

Policy and Regulatory Implications of Big Data and Cloud Computing

Paul Ulrich, Senior Policy Manager for Asia Pacific, GSMA, pulrich@gsma.com ITU Workshop on Big Data and Cloud Computing, Tashkent, Uzbekistand, 20 June 2018

Policy & Regulatory Implications of Big Data & the Cloud

- 1. Big Data
- 2. Artificial Intelligence (AI)
- 3. Cloud Computing
- 4. Regulatory framework for the Internet of Things (IoT);

Evolution in Computing

1980s: the Personal Computer

1990s: the Local Area Network

2000s: Data Centers and the Cloud

2010s: (Mobile) Edge Computing

From hard drives to data warehouses for structured data ...

... to data lakes for potentially unstructured data:

1. Organized, partially organised, and unorganised data flow in;

2. Analyzed and processed data flow out – to data warehouses, to data consumers, and for screening by security.

Laws of Accelerating, Exponential Returns on IT

- Moore's Law: speed cost halves every 18 months
- Kryder's Law: memory cost halves every year
- Nielsen's Law: bandwidth cost halves every two years

From AI to Machine Learning to Deep Learning

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learnin(

Subset of machine learning in which multilayered neural networks learn from vast amounts of data AI: works like human mind, via pattern recognition

Machine Learning: labor-intensive pre-ID'ing of objects with supervised training;

Deep Learning: self-learning, sophisticated algorithms of multilayered (i.e. "deep") matrix-algebra computations

The Singularity is still decades away.

Focus on narrow, rather than general, AI: domain-specific, machine-learning solutions based on specific algorithms for narrow tasks such as customer-service chat bots

AI – machine, man, or both? Results from the chess masters:

Centaurs or cyborgs, i.e. man and machine in combination, outperform machine alone.

AI – What can it do?

A virtuous circle of more data yielding better algorithms that make for better products and services, which attract more users, who provide still more data ...

Sample Uses of Robotics and AI in Agriculture

Do governments need to protect jobs from AI? 1920 1940 1960 1980 2000 2020 DOES MACHINE DISPLACE Will Robots Take Our Children's Jobs? MARCH OF THE MACHINE MAKES IDLE HANDS New Studies Cited as Old Argument Will Gerry Income: Journal Occa AN ALCOHOL LINE AND IN ANT Is Renewed Over Significance of a or eichtern ny ens dae is geliefen a "Technological Unemployment" the bell of the second state ant opposition formal interio. IN CRUTHER A REG THE ATAL WRITE inter " L'adread out that are 200,000 a Year Will Lose Jobs 2044 Reference to the second of a Grane Reference to the second of the second of the second of the second of the second many second of the second of the second second second of the second of the second second of the second of the second s By MILLION BRACEFR the Lord of the factor and the the contrast difficult should also the methods beautifulary. For sector of New technology ien't a pasaora moderness in den angebra regioner versioner et angebra tradictioner internet and tradictioner internet and Market angebra Market in the second state of the second state of the second state in the second state of the second state of the second state in the second state of the second and the to the second a second and a second A Robot Is After Your Job A Robot br in initial Set. NEETE Bi-dura, as families, investigation SELVICE VALUES C ture at them to the

FINED DEDKING

Source: New York Times, 2/26/1928, article by Evans Clark. Originally sourced from Louis Anslow, "Robots have been about to take all the jobs for more than 200

Push for explainable, responsible, ethical AI

Issues of liability for AI

Principles of a Regulatory Framework

Based on Functionality	Pursue regulatory goals of functional objectives, not legacy structures of industries or technologies		
Dynamic	Prefer performance-based approach via <i>ex-post</i> enforcement over prescriptive, <i>ex-ante</i> rules		
Bottom-up Assessment	Consider new approaches to address current realities and whether old rules still apply.		

The EU's GDPR versus a possible US approach

The US Privacy Shield as a workaround for "adequacy"

Willingness to share personal data in return for benefits

The range of IoT-equipped devices: from C-IoT to I-IoT

Technical Architecture for IoT

The IoT will extend across national borders

How will we regulate such IoT data in global supply chains?

Data localisation is pervasive ...

Policy Rationale	Countries Requiring Localisation
Users' privacy and security	Australia, Brazil, China, EU, France, Germany, Indonesia, Malaysia, Russia, South Korea, Vietnam
Foreign surveillance	Brazil, Canada, China, France, Germany, India, Russia
National Security / Law Enforcement	China, France, Indonesia, India, Russia, South Korea, Vietnam
Economic Development	France, Nigeria
National sovereignty	Indonesia

Source: Chandler and Le, July 2017

Does data localization increase security?

No. Requiring local storage of personal data:

- (i) would not prevent foreign intelligence agencies from accessing it; and
- (ii) would weaken users' protection by concentrating data within a single jurisdiction, making it more susceptible to security breaches and natural disasters than if it were dispersed across many jurisdictions.

Big Costs from Localising Data (1)

to GDP, by country, from proposed laws and full localisation

Source: ECIPE CGE Simulations, August 2014

Big Costs from Localising Data (2)

Annual % hit to investment, by country, from proposed laws and full localisation

Source: ECIPE CGE Simulations, August 2014

Regulatory framework for the Internet of Things

Three messages from the GSMA for policy makers:

Principle	GSMA's Position	GSMA's Initiatives
1	Support investment and innovation via interoperable solutions to reduce deployment costs and facilitate scalability	Mobile IoT initiative in LPWA is an example of industry-led interoperable standards
2	Choose flexibility over mandated and specific models of deployment	Remote SIM provisioning shows a flexible solution, tailored to IoT service providers' needs
3	Foster consumer trust in IoT via industry-led self- regulation and risk management in privacy and security	The GSMA's privacy toolkit and IoT security guidelines exemplify industry-led solutions to IoT privacy and security.

Regulatory approach to protect IoT

Hackable networked homes, kitchen appliances, door locks, pacemakers, cars – a lot to keep track of

Regulatory approach to maintain IoT

Predictive Maintenance Samsara

Shared Transportation Mobike

Fitness Motiv

Home

Precision Cooking Joule

Who maintains the code if vendor discontinues support or goes bust?

- Make interoperable •
- Requirement of a ulletperformance bond

New security challenges require new best practices

Companies need to ensure ...

AVAILABILITY	IDENTITY	PRIVACY	INTEGRITY
Ensuring constant connectivity between Endpoints and their respective services	Authenticating Endpoints, services, and the customer or end-user operating the Endpoint	Reducing the potential for harm to individual end-users.	Ensuring that system integrity can be verified, tracked, and monitored.

... in services and devices with these characteristics:

LOW COMPLEXITY	LOW POWER	LONG LIFECYCLES	PHYSICALLY ACCESSIBLE
 Low processing capability. Small amounts of memory. Constrained operating system. 	 No permanent power supply Possibly permanent, but limited power supply. 	 Requires cryptographic design that lasts a lifetime. Manage security vulnerabilities that can't be patched within the endpoint. 	 Access to local interfaces inside the IoT endpoint. Hardware components and interfaces potential target of attackers.

GSMA's IoT Security Guidelines

gsma.com/iotsecurity

Risks of pervasive sensors & monitoring via IoT and AI

About the GSMA

