Overview of ITU-T activities on 5G/IMT-2020

Denis ANDREEV TSB, Advisor of ITU-T SG11

Terms & Definition

- IMT-2020 [ITU-R M-2083-0]: systems, system components, and related aspects that support to provide far more enhanced capabilities than those described in Recommendation ITU-R M.1645 (IMT-2000)
- IMT-2020 Radio:= IMT evolution + new RAT revolution
- IMT-2020 Network:= flat architecture + white-box-hardware + Virtualization + LINP/ Slices + Softwarization + MEC + DAN (ICN/ CCN) + e-2-e VoLTE enabling + ...

Terms & Definition (cont.)

- Slice: Logically isolated set of programmable infrastructure resources (i.e., physical and/or logical resources) to enable functions and services of IMT-2020 network
- Network Softwarization: Automation mechanism for the configuration deploying, managing and maintaining of network equipment and network components
- FMC: Capabilities that provide services and application to the end user regardless of the fixed or mobile access technologies being used and independent of the user's location

Service Trends

Source: NTTDocumo

Challenges & Gaps

Networks are challanged by wide range of requirements

IMT-2000, IMT-Advanced & IMT-2020

- All of today's 3G and 4G mobile broadband systems are based on the ITU's IMT standards
- IMT provides the global platform on which to build the next generations of mobile broadband connectivity
- ITU established the detailed specifications for IMT-2000 and the first 3G deployments commenced around the year 2000
- In January 2012, ITU defined the next big leap forward with 4G wireless cellular technology – IMT-Advanced – and this is now being progressively deployed worldwide
- The detailed investigation of the key elements of IMT-2020 is well underway, using the partnership ITU has with the mobile broadband industry and the wide range of stakeholders in the 5G community

IMT-2020 vision: 5G usage scenarios

Enhanced Mobile Broadband

Massive Machine Type Communications

Ultra-reliable and Low Latency Communications

IMT-2020 vision: 5G capability perspectives

The values in the figures above are targets for research and investigation for IMT-2020 and may be revised in the light of future studies. Further information is available in the IMT-2020 Vision Recommendation (Recommendation ITU-R M.2083)

IMT2020 Architecture Overview

IMT2020 Basic Reference Model

Ultra Low Latency Broadband Communication in IMT2020 Networks

ICN Information Centric Networking (new Y. 3071 – 03/2017)

- Recognition of user requests and their corresponding responses by networks due to its name based routing.
- Overlay/ native transport
- See also ITU-T Y.3032 "Configurations of node identifiers and their mapping with locators in future networks"

ICN Capabilities

Slicing

Example: 5G concept of end to end slice

If U is the set of all resource sets { Antennas, Fronthaul , ...} then

Slice S_i is a set of resource <u>subsets</u> taken from resource sets { Antennas, Fronthaul .. }

Key areas of study: (1) Network softwarization

- Softwarization: Designing, implementing, deploying, managing and maintaining networks using software
- Exploits characteristics such as flexibility and rapidity of design
- Softwarization creates conditions that enable the re-design of network and service architectures
- Optimization of costs and processes, self-management

Key areas of study: (2) Network slicing

- **Slice**: Unit of programmable resources, e.g., network, computation, storage
- Allows logically isolated network partitions
- Envisaged to cover a wide range of use cases with one network, e.g., one slice for voice communications, a separate slice for automated driving

Key areas of study: (3) Architecture enabling convergence

- Fixed access networks to interwork with radio access networks
- Goals for IMT-2020: A converged access-agnostic core identity, mobility, security, etc., are decoupled from the access technology
- Network architecture to support fixed / mobile convergence, with seamless user experience

Architecture discussion at a Focus Group meeting, Palo Alto, September 2016

5G, open source and IPR

There is a collaboration of ITU-T SGs with open source initiatives to develop proofs of concept addressing technical issues identified

