne de tests "de bout en bout" NGA

<table>
<thead>
<tr>
<th>Légende:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head end</td>
</tr>
<tr>
<td>DHCP server</td>
</tr>
<tr>
<td>Rete IP/Eth</td>
</tr>
<tr>
<td>Ethereal 10/100BaseT</td>
</tr>
<tr>
<td>Metro</td>
</tr>
<tr>
<td>NAS</td>
</tr>
<tr>
<td>Feeder E</td>
</tr>
<tr>
<td>Rete Gestione TP</td>
</tr>
<tr>
<td>Element manager</td>
</tr>
<tr>
<td>OLT</td>
</tr>
<tr>
<td>GPON</td>
</tr>
<tr>
<td>ONU B</td>
</tr>
<tr>
<td>Ethereal</td>
</tr>
<tr>
<td>Hub</td>
</tr>
</tbody>
</table>
Les tests sur la qualité du service, les performances, les procédures de gestion, le volume de trafic, etc. constituent les principales catégories de tests habituellement réalisés durant la phase des tests "de bout en bout".

Essais sur le terrain

Les essais sur le terrain sont, en général, mis en œuvre lorsque les tests unitaires en laboratoires et les tests "de bout en bout" dans les installations de tests sont terminés et que toutes les évaluations réalisées dans un environnement de laboratoire contrôlé ont été menées à bien. Habituellement, les principales anomalies ont toutes été résolues lorsque l’on arrive à cette phase, qui permet d’évaluer le comportement du nouveau système dans des conditions opérationnelles. Pour les essais sur le terrain, le nouvel équipement est installé au sein de réseaux en fonctionnement permettant de tester non seulement les aspects liés aux performances, mais également les processus opérationnels du réseau comme la mise à disposition, la facturation, la qualité du service, la maintenance, etc. Durant cette phase, on examine aussi la capacité du personnel à installer, à gérer et à entretenir les caractéristiques, les fonctionnalités et les systèmes du nouveau réseau.

Stabilité du service

Après les essais sur le terrain, l’évaluation de la stabilité du service constitue habituellement la dernière phase de tests avant le lancement du nouveau service. Pour être menée à bien, cette activité nécessite la mise en place d’un groupe de clients pour évaluer et suivre la qualité du nouveau service. Cette activité a pour objectif de tester l’expérience du client par rapport aux nouveaux services et aux nouveaux produits, durant les phases préopératoires et de lancement commercial, en facilitant la mise en place d’évaluations sur site par des groupes de consommateurs, permanents et ponctuels, testant des caractéristiques comme l'accessibilité, la fonctionnalité et l'utilisabilité du service. L'efficacité du processus d’essai doit se traduire par une amélioration de la qualité et par une diminution en conséquence du taux d'échec précoce.

Les groupes de tests doivent répondre aux trois critères fondamentaux distincts suivants:

1) L’environnement permettant la fourniture du service est réel, c'est-à-dire qu'il met en jeu un vrai réseau physique, un vrai trafic et de vrais utilisateurs.

2) Le groupe se compose d’utilisateurs et de clients réels n’ayant aucune expertise du domaine et pas seulement de techniciens ou de personnes participant au processus de test ou travaillant à l’élaboration des nouveaux services.

3) L'environnement résidentiel traduit une utilisation spontanée conforme aux habitudes des clients.

Figure 6: Contexte d'évaluation de la stabilité du service

Source: UIT
Légende:

<table>
<thead>
<tr>
<th>User</th>
<th>Utilisateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Réseau</td>
</tr>
<tr>
<td>Environment</td>
<td>Environnement</td>
</tr>
</tbody>
</table>

Pour effectuer ce type d'évaluation, il est nécessaire de suivre une méthodologie bien définie décrite à la Figure 7.

Figure 7: Méthode d'évaluation de la stabilité du service

![Diagram showing methodology steps](image)

Source: UIT

Légende:

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Méthode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial planning: definition of a brief with goals, target and tools for data gathering</td>
<td>Planification de l'essai sur le terrain: élaboration d'un dossier décrivant les objectifs, cibles et outils de collecte des données</td>
</tr>
<tr>
<td>Trial performance and data gathering (user feedback and non-compliance report)</td>
<td>Déroulement de l'essai et collecte des données (retours de l'utilisateur et rapport de non-conformité)</td>
</tr>
<tr>
<td>Feedback final document drawing</td>
<td>Elaboration du document final sur les retours d'expérience</td>
</tr>
<tr>
<td>Functional to the GO/NO GO for the commercial launch</td>
<td>Fondement du feu vert/rouge en vue du lancement commercial</td>
</tr>
<tr>
<td>Distribution of results to involved company structures</td>
<td>Communication des résultats aux structures de l'entreprise concernées</td>
</tr>
<tr>
<td>Marketing, Technology, Quality & Field Services</td>
<td>Marketing, technologie, qualité et services sur le terrain</td>
</tr>
</tbody>
</table>

Dépannage

En raison de la complexité croissante des réseaux, il convient d'investir un maximum d'efforts sur les tests d'interopérabilité qui permettent de vérifier que toutes les combinaisons d'accès fixes et mobiles fonctionnent.
Etude de faisabilité pour la mise en place d'un centre de tests de conformité

Dans ce cadre, il convient d'effectuer une analyse de dépannage spécifique pouvant être configurée sous la forme d'un test d'urgence qui permet de vérifier que le système est en mesure d'absorber les retards, anomalies ou pertes inattendus ou imprévus sans tomber en panne. Une telle démarche est particulièrement importante lorsque des lacunes dans la portée des tests sont à l'origine d'un taux de détection de défauts unacceptable accompagné d'un grand nombre de pannes sur le terrain. Cette activité peut être conduite dans des installations de tests constituant une réplique réduite du réseau mobile réel (voir Annexe A) et utilisant des terminaux mobiles disponibles dans le commerce.

Il faut alors s'assurer de la compétence et de la disponibilité du personnel de soutien affecté à l'administration du système, faute de quoi de mauvaises configurations d'environnements de tests complexes pourraient être à l'origine d'erreurs (par exemple des rapports d'incidents liés à l'environnement et pas au terminal mobile lui-même).

Les résultats de cette activité se traduisent par des ajouts aux listes de tests existantes permettant d'accroître la portée des tests dans les domaines qui semblent les moins fiables. Les principaux éléments à ajouter aux listes peuvent être générés à partir des commentaires et des réactions du département opérationnel ou à partir des anomalies les plus fréquemment rapportées dans les réclamations auprès du service client; il est donc nécessaire d'établir un lien direct avec ces secteurs. Lorsque les informations appropriées sont disponibles, provenant par exemple du département marketing, une analyse des risques pour chaque modèle de terminal mobile (habituellement les modèles les plus rentables et les plus chers) doit être effectuée pour choisir les domaines testés nécessitant une analyse approfondie, une phase préliminaire de tests exploratoires pouvant également être envisagée en vue d'optimiser les phases de planification des tests.

7.2 Suivi des bogues et gestion de la campagne de tests

Le stockage et la gestion adéquats des bogues et des anomalies détectés lors des différentes phases de tests (tests unitaires, tests de bout en bout, essais sur le terrain, etc.) constituent un aspect fondamental de tous les processus de test. Il est donc important d'utiliser des outils fiables en vue de conserver une trace de la gravité, de l'affectation et de l'historique de chaque bogue.

Dans ce cadre, la meilleure démarche consiste à utiliser un logiciel spécialisé pour gérer toutes les procédures de test. L'application habituellement choisie, qu'il s'agisse d'une solution du commerce ou développée ponctuellement, doit être en mesure de:

- planifier les campagnes de tests;
- suivre les listes de tests et les scénarios de test;
- gérer les produits et les services testés;
- gérer les listes de laboratoires;
- suivre les bogues;
- exporter des rapports de tests de base;
- suivre les activités de tests.

Le stockage et la gestion adéquats des anomalies, en leur affectant un niveau de gravité pertinent, constituent un aspect essentiel de ce type de gestion et permettent d'entretenir une relation transparente avec le fournisseur et, en interne, avec les différents départements de l'entreprise (ingénierie, tests, opérations). On classe habituellement les bogues en fonction de deux indicateurs, leur gravité et leur priorité:

- **GRAVITÉ** – Il s'agit du niveau de non-conformité technique du bogue.
- **PRIORITÉ** – Il s'agit du niveau de priorité de résolution du bogue.

On a généralement recours à quatre niveaux de gravité: A (priorité élevée), B (priorité moyenne), C (priorité faible) et D (pour information). La Figure 8 montre un exemple de classement de bogues.
Figure 8: Exemple de classement de bogues

<table>
<thead>
<tr>
<th>Severity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH High technical non-conformance.</td>
<td>Very critical anomaly impacting one or more of the following functionalities: service, capacity/traffic, charging, O&M. Typically they cause a total or critical lack of service not avoidable with a workaround solution.</td>
</tr>
<tr>
<td>MEDIUM Medium technical non-conformance with respect to the attended results.</td>
<td>Important anomaly seriously impacting functionalities or performance of the system or the service offered, and/or O&M functionalities. Typically these anomalies can produce a low functional or performance degradation.</td>
</tr>
<tr>
<td>LOW Low technical non-conformance with respect to the attended results.</td>
<td>Anomalies not impacting the main system functionalities or the offered service. Typically these anomalies don't produce degradation in the quality of service or O&M procedures.</td>
</tr>
<tr>
<td>Informative Remark</td>
<td>Point of attention. Typically this behavior has no impact on the final service, but it is important to be taken into account for future requirements and specifications.</td>
</tr>
</tbody>
</table>

Source: UIT

Légende:

<table>
<thead>
<tr>
<th>Severity</th>
<th>Gravité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Description</td>
</tr>
<tr>
<td>High</td>
<td>Elevée</td>
</tr>
<tr>
<td>High technical non-conformance</td>
<td>Non-conformité technique grave</td>
</tr>
<tr>
<td>Very critical anomaly impacting one or more of the following functionalities: service, capacity/traffic, charging, O&M. Typically they cause a total or critical lack of service not avoidable with a workaround solution.</td>
<td>Anomalie très grave ayant un impact sur une ou plusieurs des fonctionnalités suivantes: service, capacité/trafic, capacité de charge, E&M. En général, provoque une panne totale ou partielle critique du service ne pouvant faire l'objet d'une solution de contournement.</td>
</tr>
<tr>
<td>Medium</td>
<td>Moyenne</td>
</tr>
<tr>
<td>Medium technical non-conformance with respect to the attended results.</td>
<td>Non-conformité technique de gravité moyenne par rapport aux résultats attendus</td>
</tr>
<tr>
<td>Important anomaly seriously impacting functionalities or performance of the system or the service offered, and/or O&M functionalities. Typically these anomalies can produce a low functional or performance degradation.</td>
<td>Anomalie importante ayant un impact sérieux sur les fonctionnalités ou la performance du système ou des services proposés et/ou sur les fonctionnalités E&M. En général, ces anomalies se traduisent par une faible détérioration des fonctions ou de la performance.</td>
</tr>
<tr>
<td>Low</td>
<td>Faible</td>
</tr>
<tr>
<td>Low technical non-conformance with respect to the attended results.</td>
<td>Non-conformité technique de gravité faible par rapport aux résultats attendus.</td>
</tr>
<tr>
<td>Anomalies not impacting the main system functionalities or the offered service. Typically these anomalies don't produce degradation in the quality of service or O&M procedures.</td>
<td>Anomalies n'ayant pas d'impact sur les principaux services proposés ou fonctionnalités du système. En général, ces anomalies ne nuisent pas à la qualité du service ni aux procédures E&M.</td>
</tr>
<tr>
<td>Informative</td>
<td>Pour information</td>
</tr>
<tr>
<td>Remark</td>
<td>Remarque</td>
</tr>
<tr>
<td>Point of attention. Typically this behavior has no impact on the final service, but it is important to be taken into account for future requirements and specifications</td>
<td>Point à surveiller. En général, ce comportement n'a pas d'impact sur le service final, mais il est important qu'il soit pris en compte pour les exigences et spécifications futures.</td>
</tr>
</tbody>
</table>
Dans le cadre du processus de gestion des anomalies, il est également très important de déterminer le rôle des différents acteurs de la campagne de tests afin de respecter l’ordre hiérarchique adéquat applicable dans le domaine de l’émission et de la gestion des bogues. La Figure 9 présente quatre rôles différents possibles, depuis le niveau du testeur jusqu’au niveau de la direction. Le rôle de chaque acteur dans la campagne de tests est déterminé par deux paramètres :

- **VISIBILITÉ** – Il s’agit de préciser le niveau d’intervention de l’acteur dans le cadre de la gestion des bogues.
- **ACTION** – Il s’agit de préciser le type d’action autorisé.

Figure 9: Classement des rôles dans le processus de gestion des anomalies

<table>
<thead>
<tr>
<th>RÔLE</th>
<th>Visibilité</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TESTER</td>
<td>Complete access to Test Track and Test Plan</td>
<td>Open/Reopen/Defer/Close bugs
Change bug severity (H, M, L, I)
Receive Email notifications
</td>
</tr>
<tr>
<td>SOLVER</td>
<td>Read-only access to Test Track
Read-only access to Test Plan except for change bug status:
- from Open/Reopen to Accepted
- from Accepted to Deployed</td>
<td>Change bug status (accepted, deployed)
Receive Email notifications regarding only their own opened bugs
</td>
</tr>
<tr>
<td>ENGINEERING</td>
<td>Read-only access to Test Track
Read-only access to Test Plan except for change bug priority</td>
<td>Change bug priority (A, B, C)
Receive Email notifications
</td>
</tr>
<tr>
<td>GEST_1</td>
<td>Read-only access to Test Track and Test Plan</td>
<td>Receive Email notifications
</td>
</tr>
<tr>
<td>GEST_2</td>
<td>Read-only access to Test Track and Test Plan</td>
<td>Receive Email notifications
</td>
</tr>
</tbody>
</table>

Source: UIT

Légende:

<table>
<thead>
<tr>
<th>Role</th>
<th>Rôle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility</td>
<td>Visibilité</td>
</tr>
<tr>
<td>Actions</td>
<td>Actions</td>
</tr>
<tr>
<td>Tester</td>
<td>Test</td>
</tr>
<tr>
<td>Complete access to Test Track and Test Plan</td>
<td>Accès complet au circuit et au plan de test</td>
</tr>
<tr>
<td>Open/Reopen/Defer/Close bugs</td>
<td>Ouvre/rouvre/reporter/clôture les bogues</td>
</tr>
<tr>
<td>Change bug severity (H, M, L, I)</td>
<td>Modifie la gravité des bogues (E, M, F, I)</td>
</tr>
<tr>
<td>Receive Email notifications</td>
<td>Reçoit les notifications électroniques</td>
</tr>
<tr>
<td>Solver</td>
<td>Résolution</td>
</tr>
<tr>
<td>Reand-only access to Test Track</td>
<td>Accès en lecture seule au circuit de test</td>
</tr>
<tr>
<td>Read-only access to Test Plan except for change bug status:
- From Open/Reopen to Accepted
- From Accepted to Deployed</td>
<td>Accès en lecture seule au plan de test sauf pour modifier le statut des bogues
- De "Ouvert/rouvert" à "Accepté"
- De "Accepté" à "Déployé"</td>
</tr>
</tbody>
</table>
7.3 Gestion des versions

Les matériels à l’essai (MAE) peuvent être très différents et dotés de multiples caractéristiques et fonctions, depuis de petites passerelles d'accès utilisées pour offrir un accès à Internet jusqu'à des noeuds de réseaux importants pour des réseaux métropolitains ou centraux. Dans ce cadre, il est capital, en particulier pour ces systèmes complexes, testés habituellement dans des installations de tests reproduisant le réseau réel, de gérer correctement les versions des logiciels testés. La mise en place dans les installations de tests de deux exemplaires de l’équipement constitue une excellente approche de cet enjeu, chacun de ces deux exemplaires fonctionnant avec une version différente du logiciel:

- **La version actuelle du logiciel (N)** – L’équipement fonctionnant avec la version en cours d'exploitation est utilisé pour émuler le service et pour le dépannage.
- **La nouvelle version du logiciel (N+1)** – L’équipement fonctionnant avec la nouvelle version bêta est utilisé à des fins de tests.

7.4 Utilisation des listes de diffusion

De nos jours, dans les centres de test les plus importants, l’ensemble du personnel, de l'opérateur de tests au directeur du centre, est interconnecté par l'intermédiaire de l'infrastructure informatique, et la plus grande partie des communications s'effectue par courrier électronique. C'est pourquoi il est important, dans le cadre de la gestion de la campagne de tests, aussi bien au laboratoire que dans les installations de tests, de réglementer l'utilisation des courriels et de créer des listes de diffusion adéquates. Une utilisation correcte de ces outils peut sembler n'être qu'un facteur mineur; toutefois, elle a de grandes répercussions globales sur l'efficacité du processus de test.

On trouvera ci-dessous quelques règles et conseils généraux sur la façon de mettre en place des listes de diffusion de façon adéquate qui, lorsqu’elles sont bien conçues, peuvent avoir un impact sur la rapidité et l'efficacité de la gestion d'une campagne de tests et sur l'optimisation des ressources matérielles et logicielles utilisées.

Voici les règles les plus importantes à prendre en compte:

- Il est généralement utile de séparer la liste de diffusion du laboratoire de celle des installations de tests afin d’éviter l'envoi en masse de messages non désiré aux utilisateurs.
- Il convient, afin d'éviter toute congestion du système de courrier électronique, de ne transmettre les informations pertinentes pour une campagne de tests qu'aux testeurs participant à ces tests.
• Lorsqu'on a mis le doigt sur des solutions, il convient de les partager avec tous les testeurs concernés afin d'éviter tout travail en double inutile.
• Pour une mise en oeuvre adéquate des chaînes de tests, il est nécessaire de conserver la trace des informations relatives au statut des différents équipements et de les partager.
• Afin d'optimiser l'utilisation des ressources, on doit créer des listes de diffusion pour la réservation des instruments en provenance des différents laboratoires.
• Une base de données des ressources matérielles permet de conserver une trace de l'utilisation des ressources et des points d'accès des équipements.

7.5 Gestion de la réalisation à tester (IUT)
Une gestion adéquate de l'IUT est indispensable pour mener une campagne de tests efficace. Dans ce cadre, on trouvera ci-dessous des suggestions pour une meilleure gestion, un rapport qualité-prix supérieur et des risques réduits:
• On s'efforcera d'obtenir l'IUT auprès du fournisseur sous la forme d'un prêt, particulièrement lorsqu'il s'agit d'un équipement encombrant et coûteux.
• L'obtention de plusieurs exemplaires permettra d'exécuter des tests en parallèle dans des laboratoires séparés.
• On demandera aux fournisseurs de remplir les modules de configuration des données des équipements (par exemple le formulaire PICS de l'IUT).
• On pourra réduire la consommation électrique des systèmes importants en n'utilisant que le point d'accès testé.
• L'utilisation d'une base de données permettra de stocker le statut et l'emplacement des différents MAE.
• Lorsque l'IUT est coûteuse, on souscrira un contrat d'assurance.
• L'utilisation, lorsque c'est possible, d'une prise IP commandée pour alimenter l'IUT permettra de réduire la consommation électrique.

7.6 Evaluation de l'incertitude de mesure
C'est dans le GUM (Evaluation des données de mesures – Guide pour l'expression de l'incertitude de mesure) que l'évaluation des incertitudes de mesure est la mieux décrite.
"Lorsqu'on rend compte du résultat d'un mesurage d'une grandeur physique, il faut obligatoirement donner une indication quantitative sur la qualité du résultat pour que ceux qui l'utilisent puissent estimer sa fiabilité. En l'absence d'une telle indication, les résultats de mesure ne peuvent pas être comparés, soit entre eux, soit par rapport à ces valeurs de référence données dans une spécification ou une norme. Aussi est-il nécessaire qu'il existe une procédure facilement applicable, aisément compréhensible et largement acceptée pour caractériser la qualité du résultat d'un mesurage, c'est-à-dire pour évaluer et exprimer son incertitude."

La définition formelle du terme "incertitude de mesure" est la suivante:

Incertitude (de mesure)

paramètre, associé au résultat d’un mesurage, qui caractérise la dispersion des valeurs qui pourraient raisonnablement être attribuées au mesurande.

8 Gestion des installations et des laboratoires de tests

8.1 Economies d’énergie

La consommation énergétique est un sujet de plus en plus important dans le monde entier et un centre de test doit être sensibilisé à cet enjeu, aussi bien pour ses propres activités que pour fournir des conseils en la matière à ses clients.

La première étape pour effectuer des économies d’énergie consiste à déterminer la consommation énergétique. Dans ce cadre, il convient de déployer un système de suivi efficace des consommations énergétiques. Plusieurs solutions peuvent être mises en place pour économiser de l’énergie.

Figure 10: Processus de suivi des consommations énergétiques

Légende:

<table>
<thead>
<tr>
<th>Audit on site</th>
<th>Audit sur site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency</td>
<td>Efficacité énergétique</td>
</tr>
<tr>
<td>Special Projects</td>
<td>Projets spéciaux</td>
</tr>
<tr>
<td>Remote monitoring</td>
<td>Suivi à distance</td>
</tr>
<tr>
<td>Energy monitoring & management</td>
<td>Suivi et gestion énergétiques</td>
</tr>
<tr>
<td>Optimization equipment & operation</td>
<td>Optimisation des équipements et du fonctionnement</td>
</tr>
<tr>
<td>Identification alternative solution</td>
<td>Identification d’une solution alternative</td>
</tr>
</tbody>
</table>

5 Id.
Suivi énergétique

Un outil de suivi des consommations énergétiques constitue un facteur essentiel pour comprendre les principaux éléments de coût et déterminer les conditions pertinentes induisant des consommations élevées. Les données mesurées avec l'outil permettent de détecter les principaux éléments d'inefficacité énergétique, puis d'apporter des corrections visant à économiser l'énergie.

Le déficit d'informations détaillées et de mesures concernant les différentes zones de distribution électrique (charges CC, charges CA, systèmes de conditionnement d’air, etc.) et les différents éléments de la consommation énergétique compliquent les actions suivantes:

- vérifier la facturation du fournisseur d'énergie et évaluer les aspects contractuels;
- comprendre les raisons de la différence entre l'énergie consommée et l'énergie effectivement utilisée;
- déterminer les interventions adéquates et les priorités;
- quantifier les effets des interventions et évaluer le délai de retour sur investissement.

Un outil s'appuyant sur un réseau de capteurs sans fil (WSN) utilisé pour le suivi à distance, l’audit et le contrôle de la consommation énergétique permet, par exemple, de mesurer:

- les données environnementales – température externe et interne, humidité relative, lumière;
- les données de consommation énergétique – énergie absorbée, détaillée pour les équipements et les services TIC.

Figure 11: Cycle de contrôle de l’énergie

Source: UIT

Légende:

<table>
<thead>
<tr>
<th>Start</th>
<th>Début</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Atomic" monitoring of energy consumption</td>
<td>Suivi "atomisé" de l'énergie</td>
</tr>
</tbody>
</table>
Possibilités d'économies

Un centre de test dispose de plusieurs solutions pour mettre en œuvre des politiques d'économie d'énergie. Les besoins en électricité des équipements de télécommunications déployés dans des installations de tests et ayant chacun une consommation énergétique propre et des procédures de gestion particulières ne sont pas spécifiquement pris en considération dans cette section, qui se contente ci-après de traiter brièvement du refroidissement, de l'éclairage et des sources d'énergies renouvelables.

Conception d'un système d'air conditionné et refroidissement gratuit

Lorsque l'on parle d'un système de refroidissement, il est important de faire la distinction entre son efficacité et son rendement:

- Le rendement se rapporte à la quantité d'énergie convertie en énergie de refroidissement par rapport à la quantité d'énergie fournie.
- L'efficacité indique la mesure dans laquelle l'énergie de refroidissement refroidit les pièces et les équipements.

L'efficacité du système (composé du système et des appareils de refroidissement) dépend de plusieurs facteurs:

- topologie de circulation d'air;
- emplacement des équipements;
- direction des flux d'air chaud en provenance des équipements;
- gestion des points chauds.

Voici quelques solutions pour optimiser le refroidissement:

- Bien dimensionner les infrastructures grâce à une architecture modulaire pour les systèmes d'énergie et de climatisation, permettant d'augmenter leur puissance si nécessaire et évitant le recours à des systèmes plus importants.
- Maintenir la température ambiante la plus élevée (25 à 30 °C) autorisée par les équipements.
- Evacuer l'air chaud, notamment à proximité des appareils de refroidissement.
- Installer des systèmes plus économes en énergie.
- L'installation de panneaux pour confiner l'air chaud est utile pour réduire les zones de concentration de chaleur et économiser de l'énergie.
- Optimiser la circulation de l'air froid et éviter le mélange intempestif d'air chaud et d'air froid.
- Supprimer les obstructions possibles sous le faux plancher, notamment les saletés et les câbles disposés de façon à perturber la distribution de l'air froid.
- Etant donné que l'air chaud monte, la meilleure façon de faire circuler l'air dans la pièce à refroidir consiste à aspirer l'air chaud à partir du plafond et à faire entrer l'air froid à partir du sol.
- L'air froid en provenance des systèmes de conditionnement doit pouvoir se répandre partout dans la pièce.
- Il est essentiel que rien n'obstrue la circulation de l'air.
Si l'air est introduit directement dans la pièce, il est important que les appareils soient positionnés pour permettre sa circulation optimale.

Figure 12: Circulation de l'air du système de refroidissement

Source: UIT

Figure 13: Variations du flux d'air du système de refroidissement (circulation obstruée et libre)

Source: UIT

Les ouvertures d'évacuation d'air chaud des appareils pointent en général horizontalement: si les appareils sont mal positionnés, l'air chaud de l'un d'entre eux peut être aspiré par un autre.

Solutions:
- placer les équipements afin de créer des ailes chaudes et des ailes froides;
- fixer des déflecteurs pour éloigner les flux d'air chaud des buses d'émission.

Le refroidissement de la pièce est plus efficace lorsque la température est uniforme.

La présence de points chauds (des points critiques où la température se situe au-dessus du niveau moyen) indique qu'il est nécessaire de réduire la température globale de la pièce pour y maintenir la température requise en tous points.

Les appareils produisant le plus de chaleur ne doivent pas être regroupés dans une zone de la pièce.

Si des appareils produisant le plus de chaleur doivent toutefois être groupés, il conviendra de les isoler afin d'optimiser la température de la zone de refroidissement sans répercussion sur les autres zones.

