

loT

5G

-Mm

0

ATDI Software Use for Space Services Yerevan, 15 December 2017

())

≹

lte

-Mm **@ Lte (**) **5**G IoT 2 SWi Fi) AGENDA **ABOUT US ICS TELECOM EV - GENERAL** USE OF ICS TELECOM EV FOR SPACE SERVICES **USE CASE: IMT AND FSS**

ATDI is a global market leader in solutions for the design, planning and modelling of radio networks and spectrum management.

- Established in 1991 in Paris
- I00+ experts from 29 countries in II global offices
- More than 2000 customers worldwide, including 90+ spectrum regulation authorities

ATDI's Offices

Paris (HQ) | Washington | Madrid | London | Warsaw | Kyiv | Moscow | Tel Aviv | Mumbai | Singapore | Sydney

An all-in-one software solution for the design, deployment and optimization of radiocommunication networks

Challenge

At high frequencies, diffraction losses become so high that there is an almost binary switch between 'served' and 'unserved' areas as shadowing by environmental clutter interrupts the line-of-sight between base station and user.

<u>Solution</u>

Using generic deterministic propagation models, mmWave stations can be computed at the same time as VHF/UHF and SHF stations with ATDI solution.

Carrier aggregation simulations | mmWave coverage planning | Coverage planning (2D/3D) | Interference calculations | Capacity planning (DL/UL throughput) | Traffic analysis | Monte Carlo simulations | Automated site planning | Automated site optimization | Automated frequency planning | Refarming frequency bands and intersystem coexistence | Transport (microwave) planning

Iot 5G Ite ₹ I</

- Multi-technology platform
- Full 3D propagation engine
- Mixed indoor/outdoor calculations
- Interference analysis and frequency planning
- Population and traffic analysis
- Prospective planning (site searching)
- Integrated GIS, raster and vector layers

- Technology evaluation
- Network design and planning
- Business modelling
- System administration
- International and regional coordination
- Spectrum monitoring
- Environmental constraints

USE OF ICS TELECOM EV FOR SPACE SERVICES

Lte

5G

IoT

SWiffi

-Mm

A software for space services for administrations

ITU-BR Space Software

lte

5G

IoT

- Help an ADM in the preparation of Electronic Filings to the ITU:
 - According to the RR (Articles 9 and 11, Appendices 30,30A,30B)
 - In the appropriate submission format (Appendix 4)
 - In compliance with the technical and operational limits (Articles 5, 21, 22, etc., Appendices 30,30A,30B)
 - Using the appropriate methods to identify potential coordination requirements (Appendices 7,8, 30,30A,30B, etc.)
- Run technical exams on satellite networks of other administrations to assess their impact on ADM's space/terrestrial networks (essentially already done by the BR)

$\mathbf{IoT} \quad \mathbf{5G} \quad \mathbf{Ite} \quad \mathbf{\overleftarrow{5}} \quad \mathbf{\overleftarrow{5}}$

A software for space services for administrations

ATDI Software

Helps the administrations to extend the analysis to the national level:

- Planning of the satellite network
- Inter-service analysis of the affect of a satellite network on/from other services in the same country:
 - ✓ Allocated Terrestrial Service → Allocated Satellite Service
 - Studies on Future Terrestrial Service \rightarrow Future Satellite Service
 - Studies on Future Satellite Service \rightarrow Future Terrestrial Service

ICS telecom EV with BR IFIC – Export from Space BRIFIC

Interface with the Space BRIFIC and GIMS databases:

₹

lte

5G

loT

Satellite: 5.SAT					×	
Callsign HISPASAT-	Color	Type : GSO	 Description 	HISPASAT-1	* p f	
Notice 90500187	Info notice r	b: 90500187, beam 'RX	polar (1E-99)		Press	
Beam RX	WIC/IF	IC publication 1990 (20/	08/1991) part		change line	
Range (T/R): 1e-99-1e-99 / 14.035-14.468 GHz Group ID Tx / Rx 0 / 90703543 *none = not selectable						
Attitude		Tx/Rx parameters		Antenna		
Longitude °	-31.0000	Nominal power (W)	0.0000	Max pointing error (roll+pitch) °	0.00	
Latitude °	0.0000	Max power (W)	0.00	Max pointing error (rotation yaw)	0.00	
StationKeepingError °	0.00	Tx gain (dB)	0.00	○Circular pattern ○Elliptical ○Ot	her OGXT	
Distance to earth centre km	42164	Rx gain (dB)	40.30	GXT file		
Boresight coord Earth boresight coordin;		Tx losses (dB)	0.00	Pattern type rec. 672-4, LN=-20 dB (side l	obe level) 🗸	
		Rx losses (dB)	0.00	1/2 power beamwidth 3 dB °		
Boresight longitude °	0.0000		ISO 🗹	1/2 power beamwidth 3 dB (major axis) °	0.0000	
Boresignt latitude *	0.0000	Tx frequency (GHz)	0.000000	1/2 power beamwidth 3 dB (major axis)	0.0000	
Boresight/earth centre (dist)	6378	Tx bandwidth (MHz)	0.000000		No error	
Boresight orientation °	0.0000	Rx frequency (GHz)	14.035000		() NO EITO	
Boresignt Euler angle phi *	0.0000	Rx bandwidth (MHz)	1.630000	Polarization	Clockwise	
Boresignt Euler angle theta *	0.0000	Rx antenna noise K	650.00	Polar axial ratio (Emin/Emax 1=circular)	0.00	
Boresight Euler angle psi °	0.0000	G/T (dB/K)	12.17	Angle of polarisation (rotation vaw)	0.0000	
Euler -> coordinates Coordinates -> Euler		Launch delay (usec)	0 upd		5.0000	
Circular orbit Inclination (-+180°) 0.0 Anomaly at T0 (deg) 0.0 Relative time T-T0 (sec) 0						
Model atten. 0 = R.618 (dB) 0.0 S4 0.00 (R.531) n.o. subscribers 0 BW occupancy MHz 0.00000C Loss dB 0.0						
ES ref: P46529 G=49.00 dB		ОК	Cancel]	< >	