- ITU-NGMN workshop on "Open Source and Standards in 5G" (25 May 2016)
- Conclusions:
 - Open source needed in the context of 5G
 - Open source components will complement the development of standards in 5G
 - Open source and standards are converging and both can benefit in 5G from each other, e.g., interoperability, virtualization of network functionalities or software defined networking
 - Open source and standards are not two different worlds, they do not live in silos, and close cooperation creates opportunities for both

FG IMT-2020 Workshop and Demo Day: Wireline

Technology Enablers for 5G

(Geneva, December 2016)

Report on Standards Gap Analysis

7	Gap an	alysis and recommendations to parent group	16
	7.1	High-level Architecture	16
	7.1.1	Standardization gaps on High-level Architecture	16
	7.1.2	Recommendations to parent group on High-level Architecture	21
	7.2	Network Softwarization	21
	7.2.1	Standardization gaps on Network softwarization	21
	7.2.2	Recommendations to parent group on Network softwarization	29
	7.3	End-to-end QoS	30
	7.3.1	Standardization gaps on end-to-end QoS	30
	7.3.2	Recommendations to parent group on End-to-end QoS	32
	7.4	Mobile front haul and back haul	33
	7.4.1	Standardization gaps on Mobile front haul and back haul	33
	7.4.2	Recommendations to parent group on Mobile front haul and back haul	37
	7.5	Emerging Network Technologies	37
	7.5.1	Standardization gaps on Emerging Network Technologies	37
	7.5.2	Recommendations to parent group on Emerging Network Technologies	43

FG IMT-2020: Report on Gap Analysis

(presented at SG13 meeting in December 2015)

Deliverables of <u>FG IMT-2020</u>

(FG IMT-2020 achieved nine deliverables, December 2016, see here)

- Draft **Terms and definitions** for IMT-2020 (IMT-O-040)
- Draft Technical Report: Report on application of **network softwarization** to IMT-2020 (IMT-O-041)
- Draft Recommendation: Requirements of IMT-2020 from network perspective (IMT-O-042)
- Draft Recommendation: Framework of IMT-2020 network architecture (IMT-O-043)
- Draft Recommendation: Requirements of IMT-2020 Fixed and Mobile Convergence (IMT-O-044)
- Draft Technical Report: FMC architecture based on Unified Network Integrated Cloud (IMT-O-045)
- Draft Recommendation: IMT-2020 Network Management Requirements (IMT-O-046)
- Draft Recommendation: Network Management Framework for IMT-2020 (IMT-O-047)
- Draft Technical Report: Application of information centric networking to IMT-2020 (IMT-O-048)

Current work items of SG13 on IMT-2020

(as of June 2017)

Work item	Q	Timing	Liaison relationship	Subject / Title
Handbook on IMT- 2000 (2nd Edition)	Q1/13	TBD	All ITU-T SGs, SDOs	The Handbook of evolving IMT-2000 Systems
<u>Y.IMT-2020.qos-</u> <u>mon</u>	Q6/13	2018-07	SG12/3GPP	IMT-2020 network QoS monitoring architectural framework
Y.IMT2020-terms	Q20/13	2017-11	-	Terms and definitions for IMT-2020
Y.IMT2020-reqts	Q20/13	2017-11	-	Requirements of IMT-2020 network
Y.IMT2020-frame	Q20/13	2017-11	-	Framework of IMT-2020 network
Y.IMT2020-arch	Q20/13	Q2 2018	-	Architecture of IMT-2020 network
Y.IMT2020-CE-Req	Q20/13	2017-11	_	Requirements of capability exposure in IMT-2020 networks
<u>Y.IMT2020-CEF</u>	Q20/13	Q2 2018	-	Capability exposure function in IMT-2020 networks
<u>Suppl. To</u> Y.IMT2020 serirs	Q21/13	2017-07	-	Standardization and open source activities related to network softwarization of IMT-2020
Y.IMT2020-MultiSL	Q21/13	Mid 2018	-	Framework for the support of Multiple Network Slicing
Y.IMT2020-mgmt- frame	Q21/13	2017-07	-	IMT-2020 Network Management Framework
Y.IMT2020-mgmt- req	Q21/13	2017-07	_	IMT-2020 Network Management Requirements
Y.IMT2020-NetSoft	Q21/13	2017-11	-	High level technical characteristic of network softwarization for IMT-2020

