



# IPEC-25 Regional Economic Dialogue (RED) Montevideo, Uruguay, 6-7 October 2025

## Supporting the development of future networks through innovative solutions

Vladimir Daigele
Telecommunication Development Bureau (BDT)



#### ICT Infrastructure Mapping 4 Development



## Broadband Mapping (BBmap)



## Infrastructure Project Planning









Mapping the infrastructure gaps

Elaborating a Business plan and funding

Defining priority infrastructure projects

## A comprehensive evaluation of the economic attractiveness of the project:



**Demand** - defines the market dimension of the proposed project



**Revenues** - estimates all expected revenues related with the infrastructure project



Operational Expenditures (OPEX) – measures all operating and maintenance expenses related to the network



Investments – Capital Expenditures (CAPEX) estimates investments in all networks infrastructure required for service provision



Cost of Capital (weighted average cost of capital WACC) – considers opportunity cost of investing in the project



Financing Mechanisms: analyses and proposes the best sources of funding according to the project nature International Telecommunication Union
Development Sector

#### ICT infrastructure business planning toolkit 5G networks



### CPP – definition

The Connectivity Planning Platform (CPP) is an automated tool to quickly and efficiently assess various technology options like fiber, cellular networks, point-to-point microwave, and satellite.

CPP uses integrated data, dynamic modelling, and actionable insights for broadband and last-mile planning.

The platform evaluates these technologies options, form a design specifications and connectivity Scenarios

Website: https://cpp.itu.int



Full description: https://fns-division.github.io/inframapkit-documentation/inputdata/



Case Study – Project 9STP24004– School Connectivity

Scenario-A (Lowest Cost Solution)

The lowest-cost approach to connecting all unconnected schools with a minimum speed of 20 Mbps. This highlights the most cost-effective solution for essential Internet access to schools.

## Distribution of schools based on feasibility connectivity technology

- 1 school considered to connect via fiber, total cost per school \$4.985
- 34 schools considered to connect via cellular, average total cost per school \$3.366
- 58 schools considered to connect via satellite, average total cost per school \$11.350
- Grand Total Cost \$777.840











Dashboard

**Projects** 

All projects

Add new

Scenarios

Models

**Datasets** 

#### **CPP Dashboard**



The project is linked to the following models: Fibre, Point-to-Point. You can download the input and output data from the links at the bottom of the page.



## CPP – Release



## Thank you!

www.itu.int/go/emergingtech

Future Networks and Spectrum Management Division: <a href="mailto:fns@itu.int">fns@itu.int</a>