# Applying ITU's Artificial Intelligence/Machine Learning Toolset in Networks

ITU Regional Forum for Europe – 5G Strategies, Policies and Implementation 22-23 October 2020

Reinhard.Scholl@itu.int Telecommunication Standardization Bureau



# Outline

Challenges of applying ML in networks
 ITU's ML Toolkit

3. ITU's AI/ML in 5G Competition



Applying AI/ML in networks is different from AI/ML in, say, image recognition

- Constraints on computing resources in the network
- Noisy and dynamic network environment
- Data
  - Which data is available?
  - Where generated?
  - Labelled?
  - Can data be trusted?
  - What is the quality of the training data?

Availability of domain-specific dataset – limited amount of network (operator) data available

There are unique challenges in applying AI/ML in networks. **ITU toolkits** are derived from long experience and domain expertise of our members.



# Outline

1. Challenges of applying ML in networks

# 2. ITU's ML Toolkit

3. ITU's AI/ML in 5G Competition



#### Use Case analysis for ML in Networks

Use case contributions Published: ITU-T Y.3170-series Supp 55 – Machine learning in future networks including IMT-2020: Use cases Use case **Classification** Analysed more than 30 use cases ulletRequirements classified as "critical", ullet"expected", "added value". Network slice User plane Signaling, App Security and service related related management related related **Requirements** Classification **Data Storage and** Data Application Collaborative and continued analysis of Collection of ML processing use cases is the need of the hour.

### **ITU's Architecture Framework for ML in networks**

 Published by ITU as <u>Y.3172</u> (Architectural framework for machine learning in future networks including IMT-2020)



# Outline

1. Challenges of applying ML in networks

- 2. ITU's ML Toolkit
- 3. ITU's AI/ML in 5G Competition



#### **Hosts of Problem Statements**



9. Turkey

TURKCELL

10.

Adlik/ZTE = 11. Russia  $C\Pi \delta \Gamma V T$ )

Sponsorship

Gold Sponsor: TRA (UAE)



Bronze Sponsors: Cisco Systems and ZTE



**Challenge Promotion** 

#### LF AI Foundation:



✤ SG Innovate (Singapore):



Next Generation Mobile Networks Alliance:





## > 500 participants from > 60 countries





| Technical Track | Real Data<br>(Anonymized) | Open Data | Synthetic<br>Data | No Data |
|-----------------|---------------------------|-----------|-------------------|---------|
| Network         | $\checkmark$              | ✓         | $\checkmark$      |         |
| Verticals       | $\checkmark$              | ✓         | ✓                 |         |
| Enablers        |                           |           |                   | ✓       |
| Social Good     | $\checkmark$              | ✓         | $\checkmark$      | ✓       |

Real Data (anonymized) may have access restrictions.

Green: Types of data currently being used in the Challenge



#### Timeline



Prizes total about 20k CHF
Mentoring is provided to students



### **Problem Statements (1/2)**

| ID           | Title                                                                            | Author / Host                               |
|--------------|----------------------------------------------------------------------------------|---------------------------------------------|
| PS-012       | ML5G-PHY -Beam-Selection: Machine Learning Applied to the Physical Layer of      | Universidade Federal do Pará (UFPA), Brazil |
|              | Millimeter-Wave MIMO Systems                                                     |                                             |
| PS-013       | Improving the capacity of IEEE 802.11 WLANs through Machine Learning             | Universitat Pompeu Fabra (UPF), Spain       |
| PS-014       | Graph Neural Networking Challenge 2020                                           | Barcelona Neural Networking Center (BNN-    |
|              |                                                                                  | UPC), Spain                                 |
| PS-018       | Compression of Deep Learning models                                              | ZTE                                         |
| PS-019 - 023 | 5G+AI (Smart Transportation), 5G+ML/AI (Dynamic Spectrum Access), Privacy        | Indian Institute of Technology, Delhi       |
|              | Preserving AI/ML in 5G networks for healthcare applications                      | (IIT/Delhi); C-DOT (Centre for Development  |
|              |                                                                                  | of Telematics); Hike                        |
| PS-024       | Demonstration of MLFO capabilities via reference implementations                 | Letterkenny Institute of Technology         |
|              |                                                                                  | (Ireland)                                   |
| PS-025       | ML5G-PHY- Channel Estimation @NCSU: Machine Learning Applied to the Physical     | North Carolina State University, USA        |
|              | Layer of Millimeter-Wave MIMO Systems                                            |                                             |
| PS-031 - 032 | Network State Estimation by Analyzing Raw Video Data + Analysis on route         | NEC, KDDI, RISING Japan, TTC                |
|              | information failure in IP core networks by NFV-based test environment.           |                                             |
| PS-036       | Using weather info for radio link failure (RLF) prediction                       | Turkcell, Turkey                            |
|              |                                                                                  |                                             |
| PS-038       | Traffic recognition and Long-term traffic forecasting based on AI algorithms and | Saint Petersburg University                 |
|              | metadata for 5G/IMT-2020 and beyond                                              | (SPbSUT), Russia                            |