L'utilisation de systèmes de refroidissement naturels est une solution efficace pour refroidir des pièces contenant des équipements, par exemple dans un centre de test. Le plus innovant de ces systèmes de refroidissement naturel est le système fonctionnant par extraction, c'est-à-dire que l'air est extrait de la pièce aussi près que possible de l'appareil et que l'air froid pénètre en raison de la dépression ainsi créée.
Ce système de refroidissement naturel s'avère peu onéreux et réduit la nécessité d'utiliser l'air conditionné. Il est possible de rallonger les périodes durant lesquelles le système de refroidissement naturel fonctionne en faisant appel à système d'humidification adiabatique, l'air aspiré étant refroidi sans transfert d'énergie (transformation adiabatique).

En été, en particulier dans les régions chaudes, des systèmes de refroidissement traditionnels peuvent être utilisés pour fournir la puissance de refroidissement résiduelle.

Figure 14: Méthode de refroidissement naturel

<table>
<thead>
<tr>
<th>Source: UIT</th>
</tr>
</thead>
</table>

Légende:

Hot air from devices	Air chaud émis par les appareils
Hot air	Air chaud
Aspiration fan	Ventilateur d’aspiration
Rack	Baie
Room	Salle
Air eventually cooled by adiabatic process	Air refroidi par processus adiabatique
Vaporized water	Eau vaporisée
External air	Air provenant de l'extérieur

Eclairage à faible puissance

En Europe, de nouvelles normes ont été mises en place prévoyant l'utilisation d'ampoules plus économiques en énergie. Les ampoules halogènes et les ampoules traditionnelles à incandescence ont été retirées du marché à partir de la fin 2012 pour être remplacées par des ampoules offrant un meilleur rendement énergétique.

Les solutions de rechange:

- Ampoules halogènes améliorées – économies d'énergie de 20% à 45% à quantité de lumière égale.
- Lampes fluorescentes compactes (LFC) – économies d'énergie de 65% à 80% par rapport aux ampoules à incandescence.
• DEL – aussi économe que les LFC, sans mercure et avec une durée de vie plus longue.
• Les ampoules DEL en sont encore à leurs balbutiements d’un point de vue industriel et sont pour l’instant très coûteuses. Toutefois, il s’agit d’un secteur extrêmement prometteur. Pour une utilisation dans un environnement de bureau, il convient de faire attention à la couleur, à la température et à la stabilité de la lumière. En Europe, il existe plusieurs normes techniques qui doivent être appliquées.

D’importantes économies d’énergie peuvent être obtenues en mettant en œuvre de simples politiques en la matière prévoyant, par exemple, d’éteindre les lumières lorsqu’une pièce est inoccupée.

Sources d’énergies renouvelables

Afin de réduire sa facture énergétique, un centre de test peut utiliser un générateur faisant appel à des sources d’énergie renouvelable.

Les générateurs à énergie renouvelable les plus répandus sont les générateurs photovoltaïques et les générateurs à microéoliennes:

• Les turbines éoliennes ne présentent une bonne efficacité énergétique qu’en présence de vitesses du vent relativement élevées, comprises entre 8 et 10 m/s. Il n’existe pas actuellement de générateur éolien efficace lorsque la vitesse moyenne du vent est inférieure à 5 m/s.
• Les panneaux photovoltaïques sont utilisables dans pratiquement toutes les régions, sous réserve que leur surface soit suffisante et orientée préférentiellement vers le sud.

Le coût des systèmes photovoltaïques constitue un problème et, bien qu’il existe des incitations gouvernementales dans de nombreux pays, le retour sur investissement doit être soigneusement évalué. En l’absence d’incitation, le retour sur investissement peut être très long, particulièrement dans les régions où l’électricité du réseau est facilement disponible et relativement peu onéreuse.

8.2 Impact environnemental

Un centre de test peut éviter les déchets inutiles provenant de son propre fonctionnement. Il peut également réduire les besoins énergétiques et la pollution générée par les tests qu’il réalise.

En ce qui concerne le fonctionnement quotidien, un centre de test peut surveiller et s’efforcer de réduire:

• sa consommation globale d’énergie;
 – consommation d’énergie pour le chauffage et le refroidissement;
 – consommation d’énergie induite par les déplacements;
• son utilisation de papier (en utilisant le plus possible des documents électroniques);
• la production possible de déchets dangereux dont il devra se débarrasser de façon adéquate (par exemple les déchets en provenance d’un laboratoire chimique).

En ce qui concerne son influence sur la consommation d’énergie et sur la pollution potentielle, un centre de test peut:

• évaluer la consommation énergétique de ses équipements et les sources de courant qu’il utilise;
• contribuer à définir la façon d’évaluer ses émissions électromagnétiques;
• évaluer l’écocompatibilité des produits, par exemple en vérifiant la conformité à la directive européenne LSDEEE6 (restreignant l’utilisation de substances dangereuses dans les équipements

étude de faisabilité pour la mise en place d'un centre de tests de conformité

électriques et électroniques) ou, d'une façon générale, en recensant les matériaux utilisés (afin de promouvoir l'utilisation de matériaux plus écologiques).

8.3 Aspects liés à la sécurité

La gestion d'un centre de test doit toujours prendre en compte les aspects liés à la sécurité. Ces aspects sont réglementés par la législation nationale (en Italie, par exemple, tous les aspects liés à la sécurité sont rassemblés dans la loi 81/2008). Il est donc nécessaire de connaître la législation nationale en vigueur.

La première étape consiste à effectuer une évaluation des risques, c'est-à-dire à analyser les activités réalisées sur le lieu de travail afin de déterminer celles susceptibles de mettre les travailleurs en danger.

Une fois ces activités déterminées, des mesures doivent être mises en place pour réduire, autant que possible, les risques. Ces mesures comprennent:

- la définition d'instructions de travail;
- la détermination d'équipements de protection individuelle;
- la formation aux facteurs de risque, aux instructions de travail et aux équipements de protection individuelle.

La loi précise les personnes responsables de la sécurité (en Italie, par exemple, la sécurité incombe en priorité à l'employeur, puis aux cadres). En outre, la loi considère également le rôle de la "personne responsable", c'est-à-dire celle qui donne directement des instructions aux travailleurs. Dans un centre de test, cette "personne responsable" peut être le directeur d'une unité de laboratoire à qui il incombe également de gérer les aspects liés à la sécurité.

La "personne responsable" doit s'assurer que tous les travailleurs du laboratoire sont sensibilisés aux risques et, lorsqu'il y a lieu, qu'ils disposent d'équipements de protection individuelle adéquats, qu'ils savent s'en servir et qu'ils les utilisent régulièrement en conformité avec les instructions de travail.

Il est relativement important de contrôler périodiquement ces différents éléments ainsi que le bon fonctionnement des équipements de protection individuelle, certaines législations nationales exigeant la consignation de ces contrôles.

Les procédures de travail peuvent également préciser que seules les personnes ayant reçu une formation suffisante et jugées aptes et qualifiées peuvent effectuer certaines tâches particulières, en utilisant les équipements de protection individuelle appropriés.

Les entreprises externes intervenant sur le site du centre de test doivent être informées par ce dernier des procédures de travail et des mesures de sécurité applicable par leur personnel. Dans ces circonstances, le centre de test doit également demander des conseils à une telle entreprise externe quant aux risques existants et prendre les mesures appropriées pour cerner et minimiser lesdits risques.

Les informations concernant les risques doivent toujours être transmises par une "personne responsable", qu'il s'agisse du directeur du laboratoire ou du coordonnateur d'une activité particulière.

L'employeur a également le devoir de nommer et de former un certain nombre d'employés afin qu'ils soient en mesure de gérer les situations d'urgence et les premiers soins. Un plan d'évacuation du site doit être défini et des exercices doivent être réalisés périodiquement.

Les bureaux et les laboratoires eux-mêmes doivent être conçus et entretenus en prenant en compte les besoins de sécurité, par exemple des sorties de secours exemptes d'obstacles doivent être en place, des portes appropriées doivent être installées, etc. En général, il convient d'éviter l'accumulation de matériaux inflammables et des extincteurs doivent également être installés.

8.4 Sécurité et contrôle des accès
Habituellement, l'accès à des locaux de travail est réglementé. Cette procédure est encore plus vraie pour des laboratoires qui abritent des actifs de valeur. C'est pourquoi il existe souvent, dans ce type d'environnement, des règles de sécurité devant être connues et respectées.

Un système électronique enregistrant les demandes d'admission du personnel externe dans les locaux constitue un outil relativement utile. Une telle procédure permet de définir une période pendant laquelle des permissions d'entrée peuvent être accordées aux visiteurs réguliers (par exemple des fournisseurs ou du personnel d'entretien). Un visiteur régulier peut également obtenir un badge visiteur simplifiant les procédures d'accès.

Toutefois, en toutes circonstances, un visiteur occasionnel qui n'est pas enregistré dans le système doit pouvoir être suivi par le personnel de sécurité et doit être accompagné à tout moment par un employé lors de son séjour dans les locaux de l'entreprise.

Outre l'accès général aux locaux de l'entreprise, une réglementation de l'accès aux laboratoires individuels peut être mise en place, y compris pour les employés. Les laboratoires accrédités nécessitent, en particulier, la définition, pour chaque laboratoire individuel, d'une liste de personnes autorisées à y pénétrer et à y travailler. Il est possible de réglementer l'accès aux laboratoires individuels en utilisant des claviers numériques ou des badges d'accès.

8.5 **Contrôle à distance des instruments**

Le contrôle à distance des instruments par l'intermédiaire d'un bus IEEE-488 (GPIB) ou d'autres interfaces est une solution bien connue.

Dans un centre de test bien organisé, seul un petit nombre de mesures sont effectuées en agissant directement sur le clavier de l'instrument, la plupart étant réalisées à distance dans le cadre de l'automatisation des suites de tests.

Automatisation des suites de tests

L'automatisation des suites de tests revêt une grande importance pour toutes les procédures de test devant être répétées à l'occasion de multiples campagnes de tests. L'automatisation offre un certain nombre d'avantages:

- **Réduction du temps d'exécution des tests** — L'exécution d'une suite de tests nécessite généralement une fraction du temps qui aurait été nécessaire pour réaliser chacune des étapes manuellement.
- **Meilleure répétabilité** — L'exécution automatique élimine les erreurs humaines potentielles.
- **Amélioration de l'efficacité** — Il n'est pas nécessaire que l'opérateur suive l'exécution des tests étape par étape et il peut donc mener d'autres activités en parallèle; dans certains cas, un scénario de tests ou une suite de tests peuvent être lancés durant la nuit ou le week-end, permettant ainsi d'optimiser l'utilisation des installations de tests.

Configuration des équipements et commande des ordinateurs à distance

En dehors de l'automatisation des suites de tests, le contrôle des instruments par ordinateur permet également une commande à distance. En général, l'opérateur n'a pas besoin de demeurer dans la pièce où se trouvent les instruments et les matériels à l'essai:

- Les équipements réseau peuvent aussi être configurés et commandés à distance en utilisant un réseau IP.
- Il existe également des prises électriques pouvant être commandées par un port Ethernet, rendant possible l'automatisation d'opérations nécessitant l'arrêt "physique" d'un appareil.

Ces solutions permettent de commander intégralement un banc d'essai à distance, la signification du terme "à distance" pouvant, dans ce contexte, aller de "dans la pièce voisine" à "depuis le domicile", voire "depuis une ville différente".
Utilisation de salles de commande

La commande à distance de laboratoires ou d’installations de tests (qui sont des environnements particulièrement bruyants) à partir d’une salle de commande, c’est-à-dire d’un endroit de type “bureau”, permet aux employés de travailler dans un environnement plus agréable au sein duquel la communication entre collègues s’avère également plus efficace.

La possibilité de faire fonctionner les instruments et les équipements de réseau à partir d’une salle de commande permet également de mettre en œuvre des solutions comme le télétravail.

Le télétravail

La généralisation des salles de commande, grâce à la possibilité de commander les instruments et les équipements à distance, permet d’adopter des systèmes de télétravail, y compris dans un centre de test.

Plus il y a d’employés en télétravail en mesure d’agir à distance simultanément sur le banc d’essai en dehors des horaires de travail habituels, plus le centre de test s’avère efficace.

Pratiquement toutes les activités requises dans un centre de test peuvent être exécutées sur une liaison ADSL ou HSPA (sous réserve qu’elle soit protégée de façon adéquate par un réseau privé virtuel).

Le cadre de télétravail doit respecter la législation nationale et les règles de l’entreprise. D’une façon générale, comme nous l’avons signalé plus haut, une plus grande flexibilité est une valeur ajoutée pour le centre de test, sous réserve que la personne en télétravail dispose de suffisamment de possibilités pour communiquer avec ses collègues (par courriel, téléphone, messagerie, téléconférence, etc.) et que subsistent des périodes de présence physique commune suffisantes.

S’il est vrai qu’il existe des outils comme les systèmes de pointage électronique permettant de contrôler précisément les horaires des personnes en télétravail, il n’en demeure pas moins que la détermination d’objectifs constitue le meilleur moyen d’évaluer leur travail.

9 Maintenance et gestion des instruments

La maintenance et la gestion de la qualité et des caractéristiques métrologiques des instruments d’un centre de test permettant, d’une part, la bonne exécution des processus de test et appuyant, d’autre part, les systèmes de qualité mis en place pour l’obtention de certifications (ISO 9001:2000 et ISO/CEI 17025) sont habituellement fournis par deux types de laboratoires, le laboratoire d’étalonnage et le laboratoire d’instrumentation et de gestion.

Pour pouvoir offrir un service de gestion des instruments adapté, ces laboratoires doivent fonctionner en conformité avec la chaîne métrologique bien connue décrite à la Figure 15, représentant l’exploitation adéquate des normes de référence et des normes de travail utilisées par les laboratoires intervenant sur les instruments, chacun pour un aspect différent.
Légende:

<table>
<thead>
<tr>
<th>National Reference standard</th>
<th>Norme de référence nationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Calibration Body</td>
<td>Organisme national d'étalonnage</td>
</tr>
<tr>
<td>Primary reference standard</td>
<td>Norme de référence primaire</td>
</tr>
<tr>
<td>Secondary reference standard</td>
<td>Norme de référence secondaire</td>
</tr>
<tr>
<td>CL</td>
<td>LE</td>
</tr>
<tr>
<td>Working standard</td>
<td>Norme de travail</td>
</tr>
<tr>
<td>IML</td>
<td>LIG</td>
</tr>
<tr>
<td>Lab Instrumentation</td>
<td>Instruments de laboratoire</td>
</tr>
<tr>
<td>Measurement evaluations on all test center instrumentation</td>
<td>Evaluations des mesures sur tous les instruments du centre de test</td>
</tr>
</tbody>
</table>

9.1 Laboratoire d'étalonnage (LE)

Le LE doit être accrédité par l'organisme national d'accréditation pour les activités d'étalonnage (organisme qui doit être reconnu par l'ILAC – International Laboratory Accreditation Cooperation) et identifié par un numéro d'accréditation de référence et par une liste des quantités pour lesquelles il est accrédité (par exemple: tension électrique, intensité électrique, fréquence, optique). Pour ces quantités, le laboratoire tient à jour les normes de référence pour les instruments utilisés par le centre de test conformément à la réglementation nationale et internationale sur l'étalonnage.

9.2 Laboratoire d'instrumentation et de gestion (LIG)

Le LIG offre habituellement, en interne, un service de gestion des instruments en vue:
- de réaliser un étalonnage périodique;
- d'effectuer l'entretien ordinaire ou extraordinaire des instruments;
• de conserver la trace de l'historique de maintenance et d'étalonnage en utilisant une application informatique de gestion conçue à ces fins.

Une application dédiée permet, plus précisément, de garder la maîtrise du registre des instruments (nombre d'exemplaires, fournisseur, modèle, numéro de série, options installées) et de l'historique des opérations exécutées sur un instrument donné (étalonnage interne ou externe, maintenance préventive ou corrective, services, utilisateurs, documentations d'étalonnage).

Tous les documents nécessaires (tableaux de données, certificats, étiquettes d'étalonnage et procédures techniques) sont stockés dans un format numérique sur un serveur protégé (accessible en lecture seule) utilisé par l'ensemble du personnel de l'entreprise. Le personnel du LIG est responsable de la tenue à jour des procédures internes finalisées afin de protéger toutes les données d'enregistrement sauvegardées dans le système d'information (installations d'antivirus, sauvegardes, contrôle des priorités d'accès).

9.3 Instruments régis par le système de qualité

Une liste de tous les instruments régis par le système de qualité doit être archivée dans ce système, les instruments devant être identifiés par un code de qualité correspondant à un autocollant spécial, un codage spécifique permettant de déterminer la catégorie de l'instrument:

1. normes de référence;
2. normes de travail;
3. instrument faisant l'objet d'un étalonnage;
4. instrument auxiliaire.

Ce classement est établi conformément aux caractéristiques métrologiques de l'instrument (précision) et détermine les activités d'étalonnage ultérieures.

Les instruments de référence doivent être envoyés au centre d'étalonnage externe reconnu par l'organisme d'accréditation national ou international ou à des centres métrologiques primaires, tandis que les autres instruments peuvent être étaillonnés à l'aide d'instruments possédant des caractéristiques métrologiques supérieures (conformément au processus de la chaîne métrologique).

L'étalonnage périodique est géré par le système d'information décrit plus haut. Lorsque le délai d'étalonnage arrive à expiration, le système avertit que l'instrument doit être étaillonné et l'expert du LIG lance la procédure formelle en informant l'utilisateur du démarrage du processus.

Lorsque l'étalonnage peut être géré en interne, il est exécuté sur l'instrument par le personnel du LIG dans le respect de la procédure adéquate (disponible sur le serveur dédié).

La procédure technique constitue le document formel décrivant exclusivement le processus d'étalonnage des instruments et contenant:

• la portée;
• le champ d'application;
• les normes de référence;
• les instruments auxiliaires;
• les étapes opérationnelles (y compris la configuration des mesures);
• les tableaux de données pour le regroupement des résultats (y compris les incertitudes de mesure).

La procédure doit être approuvée par la personne responsable du LIG (un expert) avant d'être utilisée et intégrée à la liste réservée à cet effet dans la documentation formelle du laboratoire.
Les locaux hébergeant le LE et le LIG doivent être munis d'un accès contrôlé et de conditions environnementales adaptées afin de garantir que les exigences de qualité sont respectées. Les paramètres environnementaux (température et humidité) doivent être enregistrés et surveillés afin de vérifier qu'ils restent conformes aux conditions de référence, faute de quoi les résultats des mesures seraient compromis.

Dans certains cas, un étalonnage externe est nécessaire. Par exemple, si l'instrument constitue une norme de référence ou si les compétences disponibles en interne ne sont pas suffisantes, le LE doit alors déterminer un centre d'étalonnage adapté en fonction des exigences des mesures à effectuer.

Une fois l'étalonnage effectué, en interne ou en externe, les résultats sont enregistrés dans le système d'information (date d'étalonnage, date d'expiration, nom de l'opérateur, norme utilisée ou certificat d'étalonnage émis) et un autocollant spécial est apposé sur l'instrument, précisant la date d'expiration de l'étalonnage.

Dans certains cas, l'étalonnage peut être exécuté en utilisant des procédures automatiques élaborées à l'aide d'un logiciel du commerce, par exemple VEE de HP (Agilent) ou LabVIEW de National Instruments. Ce type de procédure automatique doit être validé à l'avance en utilisant des méthodes de rechange pour garantir la bonne exécution de toutes les phases. On peut, par exemple, utiliser une méthode manuelle pour la validation elle-même.
Les résultats de la procédure de validation doivent être stockés dans le système d'information et la procédure exécutée à nouveau à chaque nouvelle modification.

Une procédure similaire doit être adoptée pour les activités de réparation mises en œuvre en cas de panne. Dans ce cas, le processus de réparation peut également être effectué en interne ou en externe et toutes les informations pertinentes doivent être stockées dans le système d'information (date de réparation, description de la panne, pièces remplacées, coûts de réparation et nécessité d'un nouvel étalement).

10 Aspects liés à la qualité (UNI CEI NE ISO/CEI 17025)

Pour un centre de test, la qualité représente un facteur décisif pour son évolution et pour l'amélioration des services qu'il fournit à ses clients. C'est pourquoi l'ensemble du personnel doit être sensibilisé à l'importance de la qualité et veiller à la maximiser en permanence.

La politique d'un centre de test en matière de qualité consiste à atteindre et à maintenir un haut niveau de qualité dans tous les aspects des services de tests de conformité qu'il offre. Un centre de test doit fournir à ses clients, en toutes circonstances, un service conforme à la norme d'accréditation ISO/CEI 17025 pour tous les tests pour lesquels il détient une accréditation et doit garantir, en tant que fournisseur indépendant de services de tests de conformité, son impartialité et la confidentialité de ses services.

Il incombe au personnel d'un centre de test de se familiariser avec le contenu de cette norme et de se conformer, en toutes circonstances, aux politiques et procédures présentées dans le manuel de qualité et à la documentation connexe.

Afin d'atteindre et de maintenir un niveau élevé de qualité pour la mise en œuvre de cette politique, il est fondamental que le responsable technique du laboratoire assume la responsabilité globale des services de tests et de la mise en œuvre du système de qualité du laboratoire. Par ailleurs, le responsable de la qualité doit avoir la responsabilité globale du maintien et du contrôle de la qualité. Il lui incombe également de fournir des conseils sur l'ensemble des aspects liés à la qualité dans le laboratoire et de suivre l'évolution desdits aspects.

Le responsable de la qualité doit préparer annuellement un plan de qualité précisant les objectifs et les moyens utilisés pour les atteindre, qu'il soumettra à l'approbation du groupe de pilotage de la qualité, composé du directeur général, du responsable technique et du responsable de la qualité. On vérifiera annuellement, en mettant en place à cet effet une réunion d'examen du système de qualité, que les objectifs du plan de qualité et du système de qualité ont bien été atteints. L'accomplissement des objectifs en matière de qualité reste, en toutes circonstances, la responsabilité conjointe de l'ensemble du personnel participant aux activités définies dans le plan de qualité.

Il incombe à la direction du centre de test de mettre en place les politiques nécessaires pour s'assurer que le manuel de qualité et les procédures connexes permettent de prendre en compte et de surmonter tous les problèmes possibles de conflit d'intérêts afin de garantir à tous les clients que l'indépendance de chaque membre du personnel est préservée tout au long de son travail.

Le système de qualité d'un centre de test a pour objectif :

- de garantir que la politique de qualité est mise en œuvre en toutes circonstances;
- d'atteindre et de maintenir un haut niveau de qualité dans tous les aspects des services de tests de conformité;
- de garantir que les services de tests fournis aux clients sont conformes, en toutes circonstances, aux normes d'accréditation nationales et internationales, et ce, pour tous les tests pour lesquels le centre détient une accréditation;
- de s'assurer que les exigences de qualité des clients sont en permanence pleinement satisfaites;
- de garantir la confidentialité et l'impartialité de toutes les activités.
Le système de qualité est formalisé dans le manuel de qualité, qui décrit:

- le système de qualité mis en place par le centre de test pour permettre à son personnel d’agir en conformité avec les normes de référence;
- l’organisation du centre de test et la répartition associée des responsabilités;
- l’environnement technique au sein duquel les services de tests de conformité sont offerts;
- des critères généraux de contrôle de la qualité et des procédures techniques.

10.1 Manuel de qualité

Les politiques d’un centre de test en matière de qualité sont décrites dans le manuel de qualité, qui constitue un document officiel décrivant la façon dont les systèmes de qualité fonctionnent. Un manuel de qualité type comprend la politique en matière de qualité de l’entreprise et les objectifs associés, une description détaillée du système de contrôle de la qualité pouvant inclure les rôles des membres du personnel et les relations qu’ils entretiennent, les procédures, les systèmes et toutes les autres ressources en rapport avec la production de biens ou de services de qualité élevée.

Le manuel de qualité est sous l’autorité du responsable de la qualité qui en gère le contenu. La responsabilité de la production et de la distribution du manuel incombe au secrétaire. Il doit être distribué à tous les membres du personnel du centre de test.

Il est habituellement composé des parties suivantes:

- Résumé – décrit le contenu, la liste de révision de la partie principale et des annexes, la liste des domaines de tests et le statut d’accréditation.
- Partie principale – décrit le système de qualité utilisé, les responsabilités de l’organisation du centre de test, les critères généraux et les références aux procédures de contrôle de la qualité.
- Annexes des domaines techniques – décrivent l’environnement, les systèmes de tests, les normes de référence et les procédures techniques relatifs à chaque domaine de test du centre de test.

10.2 Gestion de la qualité

Le responsable technique assume la responsabilité de la gestion des services de tests, de tous les aspects et de tous les résultats des activités de tests du centre de test et de la mise en œuvre du système de qualité au sein du laboratoire.

Il incombe au responsable de la qualité de mettre en place le système de qualité décrit dans le manuel et d’en vérifier l’adéquation, de suivre tous les aspects de la qualité dans le cadre des services de tests et de conseiller le responsable technique et le directeur général en conséquence.

10.3 Documentation

La documentation relative au système de qualité du centre de test comprend:

- le manuel de qualité;
- les procédures de contrôle de la qualité;
- les documents techniques.
Les procédures de contrôle de la qualité définissent la façon de mettre en œuvre les activités afin d’atteindre les objectifs de contrôle de la qualité. Les procédures devant être mises en œuvre dans le manuel de qualité sont:

- Rédaction et mise en œuvre des procédures de qualité du centre de test.
- Mise à jour et distribution du manuel de qualité.
- Audit et examen de la qualité.
- Nomination et formation du personnel.
- Gestion des campagnes de tests.
- Contrôle et mise à jour de la documentation technique.
- Gestion des archives.
- Sécurité des logiciels.

Il incombe au responsable de la qualité qui vérifie la compatibilité de cette procédure avec le système de qualité et au responsable technique qui approuve l’application de ladite procédure dans le centre de test d’autoriser la publication et la mise à jour d’une procédure.

Les documents techniques sont ceux ayant trait aux aspects techniques des services de tests. Le contrôle des documents techniques incombe au responsable du domaine de test concerné. Le contrôle et la mise à jour des documents techniques sont pris en compte dans une procédure de contrôle de la qualité. Toutes les informations relatives aux documents techniques sont fournies dans les annexes des domaines techniques du manuel de qualité.

Chaque membre du centre de test doit détenir un exemplaire contrôlé des procédures de contrôle de la qualité. Tous les autres documents nécessaires à la mise en œuvre de tests de conformité doivent être facilement accessibles au personnel du laboratoire. La politique et les procédures définies dans le manuel de qualité ainsi que toutes les procédures de contrôle de la qualité pertinentes doivent être étudiées soigneusement et appliquées, en toutes circonstances, par l’ensemble du personnel du centre.

