

1

Satellite in the 5G Eco-System

www.esoa.net| info@esoa.net

@ESOA_SAT | @gscoalition

Satellite Vision for 5G

 \Rightarrow 5G is not just the next "G"

 \Rightarrow 5G is a *Network of Networks* unleashing new markets & driving growth

CONNECTED HEALTI

 \Rightarrow A Paradigm Shift in Connectivity enabled through heterogeneous networks

Evolution of Satellite Operators • Innovation Across the Value Chain

From Intergovernmental Organisations	To listed companies with diverse (& terrestrial) investors	 SPACE SEGMENT More throughput in different orbits reduces cost per bit & increases satellite capabilities Increased Payload Flexibility using
From wholesale providers of bandwidth	To value-added partners	open 'all IP' Architecture GROUND SEGMENT
From a proprietary, non-interoperable technology	To working on standards for integration with terrestrial networks	 Smaller, lighter, DIY antennae - no moving parts, flat panels, etc. Electronic steering: 'Broadband Comms on Move' (portable/vehicular/aero/maritime).
		PLaner 35

SPACE SEGMENT: Massive increase in available bandwidth

A broad range of satellite capabilities to support 5G deployment needs

	Investment economics	
\Rightarrow More than just about the Digital Divide	Reliability	
⇒ Contribute to overcoming fundamental challenges faced by land-based technologies whether in delivering the Sustainable Development Goals (SDG) or 5G		
		Solution Strengths of satellite technologies
Collaboration is the best way forward for both satellite &		
terrestrial operators to <i>deliver future services</i> & grow our markets		

www.gscoalition.org

6

5G Standards Integrating Satellite

- The satellite industry is part of the 3GPP's 5G standards setting process
- ESOA is a "Market Representation Partner":
 - Provides political support to on-going technical study items in 2 3GPP groups:
 - Radio Access Network
 - System Architecture
 - Feeds 3GPP with satellite operator requirements to support technical work
- Satellite (non-terrestrial networks, NTN) elements will be part of 3GPP Release 17 due in June 2021

A GLOBAL INITIATIVE

3GPP Document TR 22.863 also includes a 5G rural connectivity requirement:

"Broadband Access Everywhere over long distances for low density areas ... including both humans and machines shall be supported."

Satellite in the 5G Eco-System is a reality Trials & Demos

Satellite-5G Demonstration	Date & Venue
European Conference on Networks and Communications Ljubljana, Slovenia	June 18-21, 2018 Ljubljana, Slovenia
FUTURE SEAMLESS COMMUNICATION	November 14-15, 2018 Berlin, Germany
Emercelona 25-28 February 2019	February 25-28 2019 Barcelona
NEWTEC ENABLES WORLD'S FIRST 5G OVER LEO SATELLITE DEMO	7 May 2019 UK pn.org

LTE Coverage

Big Challenges Require Many Solutions The only right answer is a MIX of TECHNOLOGIES

Satellite

By 2020, LTE will cover 63% of the worlds population but only 37% of the landmass

WiFi

QR

Mobile

Source: OpenSignal

Each technology is evolving, Each has a role to play, Each requires continued access to spectrum

Wi-Fi Eco-System is Evolving: Gigabit WiFi chips + devices becoming available: 200m radios shipped in 2017, 2020: >1bn *"WiGig"*

Satellite Eco-System is Evolving: HTS, VHTS, GSOs + NGSOs using L,S,C,Ku,Ka bands & in future Q,V bands as well

Mobile Eco-System is Evolving:

Germany, Italy, <u>Australia</u>: carrier aggregation delivering up to 900 Mbps Field Tests in UK & US: >20 Gbps delivered in 70GHz bands

On commercially viable basis
No interference with / loss of existing services
Using Existing Spectrum

C-band facts & figures for Africa

There is no substitute for C-band Satellite Services in Africa

Co-existence between FSS and 5G in adjacent bands must be carefully managed

- Satellite earth stations are very sensitive to terrestrial interference
- 5G signals can interfere with FSS receive earth stations in two ways:
 - Saturate the LNB of the earth station, even if the
 5G signal is adjacent to the satellite signal
 - Out-of-Band-Emissions (OOBE) and Spurious Emissions (SE) of the 5G signal can cause in-band interference to FSS signals
- OOBE & SE levels specified in 3GPP standards do not protect FSS signals in adjacent bands