#### Detailed webinars for each topic are available on the Challenge website

#### **Problem Statements (2/2)**

| ID     | Title                                                                                                             | Author       |
|--------|-------------------------------------------------------------------------------------------------------------------|--------------|
| PS-001 | 5G+AI+AR (Zhejiang Division)                                                                                      | China Unicom |
| PS-002 | Fault Localization of Loop Network Devices based on MEC Platform (Guangdong Division)                             | China Unicom |
| PS-003 | Configuration Knowledge Graph Construction of Loop Network Devices based on MEC Architecture (Guangdong Division) | China Unicom |
| PS-004 | Alarm and prevention for public health emergency based on telecom data (Beijing Division)                         | China Unicom |
| PS-005 | Energy-Saving Prediction of Base Station Cells in Mobile Communication<br>Network (Shanghai Division)             | China Unicom |
| PS-006 | Core network KPI index anomaly detection (Shanghai Division)                                                      | China Unicom |
| PS-007 | Network topology optimization                                                                                     | China Mobile |
| PS-008 | Out of Service(OOS) Alarm Prediction of 4/5G Network Base Station                                                 | China Mobile |



Webinars in Chinese language are available for PS-007 in the Challenge website

### An Example of a Problem Statement for ITU AI/ML in 5G Challenge

## Radio Link Failure Prediction Challenge

(Using weather information for radio link failure (RLF) prediction)

- How does the weather influence the radio signal to and from a base station?
- Participants get weather data and network data and use AI/ML algorithms to find patterns in order to make predictions that would help the engineers to finetune their networks.
- Several other problems statements available on Challenge website: <u>https://www.itu.int/en/ITU-</u> <u>T/AI/challenge/2020/Pages/default.aspx</u>

This problem statement uses real network data.





#### Webinar Series accompanying ML5G Challenge

- 20 one-hour webinars so far (mid-June September)
- By year's end: 30+ webinars
- Dedicated issue of ITU NEWS Magazine on ML5G planned for November 2020



ABOUT PROGRAMME BREAKTHROUGH DAYS SPEAKERS CALLS 2019 EVENT CONTACT

#### A Universal Compression Algorithm for Deep Neural Networks

In the past decade, deep neural networks (DNNs) have shown state-of-the-art performance on a wide range of complex machine learning tasks. Many of these results have been achieved while growing the size of DNNs, creating a demand for efficient compression and transmission of them. This talk will present DeepCABAC, a universal compression algorithm for DNNs that through its adaptive, context-based rate modeling, allows an optimal quantization and coding of neural network parameters. It compresses state-of-the-art DNNs up to 1.5% of their original size with no accuracy loss and has been selected as basic compression technology for the emerging MPEG-7 part 17 standard on DNN compression.

#### SPEAKERS, PANELISTS AND MODERATORS



| ← Back to full programme           | п                    |
|------------------------------------|----------------------|
| DATE     21 Aug 2020               | ン<br>す<br>身          |
| TIME CEST, Geneva<br>13:00 - 14:00 | こ。<br>専行<br>で、<br>Mi |
| SESSIONS                           | τ.<br>[]             |
| TOPICS<br>5G                       | بر<br>اح             |
| Watch                              | ्र<br>               |
| SHARE THIS EVENT                   | 課                    |
| f ⊻ in 🖂                           | ج<br>SP              |
| + Add to Google Calendar           |                      |
| + iCal export                      |                      |





- ITU is committed to developing, in an open forum, and enabling practical toolkits for solving relevant problems in AI/ML in future networks.
- ITU AI/ML in 5G Challenge works with students and professionals to generate innovative solutions in a collaborative manner.

Follow the **Slack** <u>channel</u> of the ITU Challenge – many exciting initiatives on the way

Follow our **webinar series** of ML5G talks by respected researchers and professionals: <u>https://www.itu.int/en/ITU-</u> <u>T/AI/challenge/2020</u>

**Contact:** <u>ai5gchallenge@itu.int</u>



Stay tuned for ...

# AI/ML in 5G Competition 2021



# **Backup Slides**



- Published: ITU-T Y.3174 "Framework for data handling to enable machine learning in future networks including IMT-2020"
- <u>https://www.itu.int/rec/T-REC-Y.3174/en</u>



Flexible approach to handle data models for new use cases is important.

- How to handle the diversity in network data sources?
- How to handle the increased flexibility and agility in future networks?
- How to approach the different kinds of data handling requirements?



#### ITU Toolkit #2: ML Sandbox

- Ongoing work: Machine Learning Sandbox for future networks including IMT-2020: requirements and architecture framework
- FG ML5G output ML5G-O-035 (status: published)



Time

ML sandbox allows experimentation, comparison, benchmarking, testing and evaluation before the Model hits the live network



- Ongoing work: Serving framework for ML models in future networks including IMT-2020
- FG ML5G output ML5G-O-036 (status: published)



Requirements and architecture for serving ML models in future networks including IMT-2020, including inference optimization, model deployment and model inference.

Serving framework provides platform specific optimizations, deployment preferences and inference mechanisms.



#### **ITU Toolkit #4: ML Function Orchestrator**

- Ongoing work: Requirements, architecture and design for machine learning function orchestrator
- FG ML5G output ML5G-O-038 (status: published)



MLFO orchestrates the operation of machine learning pipeline across the network to provide a managed AI/ML integration for the operator



#### **ITU Toolkit #5: Intelligence Levels**

- Published: ITU-T Y.3173 "Framework for evaluating intelligence levels of future networks including IMT-2020"
- <a href="https://www.itu.int/rec/T-REC-Y.3173/en">https://www.itu.int/rec/T-REC-Y.3173/en</a>





- > Analysis is performed by system
- Decision is performed by system
- Demand mapping is performed by system

Intelligence levels helps MLFO to interoperate between different ML solutions in the network.



• ITU-T Y.3176 Draft Recommendation: ML marketplace integration in future networks including IMT-2020 (under ITU review)



Enables standard mechanisms to exchange ML models and related metadata between the network and ML marketplace.