10.4 Dérogation aux procédures documentées

Des dérogations aux procédures de contrôle de la qualité ou aux spécifications des tests de conformité peuvent être autorisées durant les activités quotidiennes du centre de test. Afin de garantir que le niveau de qualité mis en place ne pâtisse pas de l’application de telles dérogations, la procédure suivante doit être respectée:

- Toute dérogation doit immédiatement être signalée par le personnel concerné au responsable de domaine de test pour les dérogations techniques et au responsable de la qualité pour les dérogations au contrôle de la qualité, et documentée.
- Le personnel concerné doit remplir le formulaire de dérogation aux procédures pour décrire la cause de la dérogation.
- Si la dérogation a des conséquences sur les tests de conformité, ces derniers doivent être arrêtés immédiatement.
- Le responsable de domaine de test doit enquêter pour décider des mesures à prendre. S’il y a une possibilité que l’intégrité du travail soit remise en cause, les tests doivent être démarrés à nouveau depuis le début et exécutés une seconde fois en suivant la procédure documentée. Si l’on détermine qu’une telle dérogation a été mise en œuvre pour des raisons techniques valides et que la qualité des tests n’est, en conséquence, pas remise en cause, les tests peuvent se poursuivre. Toutefois, la justification doit être documentée dans le formulaire DAP (dérogation aux procédures).
• Toute décision prise et toute mesure adoptée doivent être signalées dans le formulaire DAP.
• Le formulaire DAP doit être envoyé au responsable de la qualité pour examen et archivé dans le dossier de campagne de tests.

Le formulaire DAP est également utilisé pour documenter la sortie d'une nouvelle version ou une modification des rapports de test.

Une dérogation peut conduire à prendre des mesures correctives. Dans ce cas, il convient de remplir un formulaire de demande de mesure corrective.
Annexe A: Infrastructures des laboratoires et des installations de tests

<table>
<thead>
<tr>
<th>Section</th>
<th>Acronyme du laboratoire de test</th>
<th>Domaine de compétence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DAS</td>
<td>Laboratoire sur le débit d'absorption spécifique</td>
</tr>
<tr>
<td>B</td>
<td>EXU</td>
<td>Laboratoire sur l'expérience utilisateur</td>
</tr>
<tr>
<td>C</td>
<td>ALB</td>
<td>Laboratoire sur l'accès à large bande</td>
</tr>
<tr>
<td>D</td>
<td>SVA</td>
<td>Laboratoire sur les services mobiles à valeur ajoutée</td>
</tr>
<tr>
<td>E</td>
<td>SPE</td>
<td>Laboratoire sur la sécurité et la protection électriques</td>
</tr>
<tr>
<td>F</td>
<td>ELA</td>
<td>Laboratoire électroacoustique</td>
</tr>
<tr>
<td>G</td>
<td>CEM</td>
<td>Laboratoire sur la compatibilité électromagnétique</td>
</tr>
<tr>
<td>H</td>
<td>RSL</td>
<td>Laboratoire sur la radio et la signalisation</td>
</tr>
<tr>
<td>I</td>
<td>REN</td>
<td>Laboratoire sur le rendement énergétique</td>
</tr>
<tr>
<td>J</td>
<td>QML</td>
<td>Laboratoire sur la qualité des matériels</td>
</tr>
<tr>
<td>K</td>
<td>RPE</td>
<td>Laboratoire sur les réseaux personnels</td>
</tr>
<tr>
<td>L</td>
<td>ITF</td>
<td>Installations de tests fixes</td>
</tr>
<tr>
<td>L</td>
<td>ITM</td>
<td>Installations de tests mobiles</td>
</tr>
</tbody>
</table>

A Laboratoire sur le débit d'absorption spécifique (DAS)

Portée des activités du laboratoire

Différents organismes nationaux de réglementation, par exemple la Federal Communications Commission (FCC) aux États-Unis, exigent que la moyenne spatiale maximale du DAS (le débit d'absorption spécifique exprimé en W/kg) produite par les terminaux sans fil soit évaluée pour garantir sa conformité aux règles qu'ils ont établies (par exemple le Code of Federal Regulations and guidelines de la FCC). Les valeurs du DAS adoptées par différents pays s'appuient habituellement sur des normes comme la norme C95.1 de l'IEEE ou sur des lignes directrices telles que celles élaborées par la Commission internationale pour la protection contre les rayonnements non ionisants (CIPRNI).

Le DAS, qui quantifie l'énergie absorbée par les tissus d'un corps biologique par unité de masse lorsqu'il est exposé à un champ de RF, dépend d'un certain nombre de facteurs, notamment de la géométrie et des propriétés diélectriques des tissus ainsi que de l'orientation du corps par rapport à la source. Étant donné que l'énergie RF pénétrant dans le corps est diffusée et absorbée par différentes interfaces tissulaires, le champ interne, et donc la distribution du DAS, n'est pas uniforme. Le couplage énergétique est rendu encore plus complexe par la géométrie de la source et le couplage mutuel lorsque l'exposition se fait à proximité, par exemple dans les conditions d'exposition associée à des émetteurs récepteurs radio portatifs. L'évaluation de la distribution du DAS liée à ce type d'appareil est une tâche complexe habituellement réalisée à l'aide de techniques de mesure ou d'une modélisation numérique. L'un des moyens d'évaluer la conformité aux exigences propres au DAS consiste à mesurer la puissance du champ électrique dans un liquide simulant les propriétés électriques des tissus biologiques en utilisant des modèles anthropomorphiques de la tête humaine. La portée des activités de ce type de laboratoire consiste à exécuter des mesures du DAS sur des appareils RF portatifs ou sans fil utilisés à proximité immédiate de l'oreille ou du corps humain.
L'état actuel des connaissances en matière d'évaluation du DAS veut que l'on utilise des fantômes anthropomorphiques, c'est-à-dire adoptant une forme humaine, fabriqués à partir de plastiques ou de coques de fibres de verre, dotés d'une faible permittivité et présentant un facteur de perte réduit, remplis d'un liquide homogène présentant des propriétés électriques similaires à celle des tissus humains. La taille et la forme du fantôme utilisé pour représenter le tissu moyen d'une tête humaine ainsi que les propriétés diélectriques du liquide simulant les tissus sont choisies de manière à ce que les valeurs mesurées du DAS soient extrêmement prudentes, c'est-à-dire que les valeurs obtenues affichent systématiquement une légère surestimation par rapport à celles obtenues à partir de modèles de têtes anatomiques hétérogènes.

S'il est vrai que les mesures d'accroissement de la température utilisant des techniques de type sonde thermique ou caméra infrarouge ont été largement utilisées dans la recherche ou pour les étalonnages de transfert, il n'en demeure pas moins que ces méthodes ne sont pas adaptées pour tester des appareils à faible puissance en raison des limitations de leur sensibilité et de leur plage dynamique. Seules des sondes électriques de champ miniaturisées embarquant des capteurs dipôles chargés par diodes sont en mesure de fournir la plage dynamique requise; en conséquence, les procédures de test de terminaux décrites dans cette pratique recommandée sont limitées aux techniques de mesure utilisant de telles sondes. Les mesures du DAS sont menées à bien en effectuant un balayage de détection au sein d'une coquille fine fantôme de forme anatomique remplie d'un liquide simulant les tissus, en se servant généralement d'un robot multiaxes pour positionner une sonde électrique de champ miniaturisée. Une fois les régions présentant le DAS le plus élevé repérées, il convient d'utiliser des algorithmes post-traitement, sous réserve des exigences décrites dans ce document, pour établir une moyenne du DAS local sur un volume prescrit afin de déterminer la moyenne spatiale maximale du DAS.

Liste des services de tests en laboratoire

SARLEV – Détermination du débit d'absorption spécifique (DAS) pour des terminaux portatifs utilisés à proximité immédiate de l'oreille (gamme de fréquences de 850 MHz à 2 GHz)

BODYSARLEV – Détermination du débit d'absorption spécifique (DAS) pour des appareils de communication sans fil utilisés à proximité immédiate du corps humain (gamme de fréquences de 850 MHz à 2 GHz)

Normes de référence

CENELEC NE 50360/A1 – *Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields* (norme de produit visant à démontrer la conformité des téléphones mobiles avec les restrictions de base relatives à l'exposition des personnes aux champs électromagnétiques) (300 MHz-3 GHz); [DOC.SARLEV.01]; modification; mars 2012

CEI 62209-1, 2005 – *Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices – Human models, instrumentation, and procedures- Part 1: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)* (exposition humaine aux champs radiofréquence produits par les dispositifs de communication sans fils tenus à la main ou portés près du corps – modèles de corps humain, instrumentation et procédures – Partie 1: procédure de détermination du débit d'absorption spécifique (DAS) produit par les appareils tenus à la main et utilisés près de l'oreille (plage de fréquence de 300 MHz à 3 GHz))

CENELEC NE 62209-1, 2006 – *Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)* (exposition humaine aux champs radiofréquence produits par les dispositifs de communication sans fils tenus à la main ou portés près du corps – modèles de corps humain, instrumentation et procédures – Partie 1: procédure de détermination du débit d'absorption spécifique (DAS) produit par les appareils tenus à la main et utilisés près de l'oreille (plage de fréquence de 300 MHz à 3 GHz))
Etude de faisabilité pour la mise en place d'un centre de tests de conformité
Etude de faisabilité pour la mise en place d’un centre de tests de conformité

CEI 62209-2, 2010 – Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) (exposition humaine aux champs radiofréquence produits par les dispositifs de communication sans fils tenus à la main ou portés près du corps – modèles de corps humain, instrumentation et procédures – partie 2: procédure de détermination du débit d’absorption spécifique (DAS) produit par les appareils de communication sans fil utilisés près du corps humain (plage de fréquence de 30 MHz à 6 GHz))

Configuration des équipements de test et instrumentation

Les principaux éléments de la configuration des équipements de test sont décrits à la Figure A1. La liste des instruments et les instruments supplémentaires pour la vérification ou la validation du système de mesure sont également mentionnés.

Figure A1: Principaux éléments du système de mesure du DAS

Légende:

<table>
<thead>
<tr>
<th>Élément</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated system to move probe</td>
<td>Système automatisé de déplacement de la sonde</td>
</tr>
<tr>
<td>Phantom filled with tissue simulation liquid</td>
<td>Fantôme rempli de liquide simulant les tissus</td>
</tr>
<tr>
<td>Electric field probe</td>
<td>Sonde de champ électrique</td>
</tr>
<tr>
<td>Device under test</td>
<td>Dispositif testé</td>
</tr>
<tr>
<td>Device holder</td>
<td>Support du dispositif</td>
</tr>
<tr>
<td>Radio communication tester</td>
<td>Testeur de radiocommunication</td>
</tr>
</tbody>
</table>

Composants principaux du système de mesure du DAS:

- ROBOT ANTHROPOMORPHIQUE: 6 AXES + CONTRÔLEUR
- DISPOSITIF DE SUPPORT DES TERMINAUX MOBILES OU DES APPAREILS SANS FIL
- FANTÔMES (TÊTE ET CORPS)
- SONDES DE CHAMP ELECTRIQUE
- INSTRUMENT ELECTRONIQUE D’ACQUISITION DE DONNÉES/SERVEUR DE MESURE
Etude de faisabilité pour la mise en place d’un centre de tests de conformité

- LOGICIEL DE MESURE DU DAS
- THERMOMÈTRE, ENREGISTREUR DE DONNÉES
- ANALYSEUR DE RÉSEAU VECTORIEL
- ENSEMBLE DE SONDE DIÉLECTRIQUE + LOGICIELS
- TESTEUR DE RADIOCOMMUNICATION POUR LA CONFIGURATION DES APPAREILS DE COMMUNICATION
- THERMOHYGROMÈTRE
- ARMOIRE CHIMIQUE (STOCKAGE DES LIQUIDES)
- ORDINATEURS (PC/STATION DE TRAVAIL/PORTABLE)
- RIDEAU DE SÉCURITÉ POUR LES ROBOTS

Composants de validation ou de vérification du système de mesure du DAS:

- FILTRE, PASSE-BAS/PASSE-HAUT
- WATTMÈTRE
- CAPTEUR DE PUISSANCE, MAXIMALE ET MOYENNE
- COUPLEUR, BIDIRECTIONNEL
- ALIMENTATION ELECTRIQUE
- AMPLIFICATEUR RF
- ATTÉNUATEURS RF
- GENERATEUR RF
- TERMINAISON DE PRÉCISION 50 OHM
- ANTENNES DIPÔLES
- CÂBLES MICRO-ONDES SOUPLES
- CIRCULATEUR

Matrice de compétences du personnel (compétences principales)

Responsable du laboratoire: électromagnétisme, CEM, électronique, composants micro-ondes et RF, connaissance de l'architecture des systèmes de communications mobiles et des techniques d'accès radioélectriques, excellente connaissance des aspects qualité (connaissance de la norme ISO/CEI 17025, 2005 recommandée), connaissance de base des principales langues étrangères.

Responsable de campagne de tests: électromagnétisme, électronique, connaissance de base de l'architecture des systèmes de communications mobiles et des techniques d'accès radioélectriques, connaissance de base des aspects qualité, solides capacités en formation et en coordination des travaux des opérateurs de la campagne.

Opérateur de campagne de tests: connaissances de base en physique recommandées.

Experts techniques (facultatifs, mais recommandés): physique, chimie, génie mécanique.

Les experts assistent le responsable du laboratoire et le responsable de la campagne en matière de gestion des liquides simulant les tissus de la tête et du corps, ainsi que pour la gestion et l'installation du matériel et des robots de laboratoire.
Exigences relatives au site

On trouvera ci-dessous un certain nombre d'informations concernant le plan du laboratoire.

Dimensions – Il est recommandé d'effectuer les tests dans un environnement blindé :

- La distance entre le bras du robot et la paroi de la pièce doit être supérieure ou égale à 50 cm (d'une façon générale, une pièce de 3 m sur 4 m est suffisante pour le fonctionnement d'un seul système de mesure du DAS).
- Si des absorbents sont installés aux murs et au plafond, la distance entre le bras du robot et les murs doit être plus importante.
- La pièce doit être climatisée en vue de maintenir la température au niveau souhaité. Le bras du robot et le contrôleur dégagent habituellement une chaleur équivalente à 2 000 W.
- Certains liquides simulant les tissus peuvent avoir une odeur désagréable. Une bonne ventilation ou de l'air frais permettront d'améliorer la situation dans la pièce.

Exigences électriques – La prise électrique d'alimentation du robot doit se trouver à moins de 10 m de l'emplacement du contrôleur du robot et doit habituellement être en mesure de fournir l'intensité suivante :

- 16 ampères par phase si la tension entre deux phases est de 200 à 230 Vca.
- 10 ampères par phase si la tension entre deux phases est de 400 à 440 Vca.

Si le contrôleur du robot est configuré dans une pièce blindée, il est recommandé d’utiliser des filtres ayant un pouvoir filtrant similaire pour amener l’électricité dans la pièce blindée.

Exigences environnementales – Le fonctionnement du système de mesure du DAS est optimal dans les conditions suivantes :

- Température de 18 à 25 °C.
- Taux d’humidité de 20 à 90% sans condensation.

Pour les mesures de conformité, il est toutefois nécessaire d’installer le système de mesure dans un environnement contrôlé afin que, d’une façon générale, les variations quotidiennes de température du liquide ne dépassent pas ±1 °C.

Support pour robot : les robots sont en général livrés avec leur support. Le robot est installé sur ce support, qui doit être vissé au sol afin d’empêcher toute chute. Le plancher doit avoir été construit afin de supporter le poids du robot choisi.

Sécurité : des équipements de protection doivent être installés et connectés afin d’empêcher le personnel de pénétrer dans la zone dangereuse durant le fonctionnement automatique, en fonction de la distance de sécurité applicable par rapport au robot. Un rideau lumineux doit être installé pour se conformer à la directive européenne sur la sécurité des machines ou normes de sécurité similaires.

- Le rideau concerné doit éteindre le système s’il est interrompu.
- Des interrupteurs d’urgence doivent être situés sur le panneau avant du contrôleur du robot, sur la console d’apprentissage manuel du robot et sur l’unité de commande à distance du système de mesure. Pendant le fonctionnement du robot, au moins l’un de ces interrupteurs doit être à portée de main.
- Les fils et les câbles ne doivent pas être exposés à des agents chimiques comme les liquides de simulation.
Les liquides simulant les tissus utilisés avec le système peuvent être nocifs et irritants. Les indications des fiches de sécurité du fabricant (MSDS) de chacun des composants doivent être respectées durant la fabrication, la manipulation, l'utilisation, le stockage et l'élimination des ingrédients. L'opérateur responsable doit prendre les précautions nécessaires afin qu'aucun membre du personnel ne soit blessé par les liquides, et ce, même lorsque le système n'est pas en fonctionnement (par exemple en dehors des périodes de travail). Les liquides dangereux doivent être vidés du système et stockés adéquatement dans leur récipient de stockage.

B Laboratoire sur l'expérience utilisateur (EXU)

Portée des activités du laboratoire

La mise en place, au cours des années, de laboratoires sur l'expérience utilisateur travaillant en lien étroit avec les départements qualité, marketing et ingénierie permet d'optimiser l'offre de produits et de services innovants. Ce type de laboratoire doit employer des ergonomes détenant la certification EUERG homologuée par l'Union européenne, des psychologues et des sociologues experts en communication ainsi qu'en gestion des ressources et compétents en utilisabilité, en ergonomie, en planification centrée sur l'utilisateur, en recherche psychosociale, en statistiques psychométriques et en communication. Au-delà de la conception de nouveaux services et de nouveaux produits centrés sur l'utilisateur comme des interfaces graphiques ou des procédures de navigation, ce type de laboratoire met également en place des essais sur des systèmes, des sites Internet et des produits, des analyses qualitatives (groupes de discussions, de réflexion et de consultation) ainsi que des tests d'utilisabilité en environnement résidentiel et professionnel. Il prépare en outre des questionnaires qu'il gère en ligne et organise le recrutement pour des analyses qualitatives. Le laboratoire doit être équipé de zones de tests en environnement résidentiel et professionnel au sein desquelles se déroulent les tests d'utilisabilité, les vidéoconférences et les discussions des groupes spécialisés; il doit également disposer d'une salle de commande permettant de gérer et d'enregistrer en vidéo l'activité se déroulant dans la salle de tests ou de réunion du groupe spécialisé ainsi que le serveur abritant le questionnaire en ligne.

Liste des services de tests en laboratoire

ENQUÊTES QUALITATIVES sur les besoins et les exigences des utilisateurs en matière de création et d'élaboration de nouveaux produits et services.

TESTS D'UTILISABILITÉ avec des utilisateurs dans des contextes résidentiels et professionnels. L'objectif consiste à observer les personnes qui utilisent le produit en laboratoire afin de découvrir des erreurs et des domaines d'amélioration.

GROUPES SPECIALISÉS ET DISCUSSIONS: des groupes de personnes sont interrogés sur leur attitude vis-à-vis de la conception d'un produit, des technologies qu'il utilise et des services qu'il offre. Les questions sont posées dans un contexte de groupe interactif au sein duquel les participants se sentent libres d'échanger avec les autres membres du groupe.

ESSAIS: évaluation de l'expérience du client dans un contexte réel, de l'installation et de la configuration à l'utilisation complète des logiciels et du matériel.

CONCEPTS DE PRODUITS ET DE SERVICES: interface utilisateur centrée sur l'utilisateur, flux de navigation et présentation.

EVALUATION HEURISTIQUE DE L'UTILISABILITÉ des interfaces web et TV sur IP de produits et de services mobiles, fixes et multimédias. Il s'agit d'évaluer les aspects essentiels en ce qui concerne l'expérience de l'utilisateur par rapport à l'IGU (interface graphique utilisateur) ainsi qu'aux flux et au cheminement de navigation.

ENQUÊTES EN LIGNE, FORUMS ET DISCUSSIONS SUR INTERNET

RECRUTEMENT de cibles particulières en s'appuyant sur une base de données interne comprenant 500 utilisateurs profilés.
Normes de référence
Définition de l'utilisabilité ISO 9241-11, 1993

Configuration des équipements de test et instrumentation

- Méthodes centrées sur l’utilisateur.
- Salles de tests équipées aussi bien de mobilier domestique que professionnel pour mener en face à face des tests d'utilisabilité individualisés.
- Groupes spécialisés et salle de vidéoconférence.
- Salle de commande pour le suivi et l'enregistrement audio et vidéo.
- Base de données interne pour le recrutement des utilisateurs.
- Solution client-serveur pour publier les enquêtes en ligne.
- Solution client-serveur pour gérer les forums et les discussions sur Internet.

Matrice de compétences du personnel (compétences principales)
Responsable du laboratoire: psychologue, sociologue, chercheur en communication, expert audio/vidéo.
Responsable de campagne de tests: ergonome, psychologue ou sociologue expert en communication ainsi qu’en gestion des ressources et compétent en utilisabilité, en ergonomie, en planification centrée sur l’utilisateur, en recherche psychosociale, en statistiques psychométriques et en communication.
Opérateur de campagne de tests: connaissance de base de l'utilisabilité, des communications et des principales technologies des produits et des services à tester.

Exigences relatives au site
On trouvera ci-dessous un certain nombre d'informations concernant le plan du laboratoire.
Figure B1: Plan d’un laboratoire sur l’utilisabilité

Légende:

<table>
<thead>
<tr>
<th>Focus group</th>
<th>Groupe de réflexion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic test room (large)</td>
<td>(Grande) salle de test (contexte résidentiel)</td>
</tr>
<tr>
<td>Observation/control room</td>
<td>Salle d’observation/de contrôle</td>
</tr>
<tr>
<td>Business test room (large)</td>
<td>(Grande) salle de test (contexte professionnel)</td>
</tr>
<tr>
<td>Projector</td>
<td>Projecteur</td>
</tr>
<tr>
<td>TV 1</td>
<td>TV 1</td>
</tr>
<tr>
<td>Director desktop</td>
<td>Bureau du directeur</td>
</tr>
<tr>
<td>Domestic test room (small)</td>
<td>(Petite) salle de test (contexte résidentiel)</td>
</tr>
<tr>
<td>Business test room (small)</td>
<td>(Petite) salle de test (contexte professionnel)</td>
</tr>
<tr>
<td>Domestic test room</td>
<td>Salle de test (contexte résidentiel)</td>
</tr>
<tr>
<td>Business test room</td>
<td>Salle de test (contexte professionnel)</td>
</tr>
<tr>
<td>Focus group room</td>
<td>Salle du groupe de réflexion</td>
</tr>
<tr>
<td>Observation ...</td>
<td>Salle d’observation ...</td>
</tr>
<tr>
<td>Control room</td>
<td>et de contrôle</td>
</tr>
</tbody>
</table>
Etude de faisabilité pour la mise en place d’un centre de tests de conformité

C Laboratoire sur l’accès à large bande (ALB)

Portée des activités du laboratoire

La portée des activités d’un laboratoire sur l’accès à large bande consiste à évaluer l’ensemble des équipements et des fonctionnalités utilisés dans les réseaux d’accès de nouvelle génération, allant des aspects liés à la couche physique aux aspects concernant le réseau. En particulier, les performances de la transmission xDSL et les paramètres optiques sont testés pour une solution à base de cuivre ou de fibre optique en relation avec les différents choix architecturaux (FTTB, FTTCab, FTTH, FTTE).

Liste des services de tests

Tests de la couche physique xDSL: ces tests sont spécifiés pour vérifier la fonctionnalité et les performances sur le plan de l’interopérabilité du système à l’essai (ADSL1, ADSL2+, SDSL, VDSL) par rapport à la réalisation de référence. Ils sont conçus de façon à pouvoir être utilisés à des fins d’évaluation de l’interopérabilité, des fonctionnalités et des performances d’équipements commerciaux et de conceptions de référence (CR), en vue de surveiller les technologies présentes sur le marché et d’effectuer des analyses comparatives.

Tests de la couche optique GPON: ces tests sont spécifiés pour vérifier la fonctionnalité et les performances sur le plan de l’interopérabilité du système à l’essai (interface GPON) par rapport à la réalisation de référence.

Tests fonctionnels des couches 2 et 3: ces tests portent essentiellement sur la vérification de la correspondance de la mise en œuvre du modèle de service sur l’équipement du réseau d’accès à large bande dans le contexte d’une architecture FTTE, FTTCab, FTTB et FTTH.

Normes de référence

- Recommandation UIT-T G.992.5 (2009), Emetteurs-récepteurs de ligne d’abonné numérique asymétrique 2 – ADSL2 à largeur de bande étendue (ADSL2plus)
- ETSI TS 101 388 V1.3.1 – Access transmission systems on metallic access cables; Asymmetric Digital Subscriber Line (ADSL) - European specific requirements (Systèmes de transmission d’accès sur câbles d’accès métalliques; lignes ADSL, spécifications européennes) (mai 2002)
- Broadband Forum (BBF) TR-100 – ADSL2/ADSL2plus Performance Test Plan (Plan de tests de performances ADSL2/ADSL2plus) (mai 2007)
- Broadband Forum (BBF) TR-105 – ADSL2/ADSL2plus Functionality Test Plan (Plan de tests des fonctionnalités ADSL2/ADSL2plus) (février 2010)
- Broadband Forum (BBF) TR-165 – Vector of Profiles (Vecteur de profils) (mars 2009)
- Recommandation UIT-T G.993.2 (2011) – Emetteurs-récepteurs de ligne d’abonné numérique à très haut débit 2 (VDSL2)
- ETSI TS 101 271 – Access Terminals Transmission and Multiplexing (TM); Access transmission system on metallic pairs; Very High Speed digital subscriber line system (VDSL2) (Terminaux d’accès, transmission et multiplexage (TM); systèmes de transmission d’accès sur câbles d’accès métalliques; ligne d’abonné numérique à très haut débit VDSL2); [spécification UIT G993.2 modifiée] (novembre 2008)
- Broadband Forum T-114 – VDSL2 Performance Test Plan (Plan de tests de performances VDSL2), première publication (novembre 2009) et rectificatifs
- Broadband Forum W-114 révision 13 – VDSL2 Performance Test Plan (Plan de tests de performances VDSL2), deuxième publication (novembre 2010)
- Broadband Forum T-115 – VDSL2 Functionality Test Plan (Plan de tests des fonctionnalités VDSL2), première publication (novembre 2009) et rectificatifs
• Broadband Forum WT-115 révision 10 – VDSL2 Functionality Test Plan (Plan de tests des fonctionnalités VDSL2), deuxième publication (novembre 2011)
• Rapport technique du Broadband Forum TR-252 (novembre 2010)
• Broadband Forum WT-252 révision 3 (décembre 2011)
• Recommandation UIT-T G.984x – Réseaux optiques passifs gigabitaires (GPON)
• RASC GPON OLT – ONU Interoperability Test Plan Working Text (Document de travail pour le plan de tests d'interopérabilité de l'émetteur de l'unité de réseau optique) – version 1.0
• Rapport technique du Broadband Forum TR-101 – Migration to Ethernet-Based DSL Aggregation (Migration vers l'agréation DSL de type Ethernet)

Configuration des équipements de test et instrumentation
Cette section présente les principaux instruments de tests utilisés pour différentes configurations de test.

