ITUEvents

Econometric analysis of the contribution of broadband, digitization and ICT policy in Europe and CIS countries

Raul Katz, ITU Consultant

ITU Regional Economic Dialogue on Information and Communication Technologies (RED-2019) for Europe and CIS

30-31 October 2019, Odessa, Ukraine

METHODOLOGY: THREE ECONOMETRIC MODELS

Economic impact of broadband

Economic impact of digitization

Impact of policy on digitization

	Aggregate Production function:	(1)		
	GDPit=a1Kit+a2Lit+a3Mob_Penit+ eit			
	Demand function:	(2)		
	Mob_Pen _{it} =b ₁ Rural _{it} +b ₂ Mob_Price _{it} +b ₃ GDPC _{it} +b ₄ H	HI _{it} +e _{it}		
	Supply function:	(3)		
	Mob_Rev _{it} =c ₁ MobPr _{it} +c ₂ GDPC _{it} +c ₃ HHI _{it} +			
	Output function:	(4)		
	$\Delta Mob _Pen_{it} = d_1 Mob _Rev_{it} + \varepsilon_{4it}$			
	$\Delta Mob _Pen_{it} = d_1 Mob_Rev_{it} + \varepsilon_{4it}$ $Y = A(t)K^{1-b}L^{b}$			
whe	ere			
	A(t) represents the level of technology progress (in our case the digitization	index),		
	K corresponds to the fixed capital formation, and			
	<i>L</i> to the labour force.			
By a moa	converting all terms to logarithms, the coefficients can be estimated throug del.	h an econc	ometric	
	$log(GDP_{it}) = a_1 log(k_{it}) + a_2 log(L_{it}) + a_3 log(D_{it}) + \varepsilon_{it}$			
	Dig. Index _{it} = β_1 Reg. Index _{it} + Year F. E. +Country F. H	E.+e _{it}		
Beyond measuring the correlation between both variables, a model with lagged variables was devel- oped. In this case, the specified model is as follows:				
D	ig. Index _{it} = β_1 Reg. Index _{it} + β_2 Reg. Index _{it-1} + Year F. E. +Cou	intry F. E.	$+e_{it}$	
Fir	Finally, the variables were converted to logarithms to test causality of change in values of both indices			
ln	n (Dig. Index _{it}) = β ₁ ln (Dig. Index _{it-1}) + β ₂ ln (Reg. Index _{it-1}) + Year F. E. +Country F. E. +e _{it}			

Economic impact of fixed broadband	 Higher income countries: 10 per cent increase in broadband penetration yields 1.4 per cent increase in GDP growth. Middle income countries: 10 per cent increase in broadband penetration yields 0.5 per cent increase in GDP growth. Low income countries: while the coefficient of fixed broadband impact was similar to the middle impact countries, it was not statistically significant.
Economic impact of mobile broadband	 High income countries: no economic impact was detected. Middle income countries: An increase of 10 per cent in mobile broadband penetration yields an increase in 1.8 per cent in GDP. Low income countries: An increase of 10 per cent in mobile broadband penetration yields an increase in 2.0 per cent in GDP.
Economic impact of digitization	 <u>OECD countries</u>: An increase of 10 per cent in the CAF Digital Ecosystem Development Index resulted in a 1.4 per cent growth in GDP per capita. <u>Non-OECD countries</u>: An increase of 10 per cent in the CAF Digital Ecosystem Development Index yielded a 1.0 per cent growth in GDP per capita.
Policy impact on digitization	the importance of the regulatory and institutional variable in driving digital ecosystem growth. An increase of 10 per cent in the ITU ICT Regulatory Tracker yielded a positive increase in the CAF Digital Ecosystem Development Index of 0.348 per cent in the subsequent time period.

Commonwealth of Independent States: Economic Impact of Fixed and Mobile Broadband and Digitization, 2019

Europe: Economic Impact of Fixed and Mobile Broadband and Digitization, 2019

ITUEvents

Thank You

Raul Katz, ITU Consultant

For further information please contact: Raul.Katz@teleadvs.com

BUSINESS

OPPORTUNITIES

BEST

PRACTICES

ITU Regional Economic Dialogue on Information and Telecommunication Technologies (RED-2019) for Europe and CIS

30-31 October 2019, Odessa, Ukraine

COSTING & PRICING

STRATEGIES

ECONOMIC

TOOLS

INNOVATIVE BUSINESS

MODELS