Standardization of Broadband Access and IMT-2020/5G transport support in ITU-T SG15

ITU/TSB Hiroshi OTA

ITU-T SG15 - mandate

ITU-T SG15 is responsible for the development of standards on:

optical transport network	access network equipment	home network and power utility network infrastructures
systems	maintenance	optical fibres and cables and their related installation
instrumentation and measurement techniques	test	control plane technologies

to enable the evolution toward intelligent transport networks, including the support of smart-grid applications.

Broadband access – optical fiber or copper?

- Q2/15: Optical systems for fibre access networks
 PON (Passive Optical Network)
- Q4/15: Broadband access over metallic conductors
 - xDSL (ADSL, VDSL)
 - FTTDp (G.fast, G.mgfast)

Optical access

What is PON?

- Passive Optical Network (PON) system
 - A point-to-multipoint optical communication system.
 - The most popular system to realize Fiber To The Home (FTTH) in the world.
- Multiple (e.g. 16 to 128) ONUs communicate with an OLT via optical splitter(s).

Recent progress in PON standards

Coexistence of ITU PON Technologies using WDM

*Downstream and Upstream Center Wavelengths (nm)

**Co-existence Element has been defined in ITU-T G.984.5 Amendment 1 along with additional Coexistence solutions

Metallic access

Overview of Access Network Solutions with metallic cables

G.fast/FTTdp: Fibre To The distribution point

One FTTdp architecture benefit is that the DPU equipment typically serves 1-20 lines, making it small enough to place on a pole, in a hand-hole or in a small pedestal or in basement

Dynamic Time Assignment (i-DTA)

- Approved April 2017 as part of G.9701 Annex T/X
 - Operation without coordination across lines (i-DTA)
- Concepts:
 - AN/DPU system monitors up/down throughput needs
 - Requests FTU-O to change the TDD up/down ratio
 - FTU-O and FTU-R implement the change synchronously and seamlessly
 - Up/down ratio between 5/30 and 30/5 with default 7/28

• Use case:

 Improve end user experience (QoE) by dynamically allocating the aggregate capacity to the direction that best serves the instantaneous needs of the user's applications.

Emerging G.mgfast - Multi-Gigabit fast

- G.mgfast is the project defining the MGfast technology
- New project to address functionality beyond G.fast
 - Profiles beyond 212 MHz (e.g., 424 MHz and 848 MHz)
 - Full-duplex operation (echo cancelled mode)
 - Co-exist with G.fast in overlapping frequency bands through mutual vectoring
- Targets
 - Aggregate data rates of 5 10 Gbit/s over single TP/coax.
 - Operation over twisted pair, quad and coaxial cable.
 - Consent mid 2019.
- Open points under discussion
 - Topologies: (multi?)point-to-(multi?)point
 - Advanced coding (e.g., LDPC)
 - Multi-stream support for QoS differentiation / 5G slicing
 - Convergence of access and in-home networking

PSD Construction Tools

Subcarrier masking

- Eliminates transmission on one or more subcarriers
- A subcarrier mask (SM) is defined as a number of masked frequency bands (start stop subcarrier index)
- Notching of specific frequency bands
 - To protect radio services one or more specific frequency bands can be notched
 - Notch in the notching mask (NM) in defined start and end subcarrier index
 - Within the notched band, all subcarriers shall be turned off and emission shall be at least 20 dB below the limit mask

• PSD shaping

- Power spectral density (PSD) shaping allows reduction of the transmit PSD mask in some parts of the spectrum
- PSD shaping mask (PSM) consists of one or more frequency segments. The boundaries of the segments are defined by set breakpoints
- Transceiver shall support at least 32 PSM breakpoints

G.fast Profiles & Limit PSD (ITU-T G.9700)

- G.9700 contains the limit mask definitions for the profiles
 - 106 MHz
 - 212 MHz
- G.9700 provides PSD construction tools (masking, notching, shaping)

Transport network support of IMT-2020/5G

<u>GSTR-TN5G</u>: Transport network support of IMT-2020/5G (Revised in Oct. 2018)

- A reference model of IMT-2020/5G network and a set of deployment scenarios.
- Requirements on transport networks in order to support IMT-2020/5G networks
- Interfaces between IMT-2020/5G entities and transport networks
- Aspects of transport network support include network slicing (data plane and control plane), synchronization, and Control/Management.

Fronthaul

- Conventionally, the fronthaul link is between RF and the remaining L1/L2/L3 functions (Option 8 split point)
- Option 8 centralizes high layer functions but requires stringent latency and high bandwidth
- It is critical to consider tradeoffs between throughput, latency, and functional centralization.

