Impact of 5G technology on human exposure

Expert Meeting: Electromagnetic Field Level and 5G Roll-out 2-3 November 2017, Rome, Italy

> Dr. Fryderyk Lewicki ITU-T SG5, Chairman of WP1 Orange Polska, Poland

ITU-T SG5 "Environment, Climate Change and Circular Economy" Vision

Setting Environmental Requirements for 5G

future 5G systems

Technical Report on Methods and metrics to evaluate energy efficiency for future 5G systems

ITU-T Technical Paper
di May 2017) (34 May 2017)
SERVES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF TELECOMMUNICATION CABLES IN PUBLIC INSTRUCTIONS
Study on methods and metrics to evaluate energy efficiency for future 5G systems

This Technical Paper analyses the energy efficiency issues for future 5G systems.

ITU – ETSI Workshop on Towards Setting Environmental Requirements for 5G

Get an up-to-date analysis of environmental requirements related to 5G and help us to identify posible future activities in this field!

Date: 23 November 2017

Venue: ETSI Headquarters, Sophia Antipolis, France Visit: http://itu.int/go/tsg05

- Heterogeneous network much more base stations including small cells
- Much shorter distance to the users
- Much more wireless devices (IoT)
- New much higher (microwave) frequencies
- Smart antennas antenna beam following the user location
- Massive MIMO antennas

Enhanced Mobile Broadband

5G NR Time Table

- 5G New Radio (NR) standard is still under development expected to be finished in 2020
- All current implementations represent some form of the implementation of chosen features of 5G NR system only
- 5G NR system will use frequencies currently used by mobile communication and will operate with older systems in parallel

Source: Commerce Spectrum Management Advisory Committee (CSMAC), 5G Subcommittee, Final Report, August 1, 2016

Review of the exposure limits

- The exposure limits in most countries are that recommended by WHO and based on ICNIRP or IEEE guideline
- In some countries exposure limits are much more restrictive
- Because of increasing number of radiating sources and operating frequencies it may be expected that the compliance with exposure limits will be more difficult to achieve
- Smart antennas with narrow beams may decrease the exposure level in the environment

Frequency	ICNIRP limit	IEEE limit	Example of more restrictive limits						
band	(UE etc.)	C.95.1-2005							
Basic restrictions									
10MHz <f<3ghz< td=""><td>0.08 W/kg</td><td>0,08 W/kg</td><td>-</td></f<3ghz<>	0.08 W/kg	0,08 W/kg	-						
3GHz <f<10ghz< td=""><td>0,08 W/kg</td><td>10 W/m²</td><td>-</td></f<10ghz<>	0,08 W/kg	10 W/m ²	-						
10GHz <f<300ghz< td=""><td>10 W/m²</td><td>-</td></f<300ghz<>	10 W/m ²	-							
Reference levels									
	2W/m ² -10W/m ²	2W/m ² -10W/m ²	0,1 W/m² (7V/m)						
400101112<1<2GH2	(28 V/m-61V/m)	(27.5 V/m-61V/m)							
f>2GHz	10 W/m² (61 V/m)	10 W/m² (61 V/m)	0,1 W/m² (7V/m)						

Smart antennas

- Current mobile systems: 2G, 3G and 4G apply base stations that are covering the whole intended area
- Smart antennas, that are planned for use in 5G will have narrow antenna beam (or beams) directed directly to the user (or users)
- This will allow to substantially reduce exposure in the environment

5G NR heterogeneous networks

- 5G NR radio access network will combine all types of cells: macro, micro, small and piko/femto
- Band aggregation and site sharing will increase the total radiated power from many base stations especially macro base stations

5G NR small cells

- Small cells will be much widely used especially for the high speed transmission that require very broadband (high frequency) transmission
- Small cells and use of the high frequencies means lower coverages base stations will be located close to the user, but the power used will be also small
- Current experience shows that the use of small cells (indoor and outdoor) reduce overall exposure level

Current exposure levels

- In Table below there is presented results of measurements of the electric field strength in about 3000 measurement points made by Franch Agency ANFR in 2014-2016 (Etude de l'exposition du public aux ondes radioélectriques, ANFR, October 2017)
- In more than 80% of locations the exposure level is lower than 1 V/m
- In less than 1% of locations the exposure level is higher than 6 V/m

								100	in ANFR measurements from 2014-2016
		1						100	
Année	E (V/m)	≥1V/m	≥ 2 V/m	≥ 3 V/m	≥ 4 V/m	≥ 5 V/m	≥ 6 V/m	× 10 -	<u>\</u>
2014	Occurrence (%)	18,3 %	5,5 %	2,8 %	1,7 %	1 %	0,6 %	curence [
2015	Occurrence (%)	18,4 %	5,2 %	2,1 %	1,2 %	0,7 %	0,4 %	ö 1 – 0	0 1 2 3 4 5 5
2016	Occurrence (%)	18,4 %	5,3 %	2,3 %	1,5 %	1,1 %	0,7 %	0.1	Exposure level [V/m] higher than values on x axis

2014 2015 2016

Occurance [%] of Exposure levels [V/m]

Internet of things (IoT), M2M

- It is expected that many devices will be connoted to the internet using radiowaves because it allow for many new improvement of our life
- It means that the number of radiating source will increase dramatically
- But almost all such devices will be very low power and short range and will communicate on the event-based, periodic and automatic communication modes
- It means that the exposure level from such devices will be very low

Conclusions

- 5G NR system will have many differences in comparison with current mobile systems
- As a new system it will apply many new features that increase its efficiency and flexibility
- The reduction of the impact on EMF is one of the most important issues taken into account in 5G NR system development
- It may be assumed that 5G NR system will not increase the exposure level in human environment
- In the first stage of 5G implementation it has to operate in parallel with current mobile system and in this time the exposure level may slightly increase

Thank you Questions ?