• Tests fonctionnels sur la couche 2 et la couche 3: analyseur/générateur de trafic ETH/IP doté des licences logicielles d'émulation des principaux protocoles.
• Tests optiques GPON: appareil de mesure de puissance optique, affaiblisseur optique variable, analyseur/générateur de trafic ETH/IP doté des licences logicielles d'émulation des principaux protocoles.
• Test de la couche physique XDSL: sonde différentielle, simulateur de boucle, générateur de bruit, analyseur de spectre, hypsomètre, analyseur/générateur de trafic sur la couche 2.

Matrice de compétences du personnel (compétences principales)
Responsable du laboratoire: architecture des systèmes de transmission xDSL et GPON, architecture des systèmes de communications câblés et techniques des réseaux d'accès câblés, architecture des systèmes de réseaux domestiques, spécifications de câblage, connaissance des principales langues étrangères, connaissance des aspects liés à la qualité.

Responsable de campagne de tests: architecture des systèmes de transmission xDSL et GPON, architecture des systèmes de communication sans fil et techniques des réseaux d'accès câblés, architecture des systèmes de réseau domestique, spécifications de câblage, connaissance de base des aspects liés à la qualité, compétences en matière de formation et de coordination de campagnes de tests.

Opérateur de la campagne de tests: connaissance de base des systèmes de transmission xDSL, fondamentaux des protocoles Ethernet et IP.

Exigences relatives au site
Les tests ci-dessus ne nécessitent aucune exigence particulière propre au site.

D Laboratoire sur les services à valeur ajoutée (SVA)

Portée des activités du laboratoire
Les laboratoires de ce type testent les terminaux mobiles pour valider la qualité de la prestation des services à valeur ajoutée offerts par un opérateur mobile. Les SVA portent, dans leur version de base, sur le téléchargement de logos de l’opérateur, de fonds d'écran, de sonneries, de tonalités vidéo, d'économiseurs d'écran, de jeux et d'applications mobiles et sur l'utilisation de réseaux sociaux, de forums de discussion, de services d'information et d'infoloisirs, de services de vote populaire, etc.
Les boutiques d'applications (appelées aussi "app stores", marchés d'applications, etc.) représentent les dernières évolutions en matière de distribution numérique de ces services et sont souvent fournies comme composants d'un système d'exploitation sur un ordinateur personnel, un téléphone intelligent ou une tablette. La plupart de ces boutiques d'applications sont conçues et réglementées par leurs détenteurs (par exemple les fabricants de terminaux mobiles) qui exigent, d'une part, que les demandes des développeurs d'applications pour que leur produit soit offert dans la boutique soient soumises à un processus d'inspection visant à déterminer la conformité du produit à un certain nombre de lignes directrices (par exemple en matière de qualité, de contenu et de facturation) et, d'autre part, de percevoir une commission sur chaque vente facturée de l'application. Certaines applications sont développées directement par l'opérateur mobile en raison de leur importance stratégique par rapport au coeur de son activité, ce qui l'amène à disposer de sa propre petite boutique d'applications. Dans ce cas, le processus d'approbation peut être mené par le laboratoire sur les SVA.

Liste des services de tests

Acceptation d'un nouveau terminal: après qu'un nouveau terminal mobile a satisfait aux procédures de tests de conformité et de tests supplémentaires relatifs aux composants radio, de signalisation, SAR, IOT, etc., il est utile de vérifier qu'un ensemble prédéfini d'applications choisies parmi les plus fréquemment utilisées et les plus rentables pour un opérateur mobile fonctionnent correctement sur le nouveau terminal; les versions ultérieures, matérielles et logicielles, du terminal mobile ne seront testées à nouveau que pour les domaines sur lesquels un changement pourrait avoir des répercussions, et ce, en conformité avec les déclarations du fabricant du terminal mobile.

Acceptation d'une nouvelle application: après qu'une nouvelle application a satisfait à tous les tests relatifs au système et à l'intégration de différents composants logiciels sur un terminal mobile spécifique, il est utile de vérifier qu'elle est effectivement compatible avec un ensemble prédéfini de terminaux mobiles choisis parmi les plus utilisés ou les plus récents pour un opérateur mobile; les versions ultérieures, logicielles et matérielles, de l'application ne seront à nouveau testées que pour les domaines sur lesquels un changement pourrait avoir des répercussions, et ce, en conformité avec les déclarations du fabricant de l'application.

Suivi des services SVA: évaluation périodique des politiques de suivi de la qualité des services à valeur ajoutée (SVA) au sein du réseau national. Voici quelques exemples de ces activités:

- Evaluation statistique (manuelle et automatique sur une base quotidienne) des temps d'accès, de l'exactitude, et du caractère complet des URL mobiles les plus utilisées (par exemple la page d'accueil de l'opérateur mobile ou les pages d'accueil et de connexion des applications les plus utilisées).
- Valeurs de référence de ces statistiques pour différents opérateurs de réseau mobile.
- Taux d'échec résiduels pour les applications offertes dans les boutiques d'applications mobiles de l'opérateur, prenant en compte les différentes phases de l'achat.
- Conformité aux lignes directrices relatives à la qualité des SVA telle qu'elle est perçue par l'utilisateur final (transparence des communications, utilisabilité des services, accessibilité, etc.).

Normes de référence

Du fait que de nombreuses activités de tests sont strictement dépendantes de la stratégie particulière d'un opérateur mobile en matière de déploiement des nouveaux terminaux ou des nouveaux services, la plupart des documents de référence varient selon l'opérateur. Toutefois, en Italie, ce domaine est accrédité par l'Italian National Accreditation Body pour la démonstration de la conformité de l'activation, de l'utilisation et de la désactivation de SVA mobiles payants conformément aux normes de références suivantes:

CASP – Code de conduite italien pour l'offre de services SMS/MMS à valeur ajoutée – version 2.0 – 16/11/2009, récemment adopté par la plupart des opérateurs mobiles et des fournisseurs de services de contenu italiens.
Configuration des équipements de test et instrumentation

La configuration des équipements de test est décrite à la Figure D1, suivie de la liste des instruments (première liste, composants principaux). Une deuxième liste inclut ensuite les instruments supplémentaires pour la vérification des systèmes de mesure et pour la plate-forme de collecte de tests.

Figure D1: Principaux éléments d’un laboratoire sur les SVA

![Figure D1: Principaux éléments d’un laboratoire sur les SVA](image)

Légende:

<table>
<thead>
<tr>
<th>Mobile terminal</th>
<th>Terminal mobile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular network</td>
<td>Réseau cellulaire</td>
</tr>
<tr>
<td>VAS & CSP Platforms</td>
<td>Plates-formes SVA et CSP</td>
</tr>
<tr>
<td>Mobile Terminal Emulator</td>
<td>Emulateur de terminal mobile</td>
</tr>
</tbody>
</table>

- TERMINAUX MOBILES CERTIFIÉS/COMMERCIAUX de différents fabricants
- SIM COMMERCIALES de différents opérateurs mobiles
- OUTILS DE GESTION DES PROFILS SIM
- SUITES LOGICIELLES COMMERCIALES pour interfaçer un PC et un terminal mobile
- EMULATEUR DE TERMINAL MOBILE pour les tests automatiques
- OUTILS DE GESTION DE LA FACTURATION SIM
- TESTEUR DE TERMINAUX pour la couverture

Vérification des systèmes de mesure des SVA et plate-forme de collecte de tests (liste supplémentaire par rapport à la précédente):

- DISPOSITIF DE BALAYAGE DES RADIOFRÉQUENCES pour la vérification de la couverture
- SYSTÈME DE GESTION DE CONTENUS pour le recueil des résultats des campagnes de tests
- PLATE-FORME D'ESSAIS PARTICIPATIFS
Matrice de compétences du personnel (compétences principales)

Responsable du laboratoire: bonne connaissance de l'architecture des plates-formes SVA, des systèmes d'exploitation et des interfaces utilisateurs pour les terminaux mobiles et des principes des tests logiciels, connaissance de l'architecture des systèmes de communication mobile et des techniques d'accès radio, connaissance approfondie des aspects liés à la qualité (connaissance souhaitée de la norme ISO/CEI 1702, 2005), bonne maîtrise de l'anglais recommandée.

Responsable de campagne de tests: bonne connaissance de l'architecture des plates-formes SVA, des systèmes d'exploitation et des interfaces utilisateurs pour les terminaux mobiles et des principes des tests logiciels, connaissance de base de l'architecture des systèmes de communication et des techniques d'accès radio.

Opérateur de campagne de tests: bonne connaissance de l'architecture des plates-formes SVA, des systèmes d'exploitation et des interfaces utilisateurs pour les terminaux mobiles, connaissance de base des principes des tests logiciels et de l'architecture des systèmes de communication et des techniques d'accès radio.

Experts techniques (facultatifs mais recommandés): connaissance approfondie de l'architecture des plates-formes SVA, des systèmes d'exploitation et de l'utilisabilité des interfaces utilisateurs pour les terminaux mobiles, connaissance approfondie de l'architecture des systèmes de communication et des techniques d'accès radio ainsi que des sujets connexes permettant d'apporter des éclairages ponctuels, notamment: facturation, sécurité, problèmes réglementaires, nouvelles techniques de tests (par exemple tests participatifs, tests en télétravail), SGBD.

Exigences relatives au site

On trouvera ci-dessous un certain nombre d'informations concernant les exigences relatives au site du laboratoire.

Exigences en matière de couverture

Une bonne couverture radioélectrique doit être garantie durant les tests. Pour effectuer une évaluation quantitative de la couverture radio, on utilise un terminal mobile de test sur lequel tourne une application spéciale qui détecte le niveau du signal radioélectrique pendant le test (bien entendu, ce terminal doit utiliser une SIM du même opérateur que celui pour lequel on réalise les tests). Les mesures effectuées par cette application sont comparées périodiquement avec les mesures d'un dispositif de balayage des radiofréquences qui fait office d'instrument de mesure de la couverture radio, puis le rapport de conformité relatif à ces mesures est rédigé.

Exigences environnementales

Les conditions environnementales du laboratoire utilisé pour les tests doivent être contrôlées et régulées par un système de conditionnement d'air et des systèmes autonomes, et être conformes aux exigences de chacun des équipements utilisés.

Les valeurs environnementales de température et d'humidité du laboratoire n'influencent pas les tests standard SVA et ne sont donc pas détectées durant les campagnes de tests.

Disponibilité des plates-formes SVA

La disponibilité de ces plates-formes doit être vérifiée, particulièrement lors de la mise en œuvre de tests automatisques, une indisponibilité temporaire ou un fonctionnement dégradé étant susceptibles de perturber une bonne interprétation des résultats de tests. On suggère une liaison directe avec la branche opérationnelle de l'opérateur mobile, afin que les périodes durant lesquelles les plates-formes ne seront pas en ligne soient connues à l'avance.
Étude de faisabilité pour la mise en place d’un centre de tests de conformité

Sécurité
Aucune exigence particulière de sécurité n’est requise en dehors des exigences générales découlant des documents relatifs à la qualité conformément aux prescriptions des normes de référence ISO 9000 et ISO/CEI 17025.

E Laboratoire sur la sécurité et la protection électriques (SPE)

Portée des activités du laboratoire
La liberté de circulation des équipements électriques au sein du marché européen a conduit à une harmonisation des législations des États Membres en la matière. Le résultat d’une telle harmonisation a abouti à la directive "basse tension" 2006/95/CE qui définit des principes généraux de sécurité reconnus dans l’ensemble de l’Union européenne.

Pour la libre circulation des produits électriques, cette directive fixe comme seul impératif la conformité à l’état actuel de la technique reconnu en Europe et, en conséquence, la conformité aux normes de sécurité harmonisées.

Les normes harmonisées sont celles rédigées par le CENELEC qui, une fois publiées au journal officiel de l’Union européenne, doivent être mises en œuvre au niveau national par tous les États Membres. Toutefois, la plupart des normes européennes sont soumises à un vote parallèle du CEI et du CENELEC, en particulier lorsqu’elles ont été rédigées par un comité technique du CEI; on peut donc parler d’une harmonisation des exigences techniques de sécurité à l’échelle internationale.

Dans tous les cas, en vue de concevoir des équipements sûrs, les fabricants doivent comprendre les principes généraux sous-jacents aux exigences de sécurité. Lorsqu’ils conçoivent des équipements, les fabricants doivent, en particulier, garantir une protection contre les dangers susceptibles de se présenter non seulement dans une situation de fonctionnement normal, mais également dans une situation de "premier défaut", lorsqu’une telle exigence peut les amener à ajouter des protecteurs, des écrans métalliques de protection, etc.

Les constructeurs devraient également étudier l’influence que certains paramètres physiques externes, notamment la température, l’humidité, l’altitude ou la poussière, pourraient avoir sur le produit en diminuant son niveau de sécurité. En outre, l’analyse des surtensions susceptibles d’être provoquées par la foudre au niveau des bornes d’alimentation secteur et des lignes de télécommunications pouvant induire des ruptures d’isolation s’avère tout aussi importante dans ce contexte.

Au-delà des enjeux de sécurité, les surtensions et les surintensités causées par la foudre peuvent endommager les équipements et produire un certain nombre de dysfonctionnements inacceptables. Afin d’empêcher ces dommages, le fabricant doit prévoir, durant la phase de conception, la mise en place de systèmes de protection adéquats sur la carte, par exemple des dispositifs à semi-conducteurs, des résistances non linéaires ou des parafoudres à gaz. On assiste, ces dernières années, à un accroissement des dommages produits par les surtensions en raison d’une utilisation massive d’équipements électroniques plus sensibles aux variations de tension par rapport à la tension nominale visée. De plus, les fonctions des équipements de ce type ne permettent souvent pas de les désactiver, même pour une courte période.

Les équipements peuvent être endommagés non seulement par des surtensions en mode commun (surtensions par rapport à la terre), mais également par des surtensions en mode transverse (surtensions entre les conducteurs). Le niveau des surtensions causées par des décharges atmosphériques indirectes (c’est-à-dire celles produites par des éclairs nuage–nuage ou par la foudre tombant à proximité de l’édifice hébergeant l’équipement) sur les interfaces externes et internes est normalisé par les recommandations de la série K de l’UIT-T.
Étude de faisabilité pour la mise en place d’un centre de tests de conformité

Liste des services de tests en laboratoire

- Evaluation des exigences de sécurité pour les matériels de traitement de l’information et de télécommunication.
- Evaluation des exigences d’immunité aux surtensions pour les matériels de traitement de l’information et de télécommunication.

Normes de référence

CENELEC NE 60950-1 – NE 60950-1/A11 – Information technology equipment: Safety Part1 (Matériel de traitement de l’information: sécurité, Partie 1) [DOC.S/ITE.01].

CENELEC NE 60215 – Radio Transmitter Safety (Règles de sécurité applicables aux matériels d’émission radioélectrique) [DOC.S/RT.01].

Recommandation UIT-T K.21 – Immunité des équipements de télécommunication installés dans les locaux d’abonnés aux surtensions et aux surintensités [DOC.P/TE/01].

Recommandation UIT-T K20 – Immunité des équipements de télécommunication installés dans un centre de télécommunication aux surtensions et aux surintensités.

Recommandation UIT-T K.45 – Immunité des équipements de télécommunication installés dans les réseaux d’accès et de jonction aux surtensions et aux surintensités.

Configuration des équipements de test et instrumentation

La liste des principaux équipements de test nécessaires aux activités du centre de test pour cette question est établie comme suit:

- DISPOSITIF DE MESURE DIELECTRIQUE
- DISPOSITIF DE MESURE DE LA CONTINUITÉ DE TERRE
- SONDE, DOIGT ARTIFICIEL
- GENERATEURS D’IMPUSSION
- WATTMÈTRE
- SOURCE CA
- VOLTMÈTRE, AMPÈREMÈTRE
- RESEAU DE MESURE DU COURANT DE CONTACT
- TRANSFORMATEUR D’ISOLEMENT
- OSCILLOSCOPE
- ANNONCIATEUR
- THERMOHYGROMÈTRE
- ORDINATEURS (PC/STATION DE TRAVAIL/PORTABLE)
- COMPAS
- PROJECTEURS DE PROFIL
- RESEAU DE COUPLAGE
- GÉNÉRATEUR DE SURTENSIONS JUSQU’À 15 000 V
- GÉNÉRATEUR DE SURINTENSITES JUSQU’À 20 000 A
• SONDES À COURANT
• SONDES HAUTE TENSION
• RÉSEAU D’ADAPTATION
• RÉSEAU DE CHARGE
• CHARGES ELECTRONIQUES

Figure E1: Exemples d’instruments de mesure de la protection et de la sécurité (compris dans la liste ci-dessus)

Source: UIT

Matrice de compétences du personnel (compétences principales)

Responsable de campagne de tests: électromagnétisme, électronique, connaissance de base de l'architecture des systèmes de communications mobiles et des techniques d'accès radioélectriques, connaissance de base des aspects qualité, solides aptitudes en formation et en coordination des travaux des opérateurs de la campagne.

Opérateur de campagne de tests: connaissance de base des aspects liés à la sécurité et à l’immunité aux surtensions et aux surintensités souhaitée.

Experts techniques (facultatifs, mais recommandés): physique, chimie, ingénierie mécanique. Les experts assistent le responsable du laboratoire et le responsable de la campagne en matière de gestion des liquides simulant les tissus de la tête et du corps ainsi que pour la gestion et l’installation du matériel et des robots de laboratoire.

Exigences relatives au site

On trouvera ci-dessous un certain nombre d'informations concernant le plan du laboratoire.
Dimensions

Pour certains tests, par exemple les tests de décharges électrostatiques exigés par les recommandations de l'UIT-T, on recommande une exécution dans un environnement blindé.

- La distance entre l'équipement et la paroi de la pièce doit être supérieure ou égale à 1 m (d'une façon générale, une pièce de 3 m sur 4 m est suffisante pour le fonctionnement d'un seul système de mesure).

Exigences électriques

Les tests doivent habituellement être conduits dans les conditions les plus défavorables dans le cadre des spécifications d'exploitation du fabricant relatives aux paramètres suivants:

- Tension d'alimentation (habituellement –10/+10%).
- Fréquence d'alimentation (habituellement –5/+5%).
- Température de fonctionnement (dépend des déclarations du fabricant).
- Mode de fonctionnement (dépend de l'équipement).

Les instruments de mesure électrique doivent être dotés d'une largeur de bande adéquate afin d'offrir des mesures exactes tenant compte de tous les éléments (CC, fréquence d'alimentation centrale en CA, contenu en hautes fréquences et en harmoniques) du paramètre mesuré.

Lorsqu'il est nécessaire de mesurer une valeur efficace, il convient de s'assurer que les instruments de mesure fournissent une valeur efficace tenant compte de la mesure des ondes sinusoidales et des ondes non sinusoidales.

Exigences environnementales

Les mesures relatives à la sécurité doivent être effectuées dans l'environnement suivant:

- Plage de températures de 18 à 25 °C.
- Taux d'humidité de 20 à 90% sans condensation.
- Pression atmosphérique de 860 à 1 060 hPa.

Sécurité

En général, des tests de sécurité et d'immunité aux surtensions et aux surintensités ne doivent être réalisés que par du personnel qualifié. Cependant, les équipements générant des haute tensions doivent être fournis avec des dispositifs de protection devant être activés pour empêcher le personnel d'entrer en contact avec les parties dangereuses de l'équipement (en fonction du test de sécurité concerné) durant le processus de mesure. Les dispositifs de protection, par exemple des feux de circulation, sont généralement fournis en conformité aux réglementations de sécurité similaires.

F Laboratoire électroacoustique (ELA)

Portée des activités du laboratoire

Un laboratoire électroacoustique teste habituellement les caractéristiques téléphonométriques des combinés téléphoniques ou des téléphones mains libres. Ce type de laboratoire offre, en général, des services de tests relatifs aux caractéristiques électriques des terminaux analogiques et des interfaces FXS/FXO. Le plus souvent, les éléments testés sont des combinés téléphoniques et des téléphones mains libres, des interfaces analogiques ou des passerelles d'accès pour des services d'accès xDSL et des filtres xDSL.

Cette activité est essentiellement une activité de test et de conseil en matière de terminaux visant à garantir l'interconnexion adéquate avec le réseau et une bonne qualité audio.
Liste des services de tests

Voici les services de tests les plus fréquemment offerts:

- Tests électroacoustiques de téléphones mains libres.
- Tests électroacoustiques de téléphones mobiles.
- Caractéristiques électriques et efficacité de l’émission des interfaces analogiques (FXS).
- Caractérisation des filtres xDSL.

Normes de référence

Les services de tests s’appuient sur les normes suivantes:

TBR 008 – ISDN; 3,1kHz telephony teleservice. *Attachment requirements for handset terminals* (ISDN; téléservice téléphonique à 3,1 kHz; exigences de raccordement des terminaux à combiné)

TBR 038 – Public Switched Telephone Network (PSTN); *Attachment requirements for a terminal equipment incorporating an analogue handset function capable of supporting the justified case service when connected to the analogue interface of the PSTN in Europe* (Réseau téléphonique public commuté (RTPC); exigences de raccordement applicables aux équipements terminaux intégrant une fonction de combiné analogique leur permettant de prendre en charge le service de téléphonie analogique dans les cas justifiés lorsqu’ils sont connectés à l’interface analogique d’un RTPC dans l’Union européenne)

ES 203021 – *Access and Terminals (AT); Harmonized basic attachment requirements for Terminals for connection to analogue interfaces of Telephone Networks; Update of technical contents of TBR021, EN301437, TBR015, TBR017* (Terminaux et accès (TA); exigences de base harmonisées pour le raccordement de terminaux pour la connexion à des interfaces analogiques de réseaux téléphoniques; mise à jour des contenus techniques TBR 021, NE 301437, TBR 015 et TBR017)

ETSI TS 126 131 – *Universal Mobile Telecommunications System (UMTS); LTE; Terminal acoustic characteristics for telephony; Requirements* (Système universel de télécommunication mobile (UMTS); LTE; caractéristiques acoustiques des terminaux pour la téléphonie; exigences)

ETSI TS 126 132 – *Universal Mobile Telecommunications System (UMTS); LTE; Speech and video telephony terminal acoustic test* (Système universel de télécommunication mobile (UMTS); LTE; tests acoustiques pour les terminaux téléphoniques voix et vidéo)

Configuration des équipements de test et instrumentation

En vue de garantir la bonne interconnexion avec le réseau et le terminal analogique (ou le téléphone), les exigences de performances définies dans la norme ci-dessus doivent être étudiées. Les aspects électroacoustiques suivants doivent, en particulier, être traités:

- Sonies.
- Bruit de la voie au repos.
- Caractéristiques de sensibilité et de fréquence.
- Affaiblissement dû à l’effet local.
- Affaiblissement pour la stabilité.
La Figure F1 montre la configuration de test employée.

Figure F1: Configuration de test pour les mesures d'interfonctionnement

![Diagram showing test configuration](image)

Source: UIT

Légende:

<table>
<thead>
<tr>
<th>Network simulator</th>
<th>Simulateur réseau</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE</td>
<td>ET</td>
</tr>
</tbody>
</table>

Les principaux éléments du système de mesure sont les suivants:

- Chambre anéchoïque (en option).
- Analyseur audio.
- Analyseur de protocole.
- Interface téléphonique.
- Simulateur de bouche.
- Oreille artificielle.
- Microphones de mesure.
- Vibreur à compression.

Matrice de compétences du personnel (compétences principales)

Responsable du laboratoire: physique, électronique, aspects liés à la qualité

Responsable de campagne de tests: physique, électronique, aspects liés à la qualité

Opérateur de campagne de tests: connaissances de base en physique recommandées

Exigences relatives au site

Exigences environnementales

Les conditions environnementales doivent être conformes à l'ensemble des exigences générales mentionnées dans les normes de référence.

Le bruit de fond pour les tests électroacoustiques est au plus de 64 dBPa(A).
G Laboratoire sur la CEM (CEM)

Portée des activités du laboratoire

La compatibilité électromagnétique (CEM) représente la capacité d'un équipement à fonctionner de façon satisfaisante dans son environnement électromagnétique sans introduire de perturbation électromagnétique intolérable pour les autres équipements présents dans le même environnement. En outre, le fonctionnement de l'équipement ne doit pas être perturbé par des niveaux d'énergie électromagnétique présents de façon habituelle dans son environnement de fonctionnement cible. Les tests de CEM sont effectués pour déterminer si un équipement est compatible avec les caractéristiques électromagnétiques de l'environnement pour lequel il a été conçu.

Le principal objectif du laboratoire consiste à évaluer la compatibilité de l'équipement (c'est-à-dire l'appareil et les installations fixes) en matière de CEM. On évalue habituellement les appareils en utilisant les méthodes de tests et de mesure visées par la norme internationale en matière de CEM publiée par l'organisme de normalisation international actif dans le domaine de la compatibilité électromagnétique (CEI, CEI/CISPR, UIT-T, ISO, CENELEC, ETSI). Un équipement peut subir des tests pour de nombreuses raisons, notamment:

- des tests de conception durant l'élaboration du produit;
- des essais de type (tests de conformité);
- des tests d'acceptation;
- des tests de production.

Afin de contrôler les interférences produites par un appareil, différentes administrations régionales et nationales, par exemple les États-Unis, l'Union européenne ou le Canada, ont réglementé les exigences essentielles d'un équipement en matière de CEM en s'appuyant sur la norme internationale. Un fabricant ou un importateur doivent respecter cette norme technique avant de pouvoir introduire un équipement sur leur marché domestique. Les essais de type (tests de conformité) sont des tests visant à déterminer si un produit ou un système respectent une norme particulière élaborée en vue de démontrer la conformité à une réglementation donnée.

Les normes en matière de CEM prennent généralement en considération les aspects suivants:

1. Phénomène de CEM ou perturbation émise associés avec:
 - les perturbations (continues ou intermittentes) par conduction des radiofréquences;
 - les perturbations par rayonnement des radiofréquences.

2. Phénomène d’immunité tel que:
 - l'immunité aux radiofréquences;
 - les décharges électrostatiques (ESD);
 - les surtensions;
 - les transitoires électriques rapides en salves;
 - les harmoniques et le papillotement de tension;
 - les fluctuations.