-Mm

SWIFi

()

0

-Mm **Lte 5**G **(**) loT ₹ SWifi USE CASE: IMT AND FSS

WRC-15 Al 1.1: IMT Identification, C-band specific:

3400-3600 MHz: Global allocation to IMT, except some APT countries
3600-3700 MHz: No IMT, except 4 CITEL countries
3700-4200 MHz: No IMT

WRC-19 Agenda Item 1.13 – further spectrum identification for IMT

Over 33 GHz of spectrum are under study

Lte

5G

IoT

 Potential identification of IMT in frequency bands where FSS is allocated as a primary service:

Candidate band	Potential sharing band	Allocation in ITU Region I
24.25-27.5 GHz	24.65-25.25 GHz	FSS (E-s)
37.5-40.5 GHz	37.5-40.5 GHz	FSS (s-E)
40.5-42.5 GHz	40.5-42.5 GHz	FSS (s-E)
42.5-43.5 GHz	42.5-43.5 GHz	FSS (E-s)

Note: the 24.25-27.5 GHz ("the 26 GHz band") has been identified as a pioneer band for 5G mm-wave use in Europe.

-Mm

Based on predictions for a very high growth in demand for mobile traffic

Above 24 GHz:

The availability of wide contiguous bands, which would allow the use of wider bandwidth channels (100–500 MHz or more), and advanced antenna technologies:

- Significantly higher data rates to be delivered in areas of very high MBB traffic density
- Better range and reliability

I-6 GHz bands:

Offers a good mixture of coverage and capacity benefits.

Specifically, **the C-band (3.3-3.8 GHz)** is expected to form the basis of many initial 5G services, which will later on spread into higher frequencies.

Above 24 GHz:

- Traditional applications demand more BW: Increased demand for TV services in HD format, and deployment of UHD
- New applications and non-GSO constellations demand higher data rates: A shift towards Ka-band, and later to 40 GHz (V-band), is expected
- C and Ku-bands are highly congested, while finding a space in the traditional Kaband for a new system is also becoming a challenge

C-band:

- Wide coverage
- Favorable propagation characteristics
- Heavily used by satellites with total investments at ~USD 10bn

Satellite applications overview

Lte

TV Broadcast

5G

Fixed VSAT

IoT

Content Distribution

Governmental Use

Safety services

IP satellite video and hybrid broadcastbroadband

)

Comms on the move (connected planes, cars, ships, trains)

Consumer Broadband

-Mm

SWifi

Mobile Backhaul

ATD

M2M Communications

IMT vs FSS : C-band sharing scenario

(Possible) 5G BS parameters: Power: 5W Carrier BW: 20 MHz Gain: 5 dBi Rooftop antenna 2m

lte

FSS ES parameters: Antenna Gain: 34 dBi Carrier BVV: I MHz

5G

IoT

5G station is to be located at I-I2 km away from a satellite ES to meet the criteria for compatibility

5G vs FSS: mm-wave bands

5G

IoT

lte

(Possible) 5G BS parameters: Power: 5W Carrier BW: 100 MHz Gain: 5 dBi Rooftop antenna 2m

FSS ES parameters: Antenna Gain: 45 dBi Carrier BW: 100MHz Power: 100W

Red contour: 5G BS "restricted" area around FSS ES at 40 GHz → much smaller than in C-band

Blue coverage:Transmitting ES exceeds the compatibility criteria to a 5G BS at 25 GHz

IMT and FSS frequency sharing: a glance into the future

凿

Past experience

lte

loT

5G

- Technical difficulties to implement frequency sharing
- Applications overlap is not significant
- Winner takes it all approach: mobile "attack" and satellite "defend" spectrum

Future of IMT and FSS co-existence:

- Higher frequency bands could be easier to share
- Satellites may be an important part of the 5G ecosystem
- Frequency bands under discussions are relatively free

IMT and FSS frequency sharing: Conclusion

The technical analysis of the FSS vs IMT co-existence is becoming increasingly relevant

The use of appropriate radio engineering tools is mandatory for informed decisions on this case of frequency sharing:

- IMT and FSS features implemented in one tool
- Interface with most updated databases of IMT and FSS and space/earth stations

125009, Кузнецкий мост 4/3 стр. Москва, Российская Федерация **Тел:** +7 495 189 70 63

Спасибо за внимание!