Signal processing chain of 4G and 5G wireless base stations and optional split points source: 3GPP TR 38.801, "Technical Specification Group Radio Access Network; Study on new radio access technology: Radio access architecture and interfaces", March 2017

Fronthaul by PON

Standards and supplements on PON

- Related Recommendations include:
 - G.9807 series (XGS PON) <u>G.9807.1</u> (10G symmetric PON),
 <u>G.9807.2</u> (reach extension)
 - G.989 series (NGPON2) 40-Gigabit-capable passive optical networks (<u>G.989</u> (Definitions), <u>G.989.1</u> (General requirements), <u>G.989.2</u> (Physical layer), <u>G.989.3</u> (TC layer))
- Ongoing work:
 - <u>G.suppl.66</u>: 5G wireless fronthaul requirements in a PON context
 - Requirements for 5G wireless fronthaul in the setting of optical access networks
 - Practical passive optical network solutions

Radio over fiber for 5G fronthaul (ITU-T G.9803)

CPRI over OTN for 5G fronthaul

- <u>G Suppl. 56</u>: OTN transport of CPRI signals
 - Describes alternatives for mapping and multiplexing CPRI client signals into the optical transport network (OTN)
 - Shows examples but does not specify standard methods
 - Relates to G.872 (OTN architecture), G.709(.x) series (OTN interfaces), G.798 (OTN equipment) and G.959.1 (OTN physical layer interfaces)

Optical transport network (OTN) beyond 100 Gbit/s

- ITU-T <u>G.709</u>: Interfaces for the optical transport network
- ITU-T <u>G.709.1</u>: Flexible OTN short-reach interface
- ITU-T <u>G.709.2</u>: OTU4 long-reach interface (under approval process)
- ITU-T <u>G.709.3</u>: Flexible OTN long-reach interface
- G.Sup.5gotn: Application of OTN to 5G transport (new work item)
 - Describes how to use the current OTN standards for this application
 - Plan to approve it at July 2019 SG15 meeting
- G.ctn5g: Characteristics of transport networks to support IMT-2020/5G (new work item)
 - Follow-up to GSTR-TN5G: it goes down to the lower level of details
 - Plan to approve it at July 2019 SG15 meeting

Wavelength division multiplex (WDM) technologies

- ITU-T G.695: Optical interfaces for coarse wavelength division multiplexing applications
- ITU-T G.698.4: Multichannel bi-directional DWDM applications with port agnostic single-channel optical interfaces
- ITU-T G.959.1: Optical transport networks physical layer interfaces

Frequency synchronization for 5G

- Requirements on performance and management of the frequency synchronization are defined in the ITU-T G.826x series
- ITU-T G.8265 describes the architecture and requirements for packet-based frequency distribution in telecom networks
- ITU-T G.8261 provides the network architecture and requirements related to physical layer-based frequency synchronization
- ITU-T G.8262.1 is being developed to define enhanced performance requirements of the physical layer clock, and this clock can be used in supporting a more accurate time synchronization
- ITU-T G.8265.1 defines the Precision Time Protocol telecom profile for frequency synchronization

Time synchronization for 5G

- Requirements on performance and management of time synchronization are defined in the ITU-T G.827x series
- General time synchronization architecture is defined in ITU-T G.8275 ۲
- Time synchronization requirements and network reference models have been defined by ITU-T G.8271 and ITU-T G.8271.1
- Requirements on performance and management of time synchronization are defined in the ITU-T G.827x series
- General time synchronization architecture is defined in ITU-T G.8275
- ITU-T G.8273.x series of recommendation defines clocks to be used for time synchronization; A new generation of more accurate clocks is being defined addressing the needs of future networks (e.g., Ethernet-based fronthaul)
- ITU-T G.8275.1 defines the Precision Time Protocol telecom profile for phase/time synchronization with full timing support from the network; G.8275.2 defines Precision Time Protocol Telecom Profile for time/phase synchronization with partial timing support from the network
- Time synchronization requirements and network reference models have been defined by ITU-T G.8271 and ITU-T G.8271.1; New synchronization solutions and network reference models are being developed to allow the distribution of timing with increased accuracy and reliability 25

Management & Control of Transport Network supporting IMT-2020/5G

- <u>GSTR-TN5G</u> (2/2018) focuses on the requirements on transport networks in order to support IMT-2020/5G networks.
 - Transport network technologies are those that are in the scope of SG15, including Photonic, OTN, Carrier Ethernet, MPLS-TP and PON, etc.
- Q14/15 is responsible to develop the specifications for the management & control of transport network resources, encompassing MCC* requirements, protocol-neutral Information Models (IM) and protocol-specific solutions (Data Model DM) for common transport functionality, and transport technology-specific functionality (e.g., OTN, Carrier Ethernet, MPLS-TP, Photonic).
 - Common: ITU-T G.7710 (Requirements), ITU-T G.7711 (Core IM)
 - OTN: ITU-T G.874 (Requirements), ITU-T G.874.1 (Base IM)
 - Carrier Ethernet: ITU-T G.8051 (Requirements), ITU-T G.8052 (Base IM), ITU-T G.8052.1 (OAM IM & DM), ITU-T G.8052.2 (Resilience IM & DM)
 - MPLS-TP: ITU-T G.8151 (Requirements), ITU-T G.8152 (Base IM)
 - Photonic: G.media-mgmt (Requirements and Base IM)
- These IM & DM specifications can be used to derive the specific MCC interfaces, such as
 - Between transport NEs and SDN controllers, between SDN controllers of adjacent layers, between SDN controllers and Applications, and between SDN controller and administrative role
 - * MCC Management-Control Continuum: The concept whereby management and control functions are considered to be a continuum is known as the management-control continuum (MCC)

