

POLITECNICO MILANO 1863

Limits on EMF exposure and development of 5G networks in Italy

Antonio Capone Dean of the School of Engineering

ITU Regional Forum for Europe, October 23rd, 2020

A joint work Asstel and Politecnico di Milano

Context

- A study on the impact of the Italian limits of EMF exposure on the development of the 5G infrastructure
- Collaboration between Asstel, the Italian association of telecommunications industry, and Politecnico di Milano (POLIMI)
- POLIMI acted as trusted third party with operators, receiving confidential information on measurements and using them to tune a model

Public hearing

 The study has been presented to a public hearing to the Italian Parliament

Goals and work methodology

► Goals

- Analyze and present in a clear way the international guidelines and how they are related to the new 5G technology
- Make a study of the impact of Italian exposure limits on the characteristics and costs of the 5G infrastructure operators will deploy
- Work methodology
 - Analysis on the state of the art of international recommendations
 - Exercise of radio network planning under different scenarios together with radio engineering teams of operators in order to assess the impact of exposure limits

Team

 Paolo Ravazzani (Biomediacal), Carlo Riva (EMF), Michele D'Amico (EMF), Antonio Capone (Telecommunications), Luca Dell'Anna (Telecommunications)

Threshold and Security Factor

Limits adopted by EU countries

Limits^(*) adopted in EU:

^(*)With reference to 3.6--3.8 GHz band used in this study

Parallel with weight that can be moved by a worker

Threshold and limit

 Minimum value for which health effects have been observed With a reduction factor of 50 times:

With a reduction factor of 5000 times:

Radio planning exercise

► Goal

- Planning of the 5G network under scenarios with different exposure limits using electromagnetic propagation simulations and operator sites data bases
- Estimate the characteristics and costs of the networks with the considered scenarios
- Existing sites have been classified in:
 - Non-upgradable sites: these are sites that based on current limits cannot accommodate a 5G site since existing technology already saturate limits;
 - **Upgradable sites**: these are sites that probably can accommodate a new 5G base station.
- 5 sample cities selected

- Frequency, quality and coverage
 - Frequency: 3.6-3.8 GHz
 - Quality: 30 Mbps at cell edge(for a bandwidth of 80 MHz)
 - Coverage: 95% outdoor, 60% indoor

Results: quality with current limits and sites

Very bad quality with current limits and only upgradable sites

Cities	Coverage Outdoor	Coverage Indoor
Turin	86 %	32%
Caserta	84 %	27%
Modena	85 %	26%
Trieste	46 %	15%
Rimini	63 %	16%

Without the use of non-upgradable sites, we would expect coverage holes and this would make impossible the implementation of the 5G use cases that require coverage continuity and indoor coverage

Results: percentage of non-upgradable sites

On average 62% of sites is non-upgradable that projected at national level translates into 27.900 base stations

Cities	Cities upgradable sites	
Turin	68 %	
Caserta	48 %	
Modena	45 %	
Trieste	75 %	
Rimini	73 %	

Base stations that are non-upgradable requires re-engineering work (like increasing height of antennas) or adding new 5G sites

While with ICNIRP limits all sites are upgradable and sufficient to meet quality and coverage targets

► As for the 27.900 base station non-upgradable, the estimated costs require an extra expenditures of 4 billions € in total

	Scenario 1	Scenario 2	Difference
Total cost at national level	9.39 B€	5.53 B€	3.86 B €

POLITECNICO MILANO 1863