3. Procédures de test et exigences associées au phénomène de CEM.
Les normes en matière de CEM prenant en compte tous les aspects ci-dessus se répartissent dans les catégories suivantes:

1. Normes de base

Les normes de base en matière de CEM fournissent les conditions générales et fondamentales ou des règles pour l'évaluation de la CEM et des performances correspondantes de tous les produits, de tous les systèmes et de toutes les installations; ces normes servent de documents de référence pour les normes génériques et les normes produit du CISPR. Les normes de base sont des normes générales qui ne visent donc ni des familles de produits, ni des produits particuliers. Elles comprennent des renseignements généraux et portent sur les phénomènes de perturbation et sur les techniques de mesure et de test, sans contenir aucune limite prescrite ni aucune spécification de performance liée à un produit ou à un système particulier.

2. Normes génériques

Les normes génériques en matière de CEM portent sur un environnement particulier et énoncent l'ensemble minimal des exigences essentielles et des procédures de test relatif à la CEM applicable à tous les produits et systèmes destinés à fonctionner dans ce type d'environnement, sous réserve qu’il n’existe pas de normes en matière de CEM propres à une famille de produits, à un produit, à un système ou à une installation spécifiques. Ces normes incluent des limites et font référence à des procédures de test.

3. Normes produit

Les normes produit définissent des exigences spécifiques en matière d’EM, des procédures de test et des limites propres à des produits, à des systèmes ou à des installations déterminés pour lesquels des conditions particulières doivent être prises en considération.

S'il existe une norme générique, une norme propre à une famille de produits ou une norme propre à un produit, elles doivent être prises en considération selon l'ordre de priorité suivant (CEI Guide 107):

- Norme propre à un produit.
- Norme propre à une famille de produits.
- Norme générique.

Liste des services de tests

Les activités d'un laboratoire indépendant sur la CEM sont essentiellement centrées sur les essais de type et les tests de conformité, ce qui signifie que le service de tests du laboratoire dépend d'un secteur économique particulier, d'une catégorie ou d'une famille de produits déterminée (télécom, appareils industriels ou résidentiels, etc.) et de la norme connexe en matière de CEM (norme produit, famille de produits ou générique) définissant les exigences devant être respectées par le produit avant que sa conformité ne soit validée. D'un autre côté, la norme ISO/CEI 17025 énonce la compétence du laboratoire et s'appuie sur des méthodes de tests pouvant provenir de normes internationales publiées ou être élaborées en interne, sachant que, dans ce dernier cas, elles doivent être validées sur le plan de leur adéquation et de leur exactitude.

Normes de référence

A l'échelon international, les techniques de test et de mesure sont essentiellement prises en compte par différents comités de la Commission électrotechnique internationale (CEI). L'objectif de la CEI consiste à promouvoir la coopération internationale sur les normes dans le domaine électrique et électronique. En ce qui concerne, en particulier, les aspects liés à la CEM, les normes de base pour les phénomènes d'émission de radiofréquences sont gérées par le CEI/CISPR, tandis que les normes de base relatives aux phénomènes d'immunité sont, en général, gérées par les comités CEI SC 77A et CEI SC 77B.
Liste des normes CISPR actuellement disponibles

La principale norme de base publiée par le CEI/CISPR est la série CISPR 16, "Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques", publiée en plusieurs parties et sous-parties:

Partie 1: Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques

Partie 2: Méthodes de mesure des perturbations et de l'immunité

Partie 3: Rapports techniques du CISPR

Partie 4: Incertitudes, statistiques et modélisation des limites

Normes CISPR de base en matière de CEM

CISPR 16-1-1, Partie 1-1 – Appareils de mesure

CISPR 16-1-2, Partie 1-2 – Matériels auxiliaires – perturbations conduites

CISPR 16-1-3, Partie 1-3 – Matériels auxiliaires – puissance perturbatrice

CISPR 16-1-4, Partie 1-4 – Antennes et emplacements d'essai pour les mesures des perturbations rayonnées

CISPR 16-1-5, Partie 1-5 – Emplacements d'essai pour l'étalonnage des antennes dans la plage comprise entre 30 MHz et 1 000 MHz

CISPR 16-2-1, Partie 2-1 – Méthodes de mesure des perturbations et de l'immunité – mesures des perturbations conduites

CISPR 16-2-2, Partie 2-2 – Méthodes de mesure des perturbations et de l'immunité – mesure de la puissance perturbatrice

CISPR 16-2-3, Partie 2-3 – Méthodes de mesure des perturbations et de l'immunité – mesure des perturbations rayonnées

CISPR 16-2-4, Partie 2-4 – Méthodes de mesure des perturbations et de l'immunité – mesure de l'immunité

CISPR 16-4-2, Partie 4-2 – Incertitudes, statistiques et modélisation des limites – Incertitudes des mesures en matière de CEM

Normes génériques CISPR/CEI en matière de CEM

CEI 61000-6-3, Partie 6-3 – Normes génériques – norme sur l'émission pour les environnements résidentiels, commerciaux et de l'industrie légère

CEI 61000-6-4, Partie 6-4 – Normes génériques – norme sur l'émission pour les environnements industriels

CEI 61000-6-1, Partie 6-1 – Normes génériques – immunité pour les environnements résidentiels, commerciaux et de l'industrie légère

CEI 61000-6-2, Partie 6-2 – Normes génériques – immunité pour les environnements industriels

Normes produit CISPR

CISPR 11 – Appareils industriels, scientifiques et médicaux – caractéristiques de perturbations radioélectriques – limites et méthodes de mesure

CISPR 12 – Véhicules, bateaux et moteurs à combustion interne – caractéristiques de perturbation radioélectrique – limites et méthodes de mesure pour la protection des récepteurs extérieurs
CISPR 13 – Récepteurs de radiodiffusion et de télévision et équipements associés – caractéristiques des perturbations radioélectriques – limites et méthodes de mesure

CISPR 14-1 – Compatibilité électromagnétique – exigences pour les appareils électrodomestiques, outillages électriques et appareils analogues – Partie 1: émission

CISPR 14-2 – Compatibilité électromagnétique – exigences pour les appareils électrodomestiques, outillages électriques et appareils analogues – Partie 2: immunité – norme de famille de produits

CISPR 15 – Limites et méthodes de mesure des perturbations radioélectriques produites par les appareils électriques d'éclairage et les appareils analogues

CISPR 20 – Récepteurs de radiodiffusion et de télévision et équipements associés – caractéristiques d'immunité – limites et méthodes de mesure

CISPR 22 – Appareils de traitement de l'information – caractéristiques des perturbations radioélectriques – limites et méthodes de mesure

CISPR 24 – Appareils de traitement de l'information – caractéristiques d'immunité – limites et méthodes de mesure

CISPR 25 – Véhicules, bateaux et moteurs à combustion interne – caractéristiques des perturbations radioélectriques – limites et méthodes de mesure pour la protection des récepteurs embarqués

Liste partielle des normes CEI de base relatives aux tests de l'immunité et aux techniques de mesure: série CEI 61000-4

La série CEI 61000-4 traite des techniques d’essai et de mesure pour les équipements électriques et électroniques (appareils et systèmes) dans leurs environnements électromagnétiques.

CEI 61000-4-2 – Compatibilité électromagnétique (CEM) – Partie 4-2: Techniques d'essai et de mesure – essai d'immunité aux décharges électrostatiques

CEI 61000-4-3 – Compatibilité électromagnétique (CEM) – Partie 4-3: Techniques d'essai et de mesure – essai d'immunité aux champs électromagnétiques rayonnés aux fréquences radioélectriques

CEI 61000-4-4 – Compatibilité électromagnétique (CEM) – Partie 4-4: Techniques d'essai et de mesure – essais d'immunité aux transitoires électriques rapides en salves

CEI 61000-4-5 – Compatibilité électromagnétique (CEM) – Partie 4-5: Techniques d'essai et de mesure – essai d'immunité aux ondes de choc

CEI 61000-4-6 – Compatibilité électromagnétique (CEM) – Partie 4-6: Techniques d'essai et de mesure – immunité aux perturbations conduites, induites par les instruments des champs radioélectriques, applicable aux réseaux d'alimentation et aux appareils qui y sont raccordés

CEI 61000-4-8 – Compatibilité électromagnétique (CEM) – Partie 4-8: Techniques d'essai et de mesure – essai d'immunité au champ magnétique à la fréquence du réseau

CEI 61000-4-9 – Compatibilité électromagnétique (CEM) – Partie 4-9: Techniques d'essai et de mesure – essai d'immunité au champ magnétique impulsionnel

CEI 61000-4-10 – Compatibilité électromagnétique (CEM) – Partie 4-10: Techniques d'essai et de mesure – essai d'immunité au champ magnétique oscillatoire amorti

CEI 61000-4-11 – Compatibilité électromagnétique (CEM) – Partie 4-11: Techniques d'essai et de mesure – essai d'immunité aux creux de tension, coupures brèves et variations de tension

CEI 61000-4-16 – Compatibilité électromagnétique (CEM) – Partie 4-16: Techniques d'essai et de mesure – essai d'immunité aux perturbations conduites en mode commun dans la gamme de fréquences de 0 Hz à 150 kHz; l'Institut européen des normes de télécommunication élabore et publie, par exemple, des normes de conformité pour les équipements de télécommunication leur permettant de réussir les tests suivants.
Le choix des tests à appliquer à un équipement particulier dépend de plusieurs facteurs comme :

- les types de perturbations touchant l'équipement;
- les conditions environnementales;
la fiabilité et le comportement requis;
les caractéristiques de l'équipement.

En ce qui concerne la variété des équipements et les conditions environnementales, certains organismes de normalisation régionaux participent à la définition de normes particulières à un produit ou à une famille de produits.

En Europe, les organismes de normalisation ETSI et CENELEC ont, respectivement, produit des normes en matière de CEM propres à un produit, dans le domaine des télécommunications et des radiocommunications radio et dans celui des pièces électrotechniques. D'une façon générale, toutes les normes émises par l'ETSI et le CENELEC font référence aux normes de base concernant les tests et les techniques de mesure du CISPR et de la CEI citées plus haut.

Liste de normes ETSI en matière de CEM pour les équipements de télécommunications et de radiocommunications destinés à être utilisés au sein d'un réseau de télécommunication public:

- **ETSI NE 300 386** – Electromagnetic compatibility and Radio spectrum Matters (ERM); Telecommunication network equipment; Electromagnetic Compatibility (EMC) requirements (Compatibilité électromagnétique et questions de spectre radioélectrique (ERM); équipements de réseau de télécommunication; exigences de compatibilité électromagnétique (CEM))
- **ETSI NE 301 489** – Série de normes CEM pour les produits radio

Les exigences en matière de CEM pour les équipements de technologie de l'information sont définies, en Europe, par le CENELEC, et s'appuient sur la norme produit CEI/ CISPR:

- **CENELEC NE 55022 (CISPR 022)** – Appareils de traitement de l’information – caractéristiques des perturbations radioélectriques – limites et méthodes de mesure
- **CENELEC NE 55024 (CISPR 024)** – Appareils de traitement de l’information – caractéristiques d’immunité – limites et méthodes de mesure

Configuration des équipements de test et instrumentation

La configuration des équipements de test et l'adéquation de l'environnement, notamment les caractéristiques de la liste des instruments, sont décrites dans la norme de base qui donne les règles pour l'évaluation de la CEM et des performances correspondantes de tous les produits. Les instruments supplémentaires pour la vérification ou la validation du système de mesure peuvent être pris en considération dans la norme propre à un produit. Voici quelques exemples de configuration de test de CEM.

Emplacement d'essai pour les mesures d'émissions et d'immunité de rayonnement

Emplacements pour les mesures de base des émissions de rayonnement

L'adéquation des emplacements d'essai pour les tests de mesures des tests d'émissions de rayonnement en dessous d'un gigahertz est mentionnée dans les normes suivantes: ANSI C63.4 pour le titre 47 du CFR Partie 15 et CISPR 16-2-3 pour CISPR 11 et CISPR 22. Les mesures du brouillage électromagnétique à des fins d'évaluation d'éléments rayonnants non intentionnels doivent être effectuées en utilisant un emplacement d'essai adapté doté de distances de mesure de 3 m ou de 10 m: il peut s'agir d’un site ouvert (OATS), d'une chambre semi-anéchoïque (SAC) ou d'une pièce tapissée de matériaux totalement absorbants (FAR). Dans la plage de fréquence de 30 MHz à 1 GHz, ces emplacements doivent satisfaire au critère d'affaiblissement normalisé sur le site (NSA) (± 4 dB) tel que défini dans la norme CISPR 16-2-3.
Figure G1: Configuration standard pour les équipements de table dans une chambre totalement anéchoïque

<table>
<thead>
<tr>
<th>Source: UIT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Légende:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
</tr>
<tr>
<td>Test volume</td>
</tr>
<tr>
<td>EUT volume</td>
</tr>
<tr>
<td>EUT Box</td>
</tr>
<tr>
<td>EUT Cabling</td>
</tr>
<tr>
<td>Ferrite clamp</td>
</tr>
<tr>
<td>The antenna cable layout shall be the same as in the validation procedure</td>
</tr>
</tbody>
</table>

La validation de l'emplacement au-dessus de 1 GHz utilise normalement la méthode du "taux d'ondes stationnaires d'emplacement" décrite dans la norme CISPR 16-1-4, consistant à comparer les déviations maximales pour plusieurs positions de l'antenne en utilisant ses deux polarisations. Pour être acceptable, ce taux doit être inférieur ou égal à 6 dB.

Les configurations de test de mesures de rayonnement exigent l'utilisation d'équipements conformes aux normes de base pertinentes. Pour des mesures en conformité aux normes basées sur les normes CISPR (par exemple NE 55011 ou NE 55022), ces configurations nécessitent l'utilisation d'équipements conformes à toutes les exigences mentionnées dans la norme CISPR 16-1-1. Un récepteur de brouillage électromagnétique est, par exemple, nécessaire pour les fréquences inférieures à un gigahertz, les analyseurs de spectre ne pouvant être utilisés pour des tests de conformité en raison d'un manque de conformité à la norme CISPR 16-1-1. Au-dessus d'un gigahertz, l'utilisation d'un analyseur de spectre est autorisée, pour autant qu'il respecte toutes les exigences de la norme CISPR 16-1-1. Cette dernière définit d'autres limitations pour les instruments supplémentaires nécessaires pour réaliser les mesures d'émission.

Tests d'immunité aux champs électromagnétiques de rayonnement

Les tests d'immunité aux champs électromagnétiques de rayonnement – qui exigent une technique d'étalonnage de champ adéquate nécessitant une chambre de CEM partiellement recouverte par des cônes d'absorption pyramidaux placés sur la surface réfléchissante du sol – ne sont pas nécessairement
Etude de faisabilité pour la mise en place d’un centre de tests de conformité

déductibles des résultats des tests d’émission. La norme CEI NE 61000-4-3 constitue la norme de base définissant la procédure d’étalonnage. Des installations de tests sont nécessaires pour contenir l’énergie de rayonnement des radiofréquences et offrir une zone de tests adaptée. L’existence d’un plan carré de 150 cm de côté situé à 80 cm au-dessus du sol constituant un champ uniforme, c’est-à-dire que son amplitude sur au moins 75% de la zone se trouve entre –0 dB et +6 dB de la valeur nominale, constitue l’exigence principale pour les emplacements d’essai. L’étalonnage de l’uniformité est défini dans la norme CEI NE 61000-4-3.

Figure G2: Configuration standard pour les équipements sur table pour les tests d’immunité aux champs électromagnétiques de rayonnement

Source: UIT

Légende:

<table>
<thead>
<tr>
<th>Interconnection filter</th>
<th>Filtre d’interconnexion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field generation antenna</td>
<td>Antenne de génération de champ</td>
</tr>
<tr>
<td>Incoming mains power filter</td>
<td>Filtre de l’alimentation entrante</td>
</tr>
<tr>
<td>0,8 m high non-conductive support</td>
<td>Support de 0,8 m non conducteur</td>
</tr>
<tr>
<td>Area of uniform field</td>
<td>Zone de champ uniforme</td>
</tr>
<tr>
<td>EUT Measurement instrumentation</td>
<td>Instruments de mesure MAE</td>
</tr>
<tr>
<td>Field generation equipment</td>
<td>Equipement de génération de champ</td>
</tr>
<tr>
<td>Chamber penetration cables</td>
<td>Câbles de pénétration dans la chambre</td>
</tr>
<tr>
<td>Interconnecting cables</td>
<td>Câbles d’interconnexion</td>
</tr>
<tr>
<td>Optional anechoic material in case of semi anechoic chamber to reduce ground reflection</td>
<td>Matériau anéchoïque optionnel s’il existe une chambre semi-anéchoïque visant à réduire le réfléchissement sur le sol</td>
</tr>
</tbody>
</table>
Test d'immunité aux autres perturbations par conduction

La norme CEI NE 61000-4-x traite toutes les références nécessaires pour les tests d'immunité aux perturbations par conduction pour les différents phénomènes, notamment les équipements de test.

La norme CEI NE 61000-4-x fournit normalement les informations générales suivantes:

1. Equipements de test
 - Caractéristiques du générateur de tests.
 - Dispositifs de couplage.
 - Dispositifs de découplage.

2. Configuration de test et méthode de couplage des perturbations

3. Procédure de test
 - Mise en place de générateurs de tests.
 - Application de la perturbation au MAE.
 - Évaluation des résultats de tests.
 - Rapport de test.

Matrice de compétences du personnel (compétences principales)

Responsable du laboratoire: qualification en CEM, connaissance des procédures de test en matière de CEM définies dans les normes internationales (CEI, CISPR, FCC, etc.), connaissance des aspects liés à la qualité (connaissance de la norme ISO/CEI 17025, 2005 recommandée), connaissance de base des principales langues étrangères

Responsable de campagne de tests: connaissance en matière de CEM, des procédures de test de la CEM définies dans les normes internationales (CEI, CISPR, FCC, etc.), de l'architecture des systèmes de télécommunication et des techniques d'accès radio, connaissance de base des aspects liés à la qualité, solides capacités de formation et de coordination du travail des opérateurs de la campagne

Opérateur de campagne de tests: connaissance de base en CEM recommandée, connaissance des procédures de test en matière de CEM définies dans les normes internationales (CEI, CISPR, FCC, etc.);

Experts techniques (facultatifs, mais recommandés): architecture des réseaux et des systèmes de télécommunication, protocoles de télécommunication, techniques d'accès radio

Exigences relatives au site

On trouvera ci-dessous un certain nombre d'informations concernant le plan du laboratoire.

Les tests de la CEM de rayonnement (émission et immunité) nécessitent, comme emplacement d'essai, un site ouvert (OATS), une chambre semi-anéchoïque (SAC) ou une chambre totalement anéchoïque (FAR). Les tests doivent être réalisés à au moins 3 mètres d'une paroi de la pièce (3 m, 5 m ou 10 m). Afin de reproduire les conditions de propagation définies dans les normes internationales, les murs et le plafond de la SAC doivent être recouverts par un matériau anéchoïque, par exemple des pyramides absorbantes ou des carreaux de ferrite. Dans le cas d'une FAR, le matériau anéchoïque doit être également posé sur le sol et pas seulement sur les murs et le plafond.

Pour la mesure des émissions de rayonnement, l'emplacement d'essai doit être équipé d'un mât d'antenne d'une hauteur de un à quatre mètres doté de deux polarisations ainsi que d'un plateau tournant commandé de l'extérieur pour tester la pièce. L'emplacement doit être conforme aux caractéristiques pertinentes définies dans les normes CISPR (par exemple CISPR 22, CISPR 16-1-4, etc.).
En ce qui concerne l'immunité de rayonnement, l'installation de tests standard est composée d'une enceinte blindée absorbante suffisamment grande pour accueillir le MAE tout en permettant un contrôle adéquat du champ. Il peut notamment s'agir de chambres anéchoïques ou de chambres semi-anéchoïques modifiées. Les enceintes blindées de ces chambres doivent pouvoir accueillir les équipements de génération et de contrôle du champ ainsi que les équipements de manipulation du MAE.

Il est recommandé d'effectuer tous les tests de conduction (émission et immunité) dans un environnement blindé afin d'assurer le confinement de l'énergie EM générée pour les tests.

Exigences électriques

D'une façon générale, la prise électrique utilisée doit être capable de fournir l'intensité suivante:

- 16 ampères par phase si la tension entre deux phases est de 200 à 230 Vca.
- 30 ampères par phase si la tension entre deux phases est de 400 à 440 Vca.
- 42 à 56 Vcc, 20 A.

Exigences environnementales

Le fonctionnement du système de mesure de la CEM est optimal dans les conditions suivantes:

- Température ambiante de 15 °C à 35 °C.
- Humidité relative de 30 à 60%.
- Pression atmosphérique de 86 kPa (860 mbar) à 106 kPa (1 060 mbar).

H Laboratoires sur la radio et la signalisation (RSL)

Portée des activités du laboratoire

S'il est vrai que les laboratoires qui effectuent des tests d'acceptation pour l'opérateur et des tests de conformité sont très similaires, les deux procédant à la vérification du comportement de l'équipement d'utilisateur sur la même interface standard, les opérateurs ont néanmoins un certain nombre d'exigences particulières ne pouvant être vérifiées par un organisme de normalisation. En raison de la complexité d'un système de télécommunications et des nombreuses options qu'il offre, les tests de conformité ne peuvent, à eux seuls, produire des essais permettant de vérifier n'importe quel plan de mise en œuvre commerciale. C'est pourquoi les tests pour l'opérateur viennent en complément des tests de conformité fournissant des éléments de base pour les laboratoires sur la radio et la signalisation. Le projet de partenariat pour la troisième génération (3GPP), l’organisme international de normalisation pour les réseaux et les dispositifs sans fil, est organisé en quatre groupes de spécification technique (TSG):

- Réseaux d'accès radioélectriques (RAN).
- Aspects service et système (SA).
- Réseau central et terminaux (CT).
- Réseaux d'accès radioélectriques GSM/EDGE (GERAN).

Les technologies 3GPP de ces groupes évoluent constamment au fur et à mesure des différentes générations de systèmes commerciaux mobiles et cellulaires. Depuis que le 3GPP a établi les spécifications de la première technologie LTE et du réseau central du système évolué de commutation de paquets, il est devenu le pivot de toutes les évolutions des systèmes mobiles au-delà de la 3G.

S'il est vrai que l'intitulé de ces générations successives constitue un descripteur pertinent du type de réseau à l'étude, ce sont les étapes atteintes lors de la sortie d'une version 3GPP particulière qui mesurent de façon plus réaliste les progrès réalisés en matière de normes 3GPP. Les nouvelles caractéristiques sont soumises à un "gel de fonctionnalités" et sont prêtes à être mises en œuvre lorsque la version est finalisée. Le 3GPP travaille sur un certain nombre de versions en parallèle, commençant les travaux sur
une future version bien avant la finalisation de la version en cours. Bien qu'une telle procédure rende plus complexes les travaux des groupes, elle permet néanmoins de réaliser des progrès continus et garantit que la stabilité des systèmes 3G s'appuie sur un nouvel accès radio à bande moyenne, multimodal et souple. On est ainsi certain que les futurs systèmes basés sur les spécifications du 3GPP seront en mesure de déployer les offres de services compétitives qui auront été élaborées, tout en continuant à garantir la continuité de la mobilité mondiale.

Le TSG-RAN (groupe de spécification technique – réseaux d'accès radioélectriques) est responsable de la définition des fonctions, des exigences et des interfaces du réseau UTRA/E-UTRA dans ses deux modes, FDD & TDD, et plus précisément : des performances radio, de la couche physique, de la spécification RR de la couche 2 et de la couche 3 dans le schéma d'accès UTRAN/E-UTRAN, de la spécification des interfaces du réseau d'accès (Iu, Iub, Iur, S1 et X2), de la définition des exigences d'exploitation et de maintenance dans le schéma d'accès UTRAN/E-UTRAN et des tests de conformité pour l'équipement d'utilisateur et les stations de base.

Le RAN WG5 (groupe de travail 5) est le groupe responsable de l'élaboration de la spécification pour les tests de conformité en matière d'interface radio pour l'équipement d'utilisateur. Les spécifications des tests s'appuient sur les exigences définies par d'autres groupes comme le RAN WG4 pour les scénarios de tests radio ainsi que le RAN WG2 et le CT WG1 pour les scénarios de tests de la signalisation et des protocoles. Le RAN WG5 est organisé en deux sous-groupes: le sous-groupe RF et le sous-groupe signalisation.

LABORATOIRE SUR LA RADIO

Portée des activités du laboratoire

Conformément aux indications et aux spécifications du sous-groupe RF du groupe RAN 5 du 3GPP, différents environnements et différentes procédures ont été élaborés en vue de vérifier et de valider le comportement adéquat des équipements d'utilisateur.

On définit deux typologies principales de tests, les tests par voie physique (conduction) et les tests par voie hertziennes (rayonnement) (OTA):

- **Les mesures par conduction** sont réalisées à l'aide d'un câble haute fréquence connectant le modem directement au banc de mesures. Ces mesures mettent en évidence les performances du récepteur et de l'émetteur, à l'exclusion de l'antenne. Elles sont effectuées en connectant le connecteur de l'antenne de l'équipement d'utilisateur à un instrument de mesure des performances radio (testeur de communications radio) au moyen d'un câble haute fréquence doté d'un affaiblissement connu (mesures statiques).

- **Les mesures OTA (hertziennes)** sont réalisées dans une chambre blindée anéchoïque, simulant ainsi une propagation en espace libre. Avant les mesures, la salle doit être étalonnée pour les deux polarisations afin de déterminer l'affaiblissement global entre le connecteur de l'instrument de test (A) et l'emplacement de l'antenne du combiné (B).

Ce groupe de mesures montre la qualité de la partie radio de l'équipement d'utilisateur (antenne et émetteur-récepteur). La méthodologie utilisée est conforme à la spécification TS.34.114 du 3GPP.

Dans cet environnement, les performances de rayonnement de l'équipement d'utilisateur sont évaluées en prenant en considération la sensibilité OTA et la puissance maximale transmise.

Liste des services de tests en laboratoire

Communications de l'équipement d'utilisateur: l'objectif de ce test consiste à vérifier les valeurs des paramètres P-CPICH RSCP et P-CPICH Ec/No mesurées par l'équipement d'utilisateur et communiquées au réseau en fonction du niveau de signal reçu par l'équipement d'utilisateur. Le paramètre CPICH RSCP est utilisé pour l'évaluation du transfert, la commande de puissance par boucle ouverte sur la liaison descendante et sur la liaison montante et le calcul de l'affaiblissement sur le trajet. Le paramètre CPICH Ec/No est utilisé pour la sélection et la nouvelle sélection de cellule et pour l'évaluation du transfert.
Etude de faisabilité pour la mise en place d’un centre de tests de conformité

Puissance de sortie maximale

L’objectif de cette mesure consiste à vérifier le niveau de la puissance maximale transmise par l’équipement d’utilisateur. Une puissance trop faible provoque une dégradation de la qualité de la liaison mobile-base et diminue la zone de couverture. Une puissance de sortie maximale trop élevée peut être à l’origine d’interférences avec les autres utilisateurs ou systèmes.