How mobile and FSS can coexist side by side:

- **1.** All earth stations must be fitted with bandpass filters
- 2. Impose a guard band between FSS & 5G
- 3. Impose strict OOBE limits on 5G

Current & Future Satellites in 28 GHz A FEW Examples

GEO satellites

- APStar Apstar 5C/6C, 6D (2019), 7 (2022)
- AsiaSat AsiaSat 7/8/9
- Inmarsat Global Xpress Inmarsat-5 F1/F2/F3/ F4, GX-5 (2019), Inmarsat-6 (2020-2021)
- Eutelsat KaSat, future Konnect
- Intelsat EuropeStar, IS-20/33e/36/37e
- Kacific Kacific-1
- MEASAT Measat-3d
- NBNCo SkyMuster 1/2
- SES Astra 2E/2G/3B/4A/5B, AMC-15/16, SES-11/12/14/15
- Thaicom Thaicom/IPStar
- Turksat 4B, 5B (2020)
- ViaSat Viasat-1/2, future ViaSat-3

Non-GEO satellites

- ◆ O3b 20 MEO satellites in-orbit
- OneWeb next-gen LEO constellation (2019)
- SpaceX next-gen LEO constellation (2020)
- Telesat LEO next-gen LEO constellation (2021)
- O3b mPower next-gen MEO constellation (2021)
- Leosat next-gen LEO constellation (2021)

- High, Mid and Low band spectrum outside 28 GHz is available for IMT/5G
- IMT/5G designs incompatible with 28 GHz satellite broadband
- Satellite broadband uses 28 GHz spectrum today to connect and compete

33 GHz under consideration for 5G/IMT at WRC-19 (27.5-29.5 GHz excluded from 5G/IMT use by WRC-15)

Ensure Future Growth & Innovation

\Rightarrow Stick to WRC-15 Identified Study Bands for IMT

26 GHz (24.25 - 27.5 GHz)

Candidate Band for Global Harmonisation

- Protect existing & planned use by FSS, ISS, SRS, EESS passive
- Sustainable basis without undue constraint

28 GHz NOT on the shopping list!

37 - 43.5 GHz NOT Candidate Band for Global Harmonisation

47 - 52.6 GHz NOT Candidate Band for Global Harmonisation

Above 66 GHz (66 - 71 GHz & above)

Candidate Band for Global Harmonisation

- ≻ Ma ≻ No
 - Many satellite networks extensively use 28GHz globally Not in Res. 238.
 - Future satellites (in construction) will use 40/50 GHz
 2GHz of spectrum is needed for HDFSS user terminals
 Needs appropriate shared basis for coordinated FSS earth stations
 - > Regional harmonization for IMT is sufficient
 - Close to 57-66 GHz: already designated / used for WiGig
 - Existing primary ITU allocation to for terrestrial mobile
 - Doubles available spectrum for terrestrial mobile 5G services so provides future-proofing for 5G/IMT-2020

- Blue bars: how much spectrum was licensed in 2014
- Red bars: how much has been licensed since 2014
- Yellow line: harmonised spectrum for IMT in Africa
- Orange: Spectrum identified by the ITU for IMT
- Pink zone: ITU prediction for IMT requirements for 2020

SUMMARY: Why Africa should not consider C-Band & 28 GHz Band for IMT

- Satellite is an integral part of today's <u>and</u> tomorrow's digital eco-system, including 5G
- Neither C nor 28 GHz bands are on WRC15 'shopping list' for IMT, as both bands are extensively used by satellite all around the world
- Plenty of other spectrum is available for license & use by IMT in Africa: 33 GHz of other spectrum already under consideration
- 3.3-3.4 GHz and 26 GHz will be more than adequate to meet 5G demands for the foreseeable future - also re-farm 2G & 3G spectrum
- No need to cut off <u>international</u> connectivity and flexibility for <u>national</u> 5G
- Africa has extensive reliance on satellite services & it is growing
- IMT cannot replace these satellite services: there is NO alternative