Puissance de sortie minimale

L’objectif de cette mesure consiste à vérifier le niveau de la puissance minimale transmise par l’équipement d’utilisateur. La puissance de sortie minimale est définie comme la puissance moyenne durant un créneau temporel. Une puissance de sortie minimale excessive accroît les interférences avec les autres utilisateurs et peut être à l’origine d’une diminution de la capacité du système.

Commande de puissance par boucle interne sur la liaison montante

La commande de puissance par boucle interne sur la liaison montante représente la capacité de l’émetteur de l’équipement d’utilisateur à ajuster sa puissance de sortie en conformité avec une ou plusieurs commandes de la puissance d’émission (TPC) reçues sur la liaison descendante. Le contrôle de la puissance transmise par l’équipement d’utilisateur est essentiel pour garantir une transmission stable et une gestion efficace des ressources radio au sein du système. D’une façon générale, une puissance de sortie de l’émetteur de l’équipement d’utilisateur trop faible diminue la zone de couverture, tandis qu’une puissance trop élevée peut être à l’origine d’interférences avec les autres utilisateurs ou les autres systèmes: ces deux effets diminuent la capacité du système.

Mesure de la sensibilité statique

La sensibilité constitue un indicateur de la capacité du récepteur radio à fonctionner dans des conditions dégradées de signal. On la définit comme le niveau minimal de la puissance reçue auquel les limites de probabilité d’erreur définies à la section 6.2 des spécifications TS34.121 sont respectées. L’objectif de cette mesure consiste à vérifier la puissance minimale reçue au niveau du port antenne de l’équipement d’utilisateur, sous réserve que le taux d’erreur sur les bits (BER) ne dépasse pas une valeur déterminée. Un déficit de sensibilité en réception diminue la zone de couverture loin du noyau B.

Puissance en boucle ouverte

La commande de puissance en boucle ouverte correspond à la capacité de l’émetteur de l’équipement d’utilisateur à régler sa puissance de sortie à une valeur déterminée. La puissance du signal reçu mesurée par l’équipement d’utilisateur et l’information de canal BCCH sont utilisées par l’équipement pour commander la puissance du signal qu’il transmet, avec pour objectif de minimiser la puissance nécessaire à la communication jusqu’à un niveau acceptable permettant de maintenir une communication adéquate.

Sensibilité OTA et puissance maximale transmise

On met en œuvre la mesure de la sensibilité statique transmise par rayonnement sur tous les canaux afin de vérifier toute perte de sensibilité non mesurable avec les tests par conduction. Pour effectuer les mesures de sensibilité, on mesure successivement le BER en envoyant à l’équipement d’utilisateur un niveau constant de P-CPICH de −70 dBm et en déterminant le niveau de P-CPICH à partir duquel le BER dépasse 1%.

Normes de référence

- 3GPP TS 34.121-1 – Terminal conformance specification; Radio transmission and reception (FDD); Part 1: RF/RRM conformance testing (Spécification de conformité de terminal; transmission et réception radioélectriques (DRF); Partie 1: tests de conformité RF/RRM)
• 3GPP TS 34.121-2 – *Terminal conformance specification; Radio transmission and reception (FDD); Part 2: Implementation Conformance Statement (ICS)* (Spécification de conformité de terminal; transmission et réception radioélectriques (DRF); Partie 2: déclaration de conformité d’une instance (ICS)).

• 3GPP TS 34.114 – *User Equipment (UE)/Mobile Station (MS) Over The Air (OTA) antenna performance - Conformance testing* (Tests de conformité des performances par voie hertzienne (OTA) de l’antenne équipement d’utilisateur (UE)/station mobile (MS))

• 3GPP TS 36.521-1 – *Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification Radio transmission and reception Part 1: Conformance Testing* (Accès hertzien de Terre universel évolué (E-UTRA); spécification de conformité de l’équipement d’utilisateur (UE), transmission et réception radioélectriques; Partie 1: tests de conformité)

• 3GPP TS 36.521-2 – *Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification Radio transmission and reception Part 2: Implementation Conformance Statement (ICS)* (Accès hertzien de Terre universel évolué (E-UTRA); spécification de conformité de l’équipement d’utilisateur (UE), transmission et réception radioélectriques; Partie 2: déclaration de conformité d’une instance (ICS))

Configuration des équipements de test et instrumentation

Cette section décrit la configuration de l’équipement de test, y compris la liste des instruments (principaux éléments).

Figure H.1: Principaux éléments du système de mesure par conduction

![Diagram of measurement system](image_url)

Source: UIT

Légende:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIB (IEE-488)</td>
<td>GPIB (IEE-488)</td>
</tr>
<tr>
<td>VEE Software</td>
<td>Logiciel VEE</td>
</tr>
<tr>
<td>EUT</td>
<td>MAE</td>
</tr>
<tr>
<td>RX (Div)</td>
<td>RX (Div)</td>
</tr>
<tr>
<td>TX/RX (Main)</td>
<td>TX/RX (alimentation)</td>
</tr>
</tbody>
</table>
Étude de faisabilité pour la mise en place d’un centre de tests de conformité

- TESTEUR DE COMMUNICATIONS RADIO
- DISPOSITIF DE SUPPORT DU TERMINAL MOBILE OU DES APPAREILS SANS FIL
- ELECTRONIQUE D’ACQUISITION DE DONNÉES/SERVEUR DE MESURE
- ORDINATEURS (PC/STATION DE TRAVAIL/PORTABLE)
- CHAMBRE ANÉCHOÏQUE BLINDÉE
- TESTEUR DE COMMUNICATIONS RADIO
- ANTENNE DE MESURE
- PLATEAU TOURNANT
- ELECTRONIQUE D’ACQUISITION DE DONNÉES/SERVEUR DE MESURE
- ORDINATEURS (PC/STATION DE TRAVAIL/PORTABLE)

Figure H.2: Principaux éléments du système de mesure hertzien

<table>
<thead>
<tr>
<th>Légende:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anechoic chamber</td>
<td>Chambre anéchoïque</td>
</tr>
<tr>
<td>Antenna polarization switch</td>
<td>Commutateur de polarisation de l'antenne</td>
</tr>
<tr>
<td>Horn antenna</td>
<td>Antenne à cornet</td>
</tr>
<tr>
<td>Radio communication tester</td>
<td>Testeur de radiocommunication</td>
</tr>
</tbody>
</table>

Matrice de compétences du personnel (compétences principales)

Responsable du laboratoire: électromagnétisme, CEM, électronique, composants micro-ondes et RF, connaissance de l'architecture des systèmes de communications mobiles et des techniques d'accès radioélectriques, excellente connaissance des aspects liés à la qualité (connaissance de la norme ISO/CEI 17025, 2005 recommandée), connaissance de base des principales langues étrangères.
Responsable de campagne de tests: électromagnétisme, électronique, connaissance de base de l'architecture des systèmes de communications mobiles et des techniques d'accès radioélectriques, connaissance de base des aspects liés à la qualité, solides capacités en formation et en coordination des travaux des opérateurs de la campagne.

Opérateur de campagne de tests: connaissance de base en physique recommandée.

Experts techniques (facultatifs, mais recommandés): solide connaissance de l'électromagnétisme, de la CEM, de l'électronique, des composants micro-ondes et RF, connaissance de l'architecture des systèmes de communications mobiles et des techniques d'accès radio.

Exigences relatives au site

On trouvera ci-dessous un certain nombre d'informations concernant le plan du laboratoire.

Contraintes relatives à la chambre anéchoïque

Les tests doivent être exécutés dans une chambre anéchoïque respectant les exigences suivantes:

Positionneur

La chambre doit être équipée d’un positionneur permettant la réalisation de mesures intégrales 3D pour les performances de rayonnement en émission et en réception. Le centre de rotation doit être situé au point de référence oreille gauche ou droite du fantôme SAM. Il est également possible d’utiliser le milieu de la ligne entre les points de référence oreille droite et oreille gauche comme centre de rotation. Les angles thêta (θ) et phi (ϕ) sont précisés à la Figure H.3.

Figure H.3: Système de coordonnées utilisé pour les mesures

Source: UIT

Légende:

<table>
<thead>
<tr>
<th>Probe antenna</th>
<th>Sonde antenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUT</td>
<td>Dispositif testé</td>
</tr>
</tbody>
</table>
Antenne de mesure
L'antenne de mesure doit pouvoir mesurer deux polarisations orthogonales, habituellement les polarisations linéaires θ (θ) et phi (φ). A noter qu'il est également possible d'utiliser une antenne de mesures linéaires à polarisation unique en la faisant tourner de 90° pour chaque point de mesure.

Pour les mesures dans le champ lointain, la distance \(r \) entre le dispositif testé et l'antenne de mesure doit respecter la contrainte suivante:

\[
 r > \max \left(\frac{2D^2}{\lambda}, 3D, 3\lambda \right)
\]

où \(\lambda \) est la longueur d'onde de la fréquence de mesure et \(D \) l'extension maximale de la structure rayonnante. De cette façon, les limites d'incertitude de phase et d'amplitude ainsi que la limite du champ proche réactif ne sont pas dépassées. La distance \(r \) détermine les dimensions de la chambre anéchoïque; on suggère des valeurs de 5 x 3 x 3 m afin de maintenir le dispositif testé à distance suffisante des murs, ce qui permet de réduire la valeur de réflectivité de la zone de silence radioélectrique.

Zone de silence radioélectrique
La réflectivité de la zone de silence radioélectrique doit être mesurée pour les fréquences utilisées. Le niveau de réflectivité mesuré est utilisé dans les calculs d'incertitude.

Efficacité du blindage de la chambre
On recommande un niveau d'efficacité du blindage de –100 dB de 800 MHz à 4 GHz.

Exigences électriques
Une alimentation électrique standard est nécessaire.

Laboratoire sur la signalisation

Portée des activités du laboratoire
Conformément aux indications et aux spécifications du sous-groupe Signalisation du groupe RAN 5 du 3GPP, des procédures de test ont été élaborées afin de vérifier et de valider le comportement adéquat des équipements d'utilisateur par rapport au réseau d'accès radioélectrique.

Les tests élaborés ne sont pas des tests de conformité, mais plutôt des tests supplémentaires dont l'objectif consiste à évaluer la qualité des procédures de signalisation mises en œuvre par l'équipement d'utilisateur en fonction du temps d'exécution et de la réactivité de l'équipement lui-même.

Liste des services de tests en laboratoire
On trouvera ci-dessous la liste des tests de signalisation 3G mis en œuvre par un laboratoire de ce type.

 Sélection de cellule et nouvelle sélection de cellule:
• Sélection de cellule, 3G.
• Sélection de cellule, 3G/2G.
• Nouvelle sélection de cellule et délai de récupération, 3G.
• Nouvelle sélection de cellule et délai de récupération, 3G/2G.
• Délai de récupération InterRAT lorsque la cellule 3G devient indisponible.
• Délai de nouvelle sélection InterRAT lorsque la cellule 3G devient indisponible.

Mise à jour et enregistrement de la localisation:
• Identité et capacité.
• Mise à jour périodique de la localisation lors d'un déficit de couverture.
Etude de faisabilité pour la mise en place d’un centre de tests de conformité

- Condition interfréquences lors d’un rejet de la mise à jour de la localisation.
- RMTP équivalent lors de la mise à jour de la localisation.
- Rejet de la mise à jour de la localisation et communication de détresse.

 Sélection du réseau:
- Sélection du réseau en itinérance internationale.
- Sélection du réseau à partir de la "liste des RMTP commandés par l'opérateur avec délai de disponibilité".
- Sélection du réseau à partir de la "liste des RMTP commandés par l'utilisateur avec délai de disponibilité".
- Recherche périodique des RMTPR en situation d’itinérance internationale.
- Cause 11 de l’itinérance dirigée (RMTP non autorisé).
- Cause 17 de l’itinérance dirigée (défaillance du réseau).

Rapport de mesure:
- Rapport de mesure 3G.
- Rapport de mesure 2G/3G (transfert InterRAT 2G/3G).
- Commutation des paquets.
- Attachement.
- Contexte PDP – rejet du contexte PDP.

Normes de référence
- 3GPP TS 34.108 – Common Test Environments for User Equipment (UE) Conformance Testing (Environnements communs de tests pour les tests de conformité de l’équipement d’utilisateur)
- 3GPP TS 36.508 – Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); Common test environments for User Equipment (UE) conformance testing (Accès hertzien de Terre universel évolué (E-UTRA) et réseau central du système évolué de commutation de paquets (EPC); environnements communs de tests pour les tests de conformité de l’équipement d’utilisateur)
- 3GPP TS 34.123-2 – User Equipment (UE) Conformance Specification, Part 2 – Implementation Conformance Statement (ICS) proforma specification (Spécification de conformité de l’équipement d’utilisateur; Partie 2: spécification du formulaire de déclaration de conformité d’une instance (ICS))
- 3GPP TS 36.523-1 – Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification (Accès hertzien de Terre universel évolué (E-UTRA) et réseau central du système évolué de commutation de paquets (EPC); spécification de conformité de l’équipement d’utilisateur; Partie 1: spécification de conformité du protocole)
- 3GPP TS 36.523-2 – Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 2: Implementation Conformance Statement (ICS) proforma specification (Accès hertzien de Terre universel évolué (E-UTRA) et réseau central du système évolué de commutation de paquets (EPC); spécification de conformité de l’équipement d’utilisateur; Partie 2: spécification du formulaire de déclaration de conformité d’une instance (ICS))
Configuration des équipements de test et instrumentation

Figure H.4: Configuration des équipements de test et instrumentation

Légende:

<table>
<thead>
<tr>
<th>Équipement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network simulator</td>
<td>Simulateur de réseau</td>
</tr>
<tr>
<td>Downlink</td>
<td>Liaison descendante</td>
</tr>
<tr>
<td>Uplink</td>
<td>Liaison ascendante</td>
</tr>
<tr>
<td>CH1/CH2 Main connector</td>
<td>Connecteur principal CH1/CH2</td>
</tr>
<tr>
<td>Shielded box</td>
<td>Enceinte blindée</td>
</tr>
<tr>
<td>UE under test</td>
<td>Unité testée</td>
</tr>
</tbody>
</table>

- Enceinte blindée.
- Simulateur de réseau.
- Ordinateurs (PC/station de travail/portable).

Matrice de compétences du personnel (compétences principales)

Responsable du laboratoire: connaissance de l'architecture des systèmes de communications mobiles, des techniques d'accès radio, des protocoles de communication et de la mise en réseau, solide connaissance des aspects liés à la qualité (connaissance de la norme ISO/CEI 17025, 2005 recommandée), connaissance de base des principales langues étrangères.

Responsable de campagne de tests: connaissance de l'architecture des systèmes de communications mobiles, des techniques d'accès radio, des protocoles de communication et de la mise en réseau, des aspects liés à la qualité, solide capacité en formation et en coordination des travaux des opérateurs de campagne.

Opérateur de campagne de tests: connaissance de base de l'architecture des systèmes de communications mobiles et des protocoles de communication recommandée.

Experts techniques (facultatifs, mais recommandés): solide connaissance de l'architecture des systèmes de communications mobiles, des techniques d'accès radio, des protocoles de communication et de la mise en réseau.
Exigences relatives au site
On trouvera ci-dessous un certain nombre d'informations concernant le plan du laboratoire.

Dimensions
Des dimensions et un plan standard sont requis.

Exigences électriques
Une alimentation électrique standard est nécessaire.

Exigences environnementales
Sans objet

Sécurité
Sans objet

I Laboratoire sur le rendement énergétique (REN)

Portée des activités du laboratoire
L'amélioration du rendement énergétique contribue à la réduction des émissions de gaz mondiales induites par la production et la consommation d'électricité. Dans les années qui viennent, la demande d'électricité va s'accroître, conduisant à une augmentation de la consommation de matières premières. Une réduction importante de la consommation d'énergie est donc considérée comme un objectif obligatoire. De fait, les économies d'énergie constituent le moyen le plus efficace d'accroître la sécurité d'approvisionnement et de réduire la dépendance aux importations, c'est pourquoi des mesures et des objectifs ambitieux doivent être adoptés sur le plan de la demande d'énergie par tous les pays. D'une manière générale, lorsque c'est possible, la consommation énergétique des produits liés à l'énergie, en mode arrêt ou en mode veille, doit être réduite au minimum nécessaire à leur bon fonctionnement.

Le matériel de bureau et les produits électroniques grand public utilisent souvent une alimentation externe qui convertit l'électricité en provenance du réseau. L'efficacité de cette conversion constitue un autre aspect important du rendement énergétique de ces produits, c'est pourquoi les alimentations externes représentent l'un des groupes de produits prioritaires pour lesquels les exigences de l'écoconception ont été créées.

La portée des activités du laboratoire REN inclut la vérification de la conformité de l'équipement aux exigences électriques prescrites par la Commission européenne conformément aux règlements CE 1275/2008 et 278/2009 et aux ententes volontaires en la matière. Les produits liés à l'énergie conformes aux exigences de l'écoconception définies dans les mesures d'application de cette directive doivent porter le marquage CE et les renseignements associés pour pouvoir être mis sur le marché interne et circuler librement.

Liste des services de tests
Evaluation de la consommation énergétique et du rendement de la conversion énergétique pour les matériels de technologie de l'information et de télécommunications.

Normes de référence
 • DIRECTIVE 2005/32/CE DU PARLEMENT EUROPEEN ET DU CONSEIL du 21 octobre 2009 établissant un cadre pour la définition d'exigences d'écoconception pour les produits liés à l'énergie
Etude de faisabilité pour la mise en place d’un centre de tests de conformité

- **RÈGLEMENT (CE) 1275/2008 DE LA COMMISSION du 17 décembre 2008** portant application de la directive 2005/32/CE du Parlement européen et du Conseil en ce qui concerne les exigences d’écoconception relatives à la consommation d’électricité en mode veille et en mode arrêt des équipements ménagers et de bureau électriques et électroniques

- **RÈGLEMENT (CE) No 278/2009 DE LA COMMISSION du 6 avril 2009** portant application de la directive 2005/32/CE du Parlement européen et du Conseil en ce qui concerne les exigences d’écoconception relatives à la consommation d’électricité hors charge et au rendement moyen en mode actif des sources d’alimentation externes

- **Norme internationale CEI 62301 première édition, novembre 2006** – Appareils électrodomestiques – mesure de la consommation en veille

- **Code de conduite sur la consommation énergétique des équipements large bande, version 4 du 10 février 2011**

- **Code de conduite sur le rendement énergétique des services de télévision numérique, version 8 du 15 juillet 2009**

Configuration des équipements de test et instrumentation

Cette section décrit la configuration des équipements de test, y compris la liste des instruments (principaux éléments). Des conditions générales supplémentaires pour les mesures et la validation sont présentées ci-dessous après la liste des principaux équipements de test utilisés par le laboratoire.

Figure I.1: Configuration de test, (CE) 1275/2008

Source: UIT
Figure I.2: Configuration de test détaillée pour les courants faibles, (CE) 1275/2008

Source: UIT

Figure I.3: Configuration de test, (CE) 278/2009

Source: UIT

Légende:

<table>
<thead>
<tr>
<th>English</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power meter</td>
<td>Wattmètre</td>
</tr>
<tr>
<td>Power Measurement</td>
<td>Mesure de la puissance</td>
</tr>
<tr>
<td>Power supply</td>
<td>Alimentation</td>
</tr>
<tr>
<td>External power supply unit</td>
<td>Unité d'alimentation externe</td>
</tr>
<tr>
<td>Both in accordance with EN (62301-1)</td>
<td>Tous deux conformes à EN (62301-1)</td>
</tr>
</tbody>
</table>
Principaux équipements de test utilisés par le laboratoire:

- Analyseur de puissance.
- Source CA.
- Anémomètre.
- Thermohygrographe.
- Charges électroniques CA/CC.
- Millimètres.

Matrice de compétences du personnel (compétences principales)

Responsable de campagne de tests: électronique, connaissance de base de l'architecture des systèmes de communications mobiles et des techniques d'accès radioélectriques, connaissance de base des aspects liés à la qualité, solides capacités en formation et en coordination des travaux des opérateurs de la campagne.

Opérateur de campagne de tests: connaissance de base des équipements et de leurs principaux états de fonctionnement recommandée.

Experts techniques (facultatifs, mais recommandés): physique, chimie, ingénierie mécanique. Les experts assistent le responsable du laboratoire et le responsable de la campagne en matière de gestion des liquides simulant les tissus de la tête et du corps ainsi que pour la gestion et l'installation du matériel et des robots de laboratoire.

Exigences relatives au site

On trouvera ci-dessous quelques informations liées aux conditions générales des mesures (NE 62301).

Sauf spécification contraire, les mesures doivent être effectuées dans des conditions de tests et avec les équipements précisés dans les paragraphes Chambre de tests, Alimentation électrique, Forme d'onde de la tension d'alimentation, Exactitude de la mesure de la puissance.

Chambre de test

Les tests doivent être réalisés dans une pièce où la vitesse de l'air à proximité du matériel à l'essai est de ≤ 0,5 m/s. La température ambiante doit être maintenue à 23 ± 5 °C pendant tous les tests.

NOTE – La puissance mesurée pour certains produits et certains modes peut être modifiée par les conditions ambiantes, par exemple la luminance ou la température.

Alimentation électrique

Lorsqu'une norme ou un règlement externes précisant une tension et une fréquence de tests font référence à la norme NE 62301, ce sont cette tension et cette fréquence qui doivent être utilisées pour l'ensemble des tests.

Lorsque la tension et la fréquence de tests ne sont pas définies par une norme externe, elles doivent prendre les valeurs suivantes:

- 230 V ± 1%
- 50 Hz ± 1%
Si les appareils sont destinés à être connectés à du courant triphasé et que la tension et la fréquence de tests ne sont pas définies par une norme externe, elles doivent prendre les valeurs suivantes :

- 400 V ± 1%
- 50 Hz ± 1%

Forme d'onde de la tension d'alimentation

Lors de l'alimentation de l'appareil testé dans le mode précisé, le total des composantes harmoniques de la tension d'alimentation, défini comme la somme des valeurs quadratiques moyennes ou valeurs efficaces (RMS) des composantes individuelles (l'harmonique fondamentale représentant 100%), ne doit pas dépasser 2% en incluant jusqu'à la 13ᵉ harmonique.

Le rapport entre la valeur maximale et la RMS de la tension de tests, appelé facteur de crête, doit être compris entre 1,34 et 1,49.

Exactitude de la mesure de la puissance

Les mesures portant sur des puissances de 0,5 W ou plus doivent être effectuées avec une incertitude inférieure ou égale à 2% et avec un niveau de confiance de 95%. Les mesures portant sur des puissances inférieures à 0,5 W doivent être effectuées avec une incertitude inférieure ou égale à 0,01 W et avec un niveau de confiance de 95%. Les instruments de mesure de la puissance doivent être dotés d'une résolution :

- d'au moins 0,01 W pour les mesures portant sur des puissances inférieures ou égales à 10 W;
- d'au moins 0,1 W pour les mesures portant sur des puissances supérieures à 10 W et inférieures ou égales à 100 W;
- d'au moins 1 W pour les mesures portant sur des puissances supérieures à 100 W.

Pour les appareils connectés à un courant non monophasé, l'instrument de mesure de la puissance doit être équipé pour mesurer la puissance totale de toutes les phases.

Laboratoire sur la qualité des matériels (QML)

Portée des activités d'un laboratoire de test de matériels

Ce type de laboratoire évalue les propriétés et les performances sur le terrain des matériels utilisés dans les réseaux et les équipements TIC. Des tests physiques et chimiques sont effectués pour vérifier la conformité des matériels réseau aux spécifications techniques, évaluer leur résistance au vieillissement et favoriser leur élimination en fin de vie. On peut également étudier un certain nombre d'aspects relatifs aux impacts environnementaux et à la sécurité des matériaux utilisés sur le terrain. Les matériels sont testés à l'occasion des étapes suivantes de leur cycle de vie :

- Avant leur introduction, dans le cadre du processus de qualification.
- Après leur homologation, pour la surveillance des lots distribués.
- Durant leur utilisation sur le terrain, en cas de dégradation précoce ou de panne.
- A la fin de leur cycle de vie, pour déterminer les meilleures procédures d'élimination.

Liste des services du laboratoire de test de matériels

- Tests de matériels en plastique ou en matériaux composites : ces tests concernent principalement les isolants et les enveloppes de câbles, les tuyaux, les revêtements et peintures polymérisés, les coffrets pour téléphone et les boîtiers du réseau, les pylônes thermodurcissables renforcés en verre, etc.
Tests de matériels métalliques: ces tests concernent les conducteurs et blindages de câbles, les connecteurs, les barres et les câbles au sol, les accessoires portants pour les réseaux aériens, les trous d'homme, etc.

Tests climatiques et de vieillissement: évaluation des effets néfastes de l'environnement sur les performances des équipements TIC et sur la durée de vie des matériaux qui les composent (corrosion, dégradation, panne, etc.).

Tests de sécurité et environnementaux: évaluation des effets néfastes des équipements TIC sur l'environnement, notamment la sécurité des travailleurs. Les émissions volatiles provenant des manchons thermorétractables et la lixiviation de produits chimiques de préservation du bois provenant des pylônes constituent des exemples typiques de ce type d'effet.

Normes de référence
La plupart des tests doivent être exécutés conformément aux méthodes de tests standard prescrites dans les spécifications techniques du produit TIC. Etant donné que des spécimens du produit industriel testé sont nécessaires pour effectuer les tests, la conformité n’est pas toujours facile à mettre en œuvre, les spécimens d’une enveloppe de câbles obtenus pour des tests de traction sur des éprouvettes de forme "haltère" pouvant, par exemple, ne pas avoir une épaisseur uniforme ou conserver une forme légèrement incurvée. Les normes de référence font partie des deux catégories principales suivantes:

- Les normes CEI pour les tests des équipements électroniques (normes ETSI pour les équipements TIC).

Equipements de test et instrumentation
Voici les principaux équipements de test:

- Spectroscopie infrarouge pour la détermination de la composition chimique des matériaux plastiques et des principaux additifs.
- Analyse thermique: DSC (calorimétrie à balayage différentiel, plage standard allant de -150 °C à +700 °C) en vue de déterminer les températures de fusion et de transition et la stabilité thermique (temps d'oxydation induit pour la polylépine); TG (thermovagimétrie, plage standard, à température ambiante, à 1 000 °C) pour l'armature inorganique des plastiques composites (par exemple la fibre de verre) ou pourcentage de noir de carbone des matériaux composites thermoplastiques noirs de carbone stabilisés.
- Microscopie optique: pour les mesures d'épaisseur des revêtements, l'évaluation des microstructures et la détermination des défauts.
- Microscopie électronique avec analyse EDX pour une analyse semi-quantitative des métaux et des alliages et un examen morphologique à très fort grossissement pour évaluer les raisons des pannes.
- Equipements de test mécaniques (tests de traction, de flexion et de compression).
- Equipements de test d'incendie: pour le classement des spécimens de petite taille en fonction du comportement dans des conditions d'incendie à partir de la norme UL 94 ou d'une norme similaire.
- Chambres climatiques: pour permettre le classement des équipements par rapport aux classes climatiques définies dans les normes de la série ETSI 300-019. Ces tests peuvent être réalisés, en coopération avec d'autres laboratoires accrédités, sur des équipements pleinement opérationnels dont les performances sont mesurées en continu, les données transmises étant sauvegardées pour juger d'éventuelles pertes de données.
- Chambre de corrosion et de vieillissement accéléré (par exemple résistance aux embruns salés).
La plupart des tests consistent à effectuer une suite d'opérations ou à utiliser des accessoires spécifiques, mais ne nécessitent pas de banc de mesure. Les Figures J.1, 2 et 3 illustrent les quelques étapes requises pour évaluer la microstructure d'un fer à graphite sphéroïdal utilisé pour la production de trous d'homme. Une partie du produit est découpée mécaniquement (Figure J.1), puis des particules abrasives sont utilisées pour ôter de la matière de la surface de l'échantillon jusqu'à ce que l'aspect désiré soit atteint.

Les spécimens métallographiques sont alors montés en utilisant une résine thermodurcissable époxy présentant un faible retrait après cure en vue de garantir le maintien du bord supérieur (Figure J.2). Le montage d’un spécimen offre un moyen sûr de maintenir un échantillon durant les opérations de ponçage et de polissage.

Après le montage, le spécimen subit un meulage à l'eau pour révéler la surface du métal, puis des meulages successifs utilisant des supports abrasifs de plus en plus fins.

L'utilisation de papier abrasif au carbure de silicium constitue la technique habituelle pour exécuter le meulage le plus grossier souvent suivi par des meulages plus fins faisant appel à des suspensions de poudre de diamant dosées, au fur et à mesure du processus de polissage, dans des tampons de tissu réutilisables. Les dimensions de la poudre de diamant en suspension peuvent débuter entre 9 et 6 μm pour arriver jusqu'à 1 μm.

Le polissage avec une suspension de diamants permet souvent d'obtenir de meilleurs résultats que l'utilisation de papier au carbure de silicium (papier SiC), ce dernier étant susceptible de s'étaler et de masquer certaines porosités.

Le meulage est habituellement suivi d'un polissage utilisant une suspension d'alumine, de silice ou de diamant sur un tissu qui ne peluche pas afin de produire une finition miroir exempte de rayure et de défaut présentant une déformation issue du processus de préparation réduite au minimum.

Après le polissage, les défauts de la microstructure comme les inclusions ou la non-uniformité du grain peuvent être observés au microscope. Les constituants microstructuraux du spécimen (Figure J.3) sont révélés en utilisant un agent d'attaque chimique adapté (une solution d’attaque électrolytique peut également convenir).

Figure J.1: Morceau d’un couvercle de trou d’homme brisé lors d’un test de capacité de support de charge (≥ 400 KN)

![Figure J.1](image)

Source: UIT
Figure J.2: Spécimens montés dans une résine thermorcurcissable époxy

Source: UIT

Figure J.3: Image au microscope électronique, grossie 200 fois, de fer à graphite sphéroïdal

Source: UIT
La Figure J.4 montre l'attachement à un dynamomètre pour mesurer la résistance à l'éclatement de manchons thermorétractables utilisés pour les raccords de câbles. La détermination de la résistance à l'éclatement du caoutchouc ou de tissus recouverts de plastique conformément à la norme ISO 3303-1, 2012 fait appel à un dispositif mécanique manipulant une boule d'acier.

Le SIL (système de gestion de l'information du laboratoire) joue un rôle essentiel parmi les outils et les installations du laboratoire en permettant d'accroître son efficacité et de garantir la cohérence des données. Le système est alimenté par les données informatives concernant les échantillons aussitôt que la campagne de tests débute, tandis que les résultats des tests y sont chargés dès leur obtention. Les paramètres de test sont harmonisés avec les capacités du laboratoire, c'est-à-dire le personnel, les méthodes de test, les équipements et la situation en matière d'étalonnage. Il est alors facile de produire des rapports finaux de test en étant sûr que toutes les données ont déjà été vérifiées lors des étapes précédentes.

Matrice de compétences du personnel (compétences principales)

Responsable du laboratoire: propriétés chimiques et physiques des matériaux, corrosion, dégradation, phénomènes d'impact environnemental, connaissance de l'architecture des réseaux TIC et des systèmes qualité (particulièrement la norme ISO/CEI 17025, 2005), niveau intermédiaire en anglais écrit et oral.

Responsable de campagne de tests: propriétés physiques et chimiques des matériaux et des méthodes de tests pertinentes, connaissance de base de l'architecture des réseaux TIC et des systèmes de qualité appliqués à l'organisation d’un laboratoire, capacité à évaluer et à intégrer, dans les rapports de test, les résultats de tests obtenus par différents opérateurs du laboratoire, connaissance de base en anglais.

Opérateur de campagne de tests: méthodes de tests physiques et chimiques, mesures liées à l'assurance de la qualité d'un laboratoire.
Exigences relatives au site
On trouvera ci-dessous un certain nombre d'informations concernant le plan du laboratoire.

Exigences environnementales
Les tests de matériaux, particulièrement les plastiques et les matériaux composites, nécessitent habituellement les conditions environnementales suivantes:

- Température de 23 ± 2 °C.
- Humidité relative de 50% ± 5%.

Lorsqu’il est nécessaire de conditionner les spécimens avant les tests (par exemple sept jours à +70 °C pour les tests de résistance à l’incendie) ou lorsqu’ils ne sont pas menés à température ambiante, des fours ou des chambres climatiques doivent être employés.

Pour les mesures de conformité, il est toutefois nécessaire de configurer le système de mesure dans un environnement contrôlé afin que, d’une façon générale, les variations quotidiennes de la température du liquide ne dépassent pas ±1 °C.

Sécurité
On trouvera ci-dessous un certain nombre de considérations relatives à la sécurité professionnelle au sein du laboratoire.

Dangers physiques
Ce type de danger constitue une source fréquente de blessures dans de nombreux laboratoires, particulièrement lorsque l’on emploie des machines pour la préparation des échantillons. Des machines servant à déplacer des pièces, des bords tranchants, des surfaces chaudes et d’autres éléments dangereux peuvent frapper ou blesser les techniciens par écrasement, brûlure, coupure, piqûre ou tout autre moyen, si elles sont utilisées sans respecter les normes de sécurité. Différentes mesures de sécurité peuvent être mises en place pour minimiser ces dangers, notamment l’exigence d’une autorisation formelle pour utiliser ces machines, sous réserve que le personnel concerné ait été adéquatement formé à cet effet.

Dangers chimiques
Les principaux dangers d’origine chimique dans le laboratoire proviennent des acides, des bases, des métaux lourds, des solvants, des produits chimiques hautement réactifs, des gaz et des vapeurs. Des matériaux composites dangereux peuvent également être à l’origine de réactions chimiques ou prendre feu lors des tests de résistance à l’incendie. L’azote liquide, lorsqu’il est nécessaire, c’est-à-dire pour les analyses microscopiques thermiques ou électroniques, peut être à l’origine de blessures graves s’il entre en contact avec la peau ou les yeux, ou d’asphyxie s’il s’évapore rapidement dans un laboratoire de faible volume.

Les hottes représentent le principal élément permettant la manipulation de substances dangereuses dans le laboratoire et, à ce titre, constituent un facteur décisif pour minimiser les risques pour l’ensemble des personnes qui travaillent dans cet environnement. D’une façon générale, les hottes protègent uniquement l’utilisateur et sont le plus souvent utilisées dans des laboratoires où des produits chimiques dangereux ou toxiques sont libérés durant les activités de tests. Il en existe deux types principaux: les hottes à évacuation et les hottes à recirculation d’air. Ces deux types fonctionnent selon le même principe: l’air est aspiré à l’avant du meuble pour être, ensuite, soit expulsé à l’extérieur de l’édifice, soit assaini par filtration puis réintroduit dans la pièce. Une bonne circulation d’air entre la pièce et la hotte s’avère cruciale pour bien exécuter cette fonction. La conception et le fonctionnement des hottes visent, pour l’essentiel, à contenir l’air et les vapeurs à l’extérieur de la hotte. Une expulsion directe de l’air du laboratoire à l’extérieur de l’édifice nécessite de grandes quantités d’énergie pour faire fonctionner des ventilateurs d’expulsion ainsi que pour réchauffer, refroidir, filtrer, contrôler et déplacer l’air qui viendra remplacer celui qui a été expulsé. Récemment, des efforts importants ont été entrepris dans la conception des hottes et des systèmes de ventilation en vue de réduire la consommation énergétique nécessaire à leur fonctionnement.
Afin de gérer les risques résiduels, différents types d’équipements de protection personnelle doivent être fournis au personnel du laboratoire. Il convient de vérifier que ces équipements sont utilisés systématiquement et d’effectuer des vérifications périodiques afin de s’assurer de leur intégrité pour garantir que le niveau de risque sur le terrain est aussi faible que le permet l’état de la technique.

Des équipements doivent être mis en place pour surveiller les fuites de gaz comme l’acétylène (inflammable et explosif), l’azote, l’argon, l’hélium (asphyxiant), etc. et émettre des alertes lorsque de telles fuites sont détectées. Des électrovannes servant à intercepter les gaz peuvent être commandées par le système de détection de fuites afin d’empêcher que la concentration des gaz ne s’accroisse dans l’air du laboratoire jusqu’à s’avérer dangereuse.

Le recueil et l’élimination adéquats des produits chimiques rejetés et des résidus matériels provenant des activités du laboratoire constituent un enjeu important. Bien que ces questions soient habituellement prises en compte par la législation nationale ou régionale (par exemple dans l’UE), le laboratoire joue un rôle fondamental pour minimiser les quantités de déchets. Il est possible d’atteindre cet objectif en réduisant la quantité d’échantillons et en séparant physiquement les matériels ayant une composition différente. Les renseignements relatifs à la sécurité doivent être fournis au personnel responsable des activités de soutien (par exemple le nettoyage, le transport ou la sécurité) afin de prévenir tout risque de blessure ou de pollution.

K Laboratoire sur les réseaux personnels (RPE)

Portée des activités d’un laboratoire RPE

Pour un opérateur de télécommunications, la nécessité de se doter d'un laboratoire de test WiFi tient essentiellement au besoin de garantir la qualité des passerelles d'accès et des autres dispositifs WiFi vendus en soutien de son offre commerciale et, par là même, la qualité du service fourni à ses clients.

Les tests effectués dans ce type de laboratoire consistent à vérifier que les équipements à l'essai respectent les spécifications WiFi transmises au fournisseur du produit et que le produit est conforme aux normes IEEE 802.11 et aux normes réglementaires locales (relatives à la puissance de rayonnement maximal, au gabarit spectral, etc.).

L'environnement de test contrôlé du laboratoire permet également, en l’absence d’interférences non contrôlées, d’effectuer des comparaisons fonctionnelles et de performance entre des produits de différents fournisseurs en vue de choisir le produit le plus adapté aux types de nouveaux services offerts avant leur introduction sur le marché concurrentiel.

Liste des services de tests en laboratoire

Fonctionnalités et performances: vérification des principales fonctionnalités du MAE, comme la configuration des paramètres de l’IGU en liaison avec l’interface WiFi et le chiffrement, et vérification des performances maximales sur le plan du débit des radiocommunications WiFi à 2,4 GHz et 5 GHz.

Couverture: vérification de la couverture du MAE en environnement réel, en présence de mobilier et d’autres réseaux wifi, en termes d’extension de la zone dans laquelle le service WiFi est disponible à 2,4 GHz et 5 GHz.

Couche physique: vérification en mode de conduction (avec le MAE connecté à la configuration de mesure au moyen de câbles, d’affaiblisseurs, etc.) des principaux paramètres de la couche physique comme la puissance émise, la densité spectrale de puissance maximale, les points d’émission, le gabarit spectral, etc. à 2,4 GHz et à 5 GHz et la DFS (sélection dynamique de fréquence) (détection radar) dans la bande 5 GHz. Les mesures relatives à la couche physique peuvent être étendues à tous les appareils fonctionnant dans les bandes 2,4 GHz et 5 GHz sans utiliser la norme WiFi.
Normes de référence

- **ETSI NE 300 328 V1.7.1** – *Electromagnetic compatibility and radio spectrum matters (ERM); wideband transmission systems; data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive* (Compatibilité électromagnétique et questions de spectre radioélectrique (ERM); systèmes de transmission large bande; matériels de transmission de données fonctionnant dans la bande ISM à 2,4 GHz et utilisant des techniques de modulation à large bande; norme NE harmonisée couvrant les exigences essentielles de l’Article 3.2 de la Directive ERTT).

- **ETSI NE 301 893 V1.6.1** – *Broadband Radio Access Networks (BRAN); 5 GHz high performance RLAN; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive* (Réseaux radio fréquence large bande (BRAN); réseaux locaux radio (RLAN) haute performance en 5 GHz; norme NE harmonisée couvrant les exigences essentielles de l’Article 3.2 de la Directive ERTT).

Equipements de test et instrumentation

Cette section présente, séparément pour chaque classe de tests, la liste des éléments de tests et de l’instrumentation.

Composants et instruments pour les tests de fonctionnalités et de performances:

- CHAMBRE OU TENTE BLINDÉE (3 m x 3 m x 2,7 m)
- GÉNÉRATEUR/ANALYSEUR DE TRAFIC RÉSEAU (GIGABIT ETHERNET)
- ANALYSEUR DE SPECTRE (1 ÷ 6 GHz)
- ANALYSEUR WIFI POUR LA CAPTURE DES PAQUETS DANS L’AIR
- POINTS D’ACCÈS DE RÉFÉRENCE ET ADAPTATEURS DE TERMINAUX (USB, PCMCIA, INTERNES À UN PC) CORRESPONDANT À DIFFÉRENTES NORMES IEEE802.11 (B/G/H/N)
- ORDINATEUR DE BUREAU ET ORDINATEUR PORTABLE DOTÉS D’UN PORT PCMCIA ET D’UN PORT USB AINSI QUE D’UNE CARTE WIFI INTERNE
Légende:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic generator</td>
<td>Générateur de trafic</td>
</tr>
<tr>
<td>AG Under Test</td>
<td>GA testé</td>
</tr>
<tr>
<td>TA 1</td>
<td>TA 1</td>
</tr>
<tr>
<td>Interferent AG</td>
<td>GA interférant</td>
</tr>
<tr>
<td>Parallel port</td>
<td>Port parallèle</td>
</tr>
<tr>
<td>PC with IP sniffer and analysis tool</td>
<td>PC avec détecteur d'IP et outil d'analyse</td>
</tr>
<tr>
<td>Sniffer Wi-Fi</td>
<td>Renifleur Wi-Fi</td>
</tr>
<tr>
<td>Switch</td>
<td>Commutateur</td>
</tr>
</tbody>
</table>

- LOGICIEL DE GÉNÉRATION ET DE SUIVI DE PAQUETS INSTALLÉ SUR UN ORDINATEUR PORTABLE
- ANALYSEUR WIFI POUR LA CAPTURE DES PAQUETS DANS L'AIR
- POINTS D'ACCÈS DE RÉFÉRENCE ET ADAPTATEURS DE TERMINAUX (USB, PCMCIA, INTERNES À UN PC) CORRESPONDANT À DIFFÉRENTES NORMES IEEE802.11 (B/G/H/N)
- ORDINATEUR PORTABLE DOTÉ D'UN PORT PCMCIA ET D'UN PORT USB AINSI QUE D'UNE CARTE WIFI INTERNE

Composants et instruments pour les tests relatifs à la couche physique:

- CHAMBRE OU TENTE BLINDÉE (3 m x 3 m x 2,7 m)
- OSCILLOSCOPE D'ÉCHANTILLONNAGE (≥ 6 GHz)
- ANALYSEUR DE SPECTRE (1 ÷ 12,75 GHZ POUR LA BANDE À 2,4 GHZ ET 1 ÷ 26 GHZ POUR LA BANDE À 5 GHZ)
- ANALYSEUR DE SIGNAL VECTORIEL
- ENSEMBLE DE TESTS SANS FIL POUR LA GÉNÉRATION D'UN SIGNAL RRLE
- WATTMÈTRE COMBINE AVEC DIFFÉRENTS CAPTEURS
Etude de faisabilité pour la mise en place d’un centre de tests de conformité

- SYNTÉTISEUR (1 ÷ 6 GHz)
- GÉNÉRATEUR RADAR (SYNTÉTISEUR SOUPLE + GÉNÉRATEUR DE FORMES D’ONDES ARBITRAIRES)
- CHAMBRE CLIMATIQUE
- AFFAIBLISSEURS RF FIXES
- AFFAIBLISSEURS RF VARIABLES (CONTRÔLE MANUEL OU PROGRAMMABLE)
- CÂBLES RF
- REPARTITEURS DE PUISSANCE RF
- COUPLEURS DIRECTIONNELS RF
- TERMINAISONS RF 50 OHMS
- ADAPTATEURS DE TERMINAISON RF
- ANALYSEUR DE RÉSEAU VECTORIEL (1 ÷ 6 GHz)
- ORDINATEUR PORTABLE DOTÉ D’UN PORT PCMCIA ET D’UN PORT USB AINSI QUE D’UNE CARTE WIFI INTERNE
- CONVERTISSEUR DE SUPPORT (ELECTRIQUE/OPTIQUE/ELECTRIQUE)

Figure K.2: Exemple de configuration pour des mesures liées à la couche physique pour des équipements IEEE 802.11 b/g

Légende:

<table>
<thead>
<tr>
<th>Physical layer characterization of IEEE 802.11b/g equipments</th>
<th>Caractérisation de la couche physique des équipements IEEE 802.11b/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter</td>
<td>Emetteur</td>
</tr>
<tr>
<td>Transmitted Power at each datarate</td>
<td>Puissance émise pour chaque débit de données</td>
</tr>
<tr>
<td>Power spectral density</td>
<td>Densité spectrale de puissance</td>
</tr>
<tr>
<td>Spectral mask, EVM, CCDF</td>
<td>Gabarit spectral, EVM, CCDF</td>
</tr>
</tbody>
</table>
Etude de faisabilité pour la mise en place d’un centre de tests de conformité

<table>
<thead>
<tr>
<th>Transmission centre frequency tolerance</th>
<th>Tolérance de fréquence centrale à l’émission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip clock frequency tolerance</td>
<td>Tolérance de fréquence d’horloge pour les éléments</td>
</tr>
<tr>
<td>Transmit centre frequency leakage</td>
<td>Fuite à la fréquence centrale à l’émission</td>
</tr>
<tr>
<td>Transmit RF carrier suppression</td>
<td>Suppression de la porteuse RF à l’émission</td>
</tr>
<tr>
<td>Transmit power up-power down ramp</td>
<td>Rampe de mise sous tension/mise hors tension à l’émission</td>
</tr>
<tr>
<td>Receiver</td>
<td>Récepteur</td>
</tr>
<tr>
<td>Sensitivity at each data rate</td>
<td>Sensibilité pour chaque débit de données</td>
</tr>
<tr>
<td>RX Characterization</td>
<td>Caractérisation du récepteur</td>
</tr>
<tr>
<td>TX Characterization</td>
<td>Caractérisation de l’émetteur</td>
</tr>
<tr>
<td>Shielded chamber/tent</td>
<td>Enceinte/tente blindée</td>
</tr>
<tr>
<td>EUT</td>
<td>MAE</td>
</tr>
<tr>
<td>LAN</td>
<td>LAN</td>
</tr>
<tr>
<td>PC-C*</td>
<td>PC-C*</td>
</tr>
<tr>
<td>PC with IP sniffer and analysis tool</td>
<td>PC avec renifleur IP et outil d’analyse</td>
</tr>
</tbody>
</table>

Matrice de compétences du personnel (compétences principales)

Responsable du laboratoire: mesures électroniques, composants micro-ondes et RF, solide connaissance des normes WiFi pour les techniques d’accès radio et des normes réglementaires, connaissance de base des principales langues étrangères.

Responsable de campagne de tests: mesures électroniques, composants micro-ondes et RF, solide connaissance des normes WiFi pour les techniques d’accès radio, solides capacités en formation et en coordination des travaux des opérateurs de la campagne, connaissance de base des principales langues étrangères.

Opérateur de campagne de tests: connaissance de base des mesures RF et des normes WiFi.

Exigences relatives au site

On trouvera ci-dessous un certain nombre d’informations concernant le plan d’un laboratoire de ce type.

Dimensions

Un laboratoire de 8 m x 5 m peut être suffisant pour abriter une chambre ou une tente blindée de 3 m x 3 m tout en ayant suffisamment de place pour les tables destinées aux instruments et activités en dehors de la chambre ou de la tente blindée.

Les tests sur les performances et ceux sur la couche physique peuvent être effectués en utilisant la même chambre ou la même tente blindée, mais pas simultanément. L’utilisation de deux chambres ou de deux tentes blindées constitue toutefois une solution plus performante, permettant de paralléliser les tests.

La chambre blindée doit être équipée d’un système de climatisation afin de maintenir la température au niveau souhaité pour les tests qui exigent la présence d’un opérateur dans la chambre pour un certain nombre d’heures, autrement la climatisation n’est pas obligatoire.
Exigences électriques

Des prises électriques doivent être installées à l'intérieur de la chambre ou de la tente blindée, l'alimentation devant être filtrée pour éviter les interférences des câbles électriques en provenance de l'extérieur de la chambre ou de la tente. Les filtres, généralement fournis par le fournisseur avec la chambre ou avec la tente, offrent différentes puissances en fonction de l'utilisation des équipements, les tests de performance et les tests de la couche physique étant réalisés soit dans une même chambre ou une même tente, soit dans deux chambres ou deux tentes séparées.

Installations de tests

Portée des installations de tests

Comme nous l'avons déjà mentionné plusieurs fois dans le document principal, un centre de test de conformité proposant différents services relatifs à plusieurs domaines des TIC doit obligatoirement utiliser des installations de tests afin de reproduire le réseau réel et de pouvoir mettre en œuvre des tests d'interopérabilité et des tests de bout en bout. De plus, il est possible de reproduire dans des installations de tests des défauts de fonctionnement détectés sur le terrain et de trouver des moyens adéquats de contourner les problèmes.

Bien entendu, les fonctionnalités des installations de tests dépendent du réseau à émuler; toutefois, s’il est nécessaire de reproduire le réseau d’un opérateur de grande taille ou de taille moyenne, les locaux doivent être suffisamment importants. C’est pourquoi on réalise habituellement au moins deux installations de tests, l’une pour les réseaux mobiles et l’autre pour les réseaux fixes. Cette séparation entre réseaux mobiles et réseaux fixes se justifie également par les différentes compétences nécessaires au fonctionnement des installations de tests et par les différentes procédures opérationnelles. Cependant, bien que les deux installations de tests soient séparées physiquement, il est important de les doter d’une connexion disposant de capacités de transmission appropriées, de façon à pouvoir également tester et vérifier des solutions de service fixe-mobile comme le raccordement mobile.

L’interconnexion des installations de tests avec les autres laboratoires du centre de test est également un aspect important. Une telle possibilité permet d’utiliser les installations de tests à distance pour émuler un service dans des conditions de fonctionnement adaptées ou pour émuler une situation de défaillance particulière. Par exemple, la connexion d’un laboratoire testant des terminaux aux installations de tests émulant un service particulier, comme la télévision sur IP, constitue une application type de cette interconnexion.

Installations de tests pour réseaux fixes (ITF)

Les fonctionnalités émulées dans des installations de tests pour réseaux fixes dépendent, bien entendu, des choix de réseaux; on trouvera ci-dessous une liste de certaines possibilités en la matière:

- Accès large bande.
- NGN2 – GPON et VDSL2.
- IP et ATM DSLAM.
- Equipements dans les locaux professionnels ou résidentiels des clients.
- Transport SDH et xWDM.
- Réseaux métropolitains GbE et IP/MPLS.
- Agrégation par la couche 2.
- ATM.
- IP de bord (bord fournisseur/routeurs d’accès, serveur d’accès à distance à large bande).
- Dorsale IP (routeurs térabit et routeurs gigabit).
Etude de faisabilité pour la mise en place d’un centre de tests de conformité

- Passerelles MRT/IP et NGN (noeuds CL4 et CL5).
- Plateforme de télévision sur IP.
- Mise en réseau de centres de données.

La surface habituelle de ce type d’installation de tests est d’environ 1 000 m² avec une capacité d’accueil allant jusqu’à 100 baies et 200 équipements.

Installation de tests pour réseaux mobiles (ITM)

Les fonctionnalités émulées dans des installations de tests pour réseaux mobiles dépendent, bien entendu, des choix de réseaux; on trouvera ci-dessous une liste de certaines possibilités en la matière:

- Réseaux LTE, UMTS et GSM.
- Réseau central mobile en mode circuit et en mode paquets.
- Plates-formes de SVA (IN, SMSC, MMSC, WAP GW, CMX,...).
- Plates-formes IMS.
- Noeud CL5.

La surface habituelle de ce type d’installation de tests est d’environ 2 000 m² avec une capacité d’accueil allant jusqu’à 200 baies et 400 équipements.

Des instruments particuliers sont nécessaires pour gérer et exécuter des tests dans des installations de tests:

- Simulateurs de ligne xDSL.
- Analyseurs de spectre.
- Générateurs de bruit.
- Générateurs de formes d’onde arbitraires.
- Générateurs de trafic et de signalisation, générateurs de réseau (par exemple SDH).
- Analyseurs de protocole.
- Logiciels de diagnostic (par exemple Monitor Master d’ASCOM).
- Logiciels de chargement d’applications (par exemple LoadRunner de HP).
- Logiciels de surveillance.
Annexe B: Evaluation des coûts

Evaluation des coûts
Cette annexe présente un certain nombre de considérations et d'évaluations visant à fournir des informations générales relatives aux coûts d'un centre de test tel qu'il est décrit dans le document principal.

Attribution des espaces
L'attribution des espaces au sein du centre de test est le premier aspect à prendre en compte. Un bon équilibre entre les espaces de bureaux, les laboratoires et les zones communes constitue un élément très important pour accroître l'efficacité du centre de test. La figure suivante fournit une répartition raisonnable en pourcentage.

Figure B.1.1: Attribution des espaces

<table>
<thead>
<tr>
<th>Légende:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB</td>
<td>LABO</td>
</tr>
<tr>
<td>Common spaces</td>
<td>Espaces communs</td>
</tr>
<tr>
<td>Canteen</td>
<td>Cantine</td>
</tr>
<tr>
<td>Parking</td>
<td>Stationnement</td>
</tr>
<tr>
<td>Meeting area</td>
<td>Espaces de réunion</td>
</tr>
<tr>
<td>Offices</td>
<td>Bureaux</td>
</tr>
<tr>
<td>Tech areas</td>
<td>Espaces techniques</td>
</tr>
</tbody>
</table>
La distribution des espaces constitue un facteur clé pour qu'un centre de test soit adapté aux activités de tests et fonctionne efficacement. Les paragraphes suivants offrent un certain nombre de conseils sur la façon de planifier la répartition des espaces pour obtenir un rapport coût-efficacité optimal.

Laboratoires
Conformément à la description de l'Annexe A, la superficie des laboratoires est étroitement liée aux activités de test réalisées. On peut toutefois signaler qu'en règle générale, il convient d'essayer d'éviter le bruit des instruments à proximité des zones de bureaux. En ce qui concerne les coûts, une bonne solution consiste à maintenir les zones abritant les laboratoires et les installations de tests à l'étage le moins coûteux, par exemple au sous-sol, et à utiliser pour les bureaux les étages les plus élevés, plus confortables et plus chers.

Espaces communs
On peut utiliser les couloirs et les zones n'abritant aucune activité particulière pour installer des imprimantes, des télécopieurs ou des machines à café, et ainsi maximiser l'espace disponible. On peut afficher, dans les couloirs, des affiches et des descriptifs présentant les activités de test particulières réalisées dans chaque département.

Cantine
La superficie de la cantine doit correspondre au nombre d'employés et respecter les réglementations nationales en la matière. Afin d'éviter que la cantine n'occupe une superficie trop importante, une bonne stratégie consiste à organiser les horaires de déjeuner en plusieurs créneaux.

Stationnement
La superficie du stationnement doit correspondre au nombre d'employés et respecter les réglementations nationales en la matière. On ne prendra en compte que la structure de direction pour déterminer la superficie du stationnement interne.

Zones de réunion
L'attribution aux zones de réunion d'une superficie adéquate constitue un point très important. Il est en général pertinent de disposer de différents types de salles de réunion en fonction du type de réunion, par exemple:

- **Un petit auditorium** de 50 places pour des réunions plénières, des rencontres d'entreprise, des conventions ainsi que pour des séminaires et des ateliers rassemblant un grand nombre de personnes.
- **Des salles de réunion moyennes** pouvant accueillir 15 personnes pour les réunions de domaine et d'information.
- **Des salles de réunion multimédias** de 10 personnes pour les conférences audio et vidéo et les téléconférences.
- **Des petites salles de réunion** pouvant accueillir six personnes pour les réunions de coordination quotidiennes.

Un outil web de planification de l'occupation des salles de réunion doit être adopté afin d'éviter des coûts de secrétariat supplémentaires.
Bureaux

La superficie adéquate des bureaux est en général précisée par des réglementations nationales en tenant compte des aspects liés à l'éclairage et la position des ordinateurs de bureau en fonction de l'utilisation d'un terminal vidéo.

Voici quelques règles à adopter afin de ne pas gaspiller d'espace:

- Bureau du directeur général (environ 20 m²).
- Bureaux des responsables de domaine (12 m²).
- Bureaux pour deux personnes pour les responsables de laboratoire, ingénieurs principaux et chefs de projets (12 m²).
- **Open space** pour les ingénieurs de tests.

D'une façon générale, il est possible de réduire la superficie utilisée en faisant appel au télétravail et en mettant en place des **open spaces** avec des zones communes pouvant être utilisées comme solution de rechange à un bureau classique par différents employés disposant d'un équipement complet d'interconnexion avec les systèmes TIC.

Zones technologiques

Ces zones comprennent les pièces utilisées pour les systèmes de chauffage et de refroidissement, de distribution électrique, de connexion réseau, etc. Comme indiqué dans le document principal, la superficie adéquate à allouer à ces équipements et, en conséquence, la superficie à allouer aux zones technologiques a un fort impact sur les coûts.

Évaluation des coûts d'un centre de test

On trouvera ci-dessous quelques chiffres approximatifs tenant compte des hypothèses générales suivantes:

- Les coûts sont estimés annuellement en euros.
- Le centre de test est situé en Italie dans une ville moyenne.
- Le centre de test compte 180 employés.
- Les coûts de main-d'oeuvre sont estimés en fonction des valeurs moyennes italiennes.
- Les compétences des employés correspondent au document principal (gestion) et à l'annexe (matrice des compétences).
- La liste des laboratoires est établie conformément à l'Annexe A.
- La superficie totale du centre de test est de 11 000 m², dont 5 400 m² pour les laboratoires.

Les dépenses de fonctionnement liées à la maintenance des instruments sont estimées à 520 000 € par an; ce chiffre dépend, bien entendu, des éléments détaillés au chapitre 6.

<table>
<thead>
<tr>
<th>Tableau B1: Estimation des coûts annuels en euros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
</tr>
<tr>
<td>Location des locaux</td>
</tr>
<tr>
<td>Services publics (énergie, gaz, eau)</td>
</tr>
<tr>
<td>Frais généraux par personne (*)</td>
</tr>
<tr>
<td>OPEX des instruments</td>
</tr>
</tbody>
</table>

(*) Frais généraux = (location des locaux + services publics)/effectif
Conformément aux détails du paragraphe suivant, le total des actifs en instruments est estimé à 15 900 € pour tout le centre de test.
Evaluation des coûts des laboratoires

On trouvera ici une évaluation approximative des différents coûts pour chaque laboratoire (les frais généraux imputés à chaque laboratoire, c'est-à-dire le coût de la location des locaux et le coût des services publics, étant calculés à partir des frais généraux totaux au prorata de la superficie occupée).

Tableau B2: Estimation des coûts détaillés

<table>
<thead>
<tr>
<th>Laboratoire</th>
<th>Activité</th>
<th>Location des locaux (en milliers d’euros annuels)</th>
<th>Services publics (en milliers d’euros annuels)</th>
<th>Instruments (actif) (en milliers d’euros annuels)</th>
<th>Effectif</th>
<th>Instrument Opex (en milliers d’euros annuels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS</td>
<td>Laboratoire sur le débit d’absorption spécifique</td>
<td>150</td>
<td>19</td>
<td>28</td>
<td>800</td>
<td>4</td>
</tr>
<tr>
<td>EXU</td>
<td>Laboratoire sur l’expérience utilisateur</td>
<td>130</td>
<td>17</td>
<td>24</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>ALB</td>
<td>Laboratoire sur l’accès à large bande</td>
<td>300</td>
<td>39</td>
<td>56</td>
<td>1 400</td>
<td>7</td>
</tr>
<tr>
<td>SVA</td>
<td>Laboratoire sur les services mobiles à valeur ajoutée</td>
<td>40</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SPE</td>
<td>Laboratoire sur la sécurité et la protection électriques</td>
<td>80</td>
<td>10</td>
<td>15</td>
<td>1 200</td>
<td>4</td>
</tr>
<tr>
<td>ELA</td>
<td>Laboratoire électroacoustique</td>
<td>250</td>
<td>32</td>
<td>46</td>
<td>800</td>
<td>4</td>
</tr>
<tr>
<td>CEM</td>
<td>Laboratoire sur la compatibilité électromagnétique</td>
<td>300</td>
<td>39</td>
<td>56</td>
<td>1 600</td>
<td>5</td>
</tr>
<tr>
<td>RSL</td>
<td>Laboratoire sur la radio et la signalisation</td>
<td>250</td>
<td>32</td>
<td>46</td>
<td>2 000</td>
<td>12</td>
</tr>
<tr>
<td>REN</td>
<td>Laboratoire sur le rendement énergétique</td>
<td>80</td>
<td>10</td>
<td>15</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>QML</td>
<td>Laboratoire sur la qualité des matériaux</td>
<td>250</td>
<td>32</td>
<td>46</td>
<td>1 300</td>
<td>6</td>
</tr>
<tr>
<td>RPE</td>
<td>Laboratoire sur les réseaux personnels</td>
<td>170</td>
<td>22</td>
<td>31</td>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>ITF</td>
<td>Installations de tests fixes</td>
<td>900</td>
<td>117</td>
<td>167</td>
<td>3 000</td>
<td>33</td>
</tr>
<tr>
<td>ITM</td>
<td>Installations de tests mobiles</td>
<td>2 500</td>
<td>324</td>
<td>43</td>
<td>3 000</td>
<td>55</td>
</tr>
<tr>
<td>Direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Activités transversales (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>5 400</td>
<td>700</td>
<td>1 000</td>
<td>15 900</td>
<td>180</td>
</tr>
</tbody>
</table>

(*) Activités transversales: bureau de projet, gestion TIC, qualité, secrétariat
Les instruments du centre de test représentent assurément pour lui des actifs importants. Il est extrêmement difficile de fournir une estimation précise de ces actifs car cela dépend des stratégies de la direction en matière d'allocation budgétaire annuelle et du modèle économique adopté par le centre de test.

Le tableau fournit toutefois un certain nombre de chiffres pour un centre de test effectuant des activités de test standard pour un grand opérateur national portant sur les principaux domaines technologiques. Le coût des équipements de test, particulièrement dans les installations de tests, n'est pas pris en considération, ces équipements étant, habituellement, fournis gracieusement par le fournisseur.

Bien entendu, la valeur des actifs que sont les instruments change du tout au tout si le centre de test est un centre indépendant avec des activités centrées uniquement sur quelques-uns des domaines de tests visés dans ce document. Le même principe s'applique au personnel, aux services publics et aux superficies utilisées.

Etant donné qu'un centre de test ne démarre pas habituellement de zéro, le total des dépenses de fonctionnement liées à l'instrumentation, c'est-à-dire aux actifs que représentent les instruments, est habituellement réparti sur plusieurs années.
Références

ISO 9001, 2008 – Systèmes de management de la qualité – exigences
ISO/IEC 17025, 2005 – Exigences générales concernant la compétence des laboratoires d'étalonnages et d'essais
ISO/IEC 9646 – Technologies de l'information – interconnexion de systèmes ouverts – Cadre général et méthodologie des tests de conformité
CENELEC EN50360/A1 – Norme de produit pour démontrer la conformité des téléphones mobiles aux restrictions de base relatives à l'exposition des personnes aux champs électromagnétiques (300 MHz – 3 GHz) [DOC.SARLEV.01], modification, mars 2012
CEI 62209-1, 2005 – Exposition humaine aux champs radiofréquence produits par les dispositifs de communication sans fil tenus à la main ou portés près du corps – Modèles de corps humain, instrumentation et procédures – Partie 1: procédure de détermination du débit d'absorption spécifique (DAS) produit par les appareils tenus à la main et utilisés près de l'oreille (plage de fréquence de 300 MHz à 3 GHz)
CENELEC NE 62209-1, 2006 – Exposition humaine aux champs radiofréquence produits par les dispositifs de communication sans fil tenus à la main ou portés près du corps – Modèles de corps humain, instrumentation et procédures – Partie 1: procédure de détermination du débit d'absorption spécifique (DAS) produit par les appareils tenus à la main et utilisés près de l'oreille (plage de fréquence de 300 MHz à 3 GHz)
CEI 62209-2, 2010 – Exposition humaine aux champs radiofréquence produits par les dispositifs de communication sans fil tenus à la main ou portés près du corps – Modèles de corps humain, instrumentation et procédures – Partie 2: procédure de détermination du débit d'absorption spécifique (DAS) produit par les appareils tenus à la main et utilisés près de l'oreille (plage de fréquence de 30 MHz à 6 GHz)

Définition de l’utilisabilité ISO 9241-11, 1993
ETSI TS 101 388 V1.3.1 – Systèmes de transmission d'accès sur câbles d'accès métalliques; lignes ADSL, spécifications européennes (mai 2002)
Broadband Forum (BBF) TR-100 – Plan de tests de performances ADSL2/ADSL2plus (mai 2007)
Broadband Forum (BBF) TR-105 – Plan de tests des fonctionnalités ADSL2/ADSL2plus (février 2010)
Broadband Forum (BBF) TR-165 – Vecteur et profils (mars 2009)
Recommandation UIT-T G.993.2 (2011) – Emetteurs-récepteurs de ligne d'abonné numérique à très haut débit 2 (VDSL2)
ETSI TS 101 271 – Terminaux d'accès, transmission et multiplexage (TM); systèmes de transmission d'accès sur câbles d'accès métalliques; ligne d'abonné numérique à très haut débit VDSL2; [spécification UIT G993.2 modifiée]; novembre 2008
Broadband Forum TR-114 – Plan de tests de performances VDSL2, première publication (novembre 2009) et rectificatifs
Broadband Forum WT-114 révision 13 – Plan de tests de performances VDSL2, deuxième publication (novembre 2010)
Broadband Forum TR-115 – Plan de tests des fonctionnalités VDSL2, première publication (novembre 2009) et rectificatifs

Broadband Forum WT-115 révision 10 – Plan de tests des fonctionnalités VDSL2, deuxième publication (novembre 2011)

Rapport technique du Broadband Forum TR-252 (novembre 2010)

Broadband Forum WT-252 révision 3 (décembre 2011)

Recommandation UIT-Recommandation UITT G.984x, Réseaux optiques passifs gigabitaïres (GPON)

RASC GPON OLT – Document de travail pour le plan de tests d’interopérabilité de l’émetteur de l’unité de réseau optique – version 1.0

Rapport technique du Broadband Forum TR-101 – Migration vers l’agrégation DSL de type Ethernet

CASP – Code de conduite italien pour l’offre de services SMS/MMS à valeur ajoutée – version 2.0 – 16/11/2009, récemment adopté par la plupart des opérateurs mobiles et des fournisseurs de services de contenu italiens

CENELEC NE 60950-1 – NE 60950-1/A11 Matériels de traitement de l’information: Sécurité, Partie 1 [DOC.S/ITE.01].

CENELEC NE 60215 – Sécurité des émetteurs radio [DOC.S/RT.01]

CEI 61000-4-2 – Compatibilité électromagnétique (CEM) – Partie 4-2: techniques d’essai et de mesure – essai d’immunité aux décharges électrostatiques

CEI 61000-4-3 – Compatibilité électromagnétique (CEM) – Partie 4-3: techniques d’essai et de mesure – essai d’immunité aux champs électromagnétiques rayonnés aux fréquences radioélectriques

CEI 61000-4-4 – Compatibilité électromagnétique (CEM) – Partie 4-4: techniques d’essai et de mesure – essais d’immunité aux transitoires électriques rapides en salves

CEI 61000-4-5 – Compatibilité électromagnétique (CEM) – Partie 4-5: techniques d’essai et de mesure – essai d’immunité aux ondes de choc

CEI 61000-4-6 – Compatibilité électromagnétique (CEM) – Partie 4-6: techniques d’essai et de mesure – immunité aux perturbations conduites, induites par les instruments des champs radioélectriques, applicable aux réseaux d’alimentation et aux appareils qui y sont raccordés

CEI 61000-4-8 – Compatibilité électromagnétique (CEM) – Partie 4-8: techniques d’essai et de mesure – essai d’immunité au champ magnétique à la fréquence du réseau

CEI 61000-4-9 – Compatibilité électromagnétique (CEM) – Partie 4-9: techniques d’essai et de mesure – essai d’immunité au champ magnétique impulsionnel

CEI 61000-4-10 – Compatibilité électromagnétique (CEM) – Partie 4-10: techniques d’essai et de mesure – essai d’immunité au champ magnétique oscillatoire amorti

CEI 61000-4-11 – Compatibilité électromagnétique (CEM) – Partie 4-11: techniques d’essai et de mesure – essai d’immunité aux creux de tension, coupures brèves et variations de tension

CEI 61000-4-16 – Compatibilité électromagnétique (CEM) – Partie 4-16: techniques d’essai et de mesure – essai d’immunité aux perturbations conduites en mode commun dans la gamme de fréquences de 0 Hz à 150 kHz. Par exemple, l’Institut européen des normes de télécommunication élabore et publie des normes de conformité pour les équipements de télécommunications leur permettant de réussir les tests suivants:

Recommandation UIT-T K.21 – Immunité des équipements de télécommunication installés dans les locaux d’abonné aux surtensions et aux surintensités [DOC.P/TE/01]

Recommandation UIT-T K20 – Immunité des équipements de télécommunication installés dans un centre de télécommunication aux surtensions et aux surintensités

116
Recommandation UIT-T K.45 – Immunité des équipements de télécommunication installés dans les réseaux d'accès et de jonction aux surtensions et aux surintensités

Recommandation UIT-T K.44 – Tests d'immunité des équipements de télécommunication exposés aux surtensions et aux surintensités – Recommandations fondamentales

TBR 008: ISDN; téléservice téléphonique à 3,1 kHz; exigences de raccordement des terminaux à combiné

TBR 038: Réseau téléphonique public commuté (RTPC); exigences de raccordement applicables aux équipements terminaux intégrant une fonction de combiné analogique leur permettant de prendre en charge le service de téléphonie analogique dans les cas justifiés lorsqu'ils sont connectés à l'interface analogique d'un RTPC dans l'Union européenne

ES 203021: Terminaux et accès (TA); exigences de base harmonisées pour le raccordement de terminaux pour la connexion à des interfaces analogiques de réseaux téléphoniques; mise à jour des contenus techniques TBR 021 – NE 301437, TBR 015 et TBR017

ETSI TS 126 131: Système universel de télécommunication mobile (UMTS); LTE; caractéristiques acoustiques pour les terminaux téléphoniques; exigences

ETSI TS 126 132: Système universel de télécommunication mobile (UMTS); LTE; tests acoustiques pour les terminaux téléphoniques voix et vidéo

CISPR 16-1-1 – Partie 1-1: Appareils de mesure

CISPR 16-1-2 – Partie 1-2: Matériels auxiliaires – perturbations par conduction

CISPR 16-1-3 – Partie 1-3: Matériels auxiliaires – puissance perturbatrice

CISPR 16-1-4 – Partie 1-4: Antennes et emplacements d'essai pour les mesures des perturbations de rayonnement

CISPR 16-1-5 – Partie 1-5: Emplacements d'essai pour l'étalonnage des antennes dans la plage comprise entre 30 MHz et 1 000 MHz

CISPR 16-2-1 – Partie 2-1: Méthodes de mesure des perturbations et de l'immunité – mesure des perturbations de conduction

CISPR 16-2-2 – Partie 2-2: Méthodes de mesure des perturbations et de l'immunité – mesure de la puissance perturbatrice

CISPR 16-2-3 – Partie 2-3: Méthodes de mesure des perturbations et de l'immunité – mesure des perturbations de rayonnement

CISPR 16-2-4 – Partie 2-4: Méthodes de mesure des perturbations et de l'immunité – mesure de l'immunité

CISPR 16-4-2 – Partie 4-2: Incertitudes, statistiques et modélisation des limites – incertitude des mesures de CEM

CEI 61000-6-3 – Partie 6-3: Normes génériques – norme sur l'émission pour les environnements résidentiels, commerciaux et de l'industrie légère

CEI 61000-6-4 – Partie 6-4: Normes génériques – norme sur l'émission pour les environnements industriels

CEI 61000-6-1 – Partie 6-1: Normes génériques – immunité pour les environnements résidentiels, commerciaux et de l'industrie légère

CEI 61000-6-2 – Partie 6-2: Normes génériques – immunité pour les environnements industriels

CISPR 11 – Appareils industriels, scientifiques et médicaux – caractéristiques de perturbations radioélectriques – limites et méthodes de mesure

CISPR 12 – Véhicules, bateaux et moteurs à combustion interne – caractéristiques de perturbation radioélectrique – limites et méthodes de mesure pour la protection des récepteurs extérieurs
CISPR 13 – Récepteurs de radiodiffusion et de télévision et équipements associés – caractéristiques des perturbations radioélectriques – limites et méthodes de mesure
CISPR 14-1 – Compatibilité électromagnétique – exigences pour les appareils électrodomestiques, outillages électriques et appareils analogues – Partie 1: émission
CISPR 14-2 – Compatibilité électromagnétique – exigences pour les appareils électrodomestiques, outillages électriques et appareils analogues – Partie 2: immunité – norme de famille de produits
CISPR 15 – Limites et méthodes de mesure des perturbations radioélectriques produites par les appareils électriques d’éclairage et les appareils analogues
CISPR 20 – Récepteurs de radiodiffusion et de télévision et équipements associés – caractéristiques d’immunité – limites et méthodes de mesure
CISPR 22 – Appareils de traitement de l’information – caractéristiques des perturbations radioélectriques – limites et méthodes de mesure
CISPR 24 – Appareils de traitement de l’information – caractéristiques d’immunité – limites et méthodes de mesure
CISPR 25 – Véhicules, bateaux et moteurs à combustion interne – caractéristiques des perturbations radioélectriques – limites et méthodes de mesure pour la protection des récepteurs embarqués
ETSI NE 300 386 – Compatibilité électromagnétique et questions de spectre radioélectrique (ERM); équipements de réseaux de télécommunication; exigences de compatibilité électromagnétique (CEM)
ETSI NE 301 489 – Série de normes CEM pour les produits radio
CENELEC NE 55022 (CISPR 022) – Appareils de traitement de l’information – caractéristiques des perturbations radioélectriques – limites et méthodes de mesure
CENELEC NE 55024 (CISPR 024) – Appareils de traitement de l’information – caractéristiques d’immunité – limites et méthodes de mesure
3GPP TS 34.121-1 – Spécification de conformité de terminal; transmission et réception radioélectriques (DRF); Partie 1: tests de conformité RF/RRM
3GPP TS 34.121-2 – Spécification de conformité de terminal; transmission et réception radioélectriques (DRF); Partie 2: déclaration de conformité d’une instance (ICS)
3GPP TS 34.114 – Tests de conformité des performances par voie hertzienne (OTA) de l’antenne équipement d’utilisateur (UE)/station mobile (MS)
3GPP TS 36.521-1 – Accès hertzien de Terre universel évolué (E-UTRA); spécification de conformité de l’équipement d’utilisateur (UE), transmission et réception radioélectriques; Partie 1: tests de conformité
3GPP TS 36.521-2 – Accès hertzien de Terre universel évolué (E-UTRA); spécification de conformité de l’équipement d’utilisateur (UE), transmission et réception radioélectriques; Partie 2: déclaration de conformité d’une instance (ICS)
3GPP TS 36.521-3 – Accès hertzien de Terre universel évolué (E-UTRA); spécification de conformité de l’équipement d’utilisateur (UE), transmission et réception radioélectriques; Partie 3: tests de conformité de la gestion des ressources radioélectriques
3GPP TS 34.108 – Environnements communs de tests pour les tests de conformité de l’équipement d’utilisateur
3GPP TS 36.508 – Accès hertzien de Terre universel évolué (E-UTRA) et réseau central du système évolué de commutation de paquets (EPC); environnements communs de tests pour les tests de conformité de l’équipement d’utilisateur
3GPP TS 34.123-1 – Spécification de conformité de l’équipement d’utilisateur; Partie 1: spécification de conformité protocole
3GPP TS 34.123-2 – Spécification de conformité de l’équipement d’utilisateur; Partie 2: spécification du formulaire de déclaration de conformité d’une instance (ICS)

3GPP TS 36.523-1 – Accès hertzien de Terre universel évoluté (E-UTRA) et réseau central du système évoluté de commutation de paquets (EPC); spécification de conformité de l’équipement d’utilisateur; Partie 1: spécification de conformité du protocole

3GPP TS 36.523-2 – Accès hertzien de Terre universel évoluté (E-UTRA) et réseau central du système évoluté de commutation de paquets (EPC); spécification de conformité de l’équipement d’utilisateur; Partie 2: spécification du formulaire de déclaration de conformité d’une instance (ICS)

DIRECTIVE 2005/125/CE DU PARLEMENT EUROPEEN ET DU CONSEIL du 21 octobre 2009 établissant un cadre pour la définition d’exigences d’écoconception pour les produits liés à l’énergie

NE 62301 première édition, novembre 2006 – Appareils électrodomestiques – mesure de la consommation en veille

Code de conduite sur la consommation énergétique des équipements large bande, version 4 du 10 février 2011

Code de conduite sur le rendement énergétique des services de télévision numérique, version 8 du 15 juillet 2009

ETSI NE 300 328 V1.7.1 – Compatibilité électromagnétique et questions de spectre radioélectrique (ERM); systèmes de transmission large bande; matériels de transmission de données fonctionnant dans la bande ISM à 2,4 GHz et utilisant des techniques de modulation à large bande; norme NE harmonisée couvrant les exigences essentielles de l’article 3.2 de la directive ETRT

ETSI NE 301 893 V1.6.1 – Réseaux radio fréquence large bande (BRAN); réseaux locaux radio (RLAN) haute performance en 5 GHz; norme NE harmonisée couvrant les exigences essentielles de l’Article 3.2 de la Directive ETRT

IEEE 802.11-2009 – Norme IEEE pour les technologies de l’information – télécommunications et échanges d’informations entre les systèmes – réseaux locaux et réseaux métropolitains – exigences spécifiques – Partie 11: spécifications pour le contrôle d’accès au support (MAC) et pour la couche physique (PHY) – modification 5: améliorations pour un débit plus élevé

IEEE 802.11-2012 – Norme IEEE pour les technologies de l’information – télécommunications et échanges d’informations entre les systèmes – réseaux locaux et réseaux métropolitains – exigences spécifiques – Partie 11: spécifications pour le contrôle d’accès au support (MAC) et pour la couche physique (PHY)
Liste des acronymes

CA Courant alternatif
CAPEX Dépenses d’immobilisation
CC Courant continu
CEI Comitato Elettrotecnico Italiano
CEI Commission électrotechnique internationale
CTP Coût total de possession
DEL Diode électroluminescente
ELT Evolution à long terme
GSM Système mondial de communication mobile
HSDPA Accès par paquets en liaison descendante haut débit
ILAC International Laboratory Accreditation Cooperation
ISO Organisation internationale de normalisation
IUT Réalisation à tester
LFC Lampes fluorescentes compactes
MAE Matériel à l’essai
MIMO Entrées multiples, sorties multiples
NE Norme européenne
NGA Réseau d’accès de prochaine génération
OPEX Dépenses de fonctionnement
OSI Interconnexion de systèmes ouverts
PICS Déclaration de conformité d’une mise en œuvre de protocole
PIXIT Informations complémentaires nécessaires aux tests de conformité
TIC Technologies de l’information et des communications
WSN Réseau de capteurs sans fil