Current work items of SG11 related to IMT-2020 technologies

(as of June 2017)

Work item	Q	Timing	Liaison relationship	Subject / Title
<u>Q.rrp</u>	Q8/11	2017-11	ITU-T SG13	Request routing protocol for content delivery
X.mp2p-mssr	Q8/11	2017-07	ITU-T SG13, SG16, SG17, ISO/IEC JTC1/SC6	Managed P2P communications: Multimedia streaming signalling requirements
X.mp2p-mspp	Q8/11	2017-11	ITU-T SG 13, ISO/IEC JTC1/SC6	Managed P2P communications: Multimedia streaming peer protocol
X.mp2p-msomp	Q8/11	2017-11	ITU-T SG 13, SG 16, SG 17, ISO/IEC JTC1/SC6	Managed P2P communications: Multimedia streaming overlay management protocol
<u>Q. NEA-REQ</u>	Q7/11	2018-12	SG13, ETSI	Signalling Requirements of NFV Entity Management for Network Attachment
Q.SAN-MIM	Q7/11	2017-11	SG13, JCA-SDN, IEEE 802.21	Signalling requirements of SDN-based access networks with media independent management capabilities
Q.BNG-CFS	Q5/11	2019-07		Signalling requirements for control and forwarding plane separation in vBNG
<u>Q.BNG-DBoD</u>	Q5/11	2017-11	SG13, JCA-SDN	Signalling requirements for dynamic bandwidth adjustment on broadband network gateway implemented by SDN technologies
Q.BNG-IAP	Q5/11	2018-12		Signalling requirements of IP address pool based on broadband network gateway by SDN technologies
<u>Q.SCO</u>	Q4/11	2017-07	SG13, JCA-SDN	Scenarios and signalling requirements for SDN based Central Office
Q.SD-WAN	Q4/11	2019-03	ONUG, SG13	Signalling Requirement for SD-WAN service
<u>Q.SMO</u>	Q4/11	2018	SG13, JCA-SDN	Signalling requirements of Software-defined Metro Orchestration
Q.SVDC	Q4/11	2018-12	SG13, JCA-SDN	Signalling requirements of the Sew interface for Virtual Data Center

Existing ITU-T Standards related to IMT2020

Awareness	Approved Recommendations
Service	 Y.3011: Framework of network virtualization for future networks Y.3012: Requirements of network virtualization for future networks Y.3300: Framework of software-defined networking Y.3320: Requirements for applying formal methods to software-defined networking Y.3321: Requirements and capability framework for NICE implementation making use of software-defined networking technologies
Data	 Y.3031: Identification framework for future networks Y.3032: Configuration of node IDs and their mapping with locators in future networks Y.3033: Framework of data aware networking Y.3034: Architecture for interworking of heterogeneous component networks in FNs
Environment	Y.3021: Framework of energy saving for future networks Y.3022: Measuring energy in networks
Socio-Economic	Y.3013: Socio-economic assessment of future networks by tussle analysis Y.3035: Service universalization in future networks
Smart Ubiquitous Net.	Y.3041, Y.3042, Y.3043, Y.3044, Y.3045
Control plane	 Q.3051: Signalling architecture for the control plane of distributed service networking Supplement 67 "Framework of signalling for software-defined networking" Q.3315: Signalling requirements for flexible network service combination on broadband network gateway Q.3711: Signalling requirements for software-defined broadband access network Q.3712: Scenarios and signalling requirements of unified intelligent programmable interface for IPv6 Q.3713: Signalling requirements for Broadband Network Gateway (BNG) pool (under AAP, LC is 28.03.2017) Q.4040: The framework and overview of cloud computing interoperability testing

Resolution 93 of WTSA-16

"Interconnection of 4G, IMT-2020 networks and beyond"

Instructs the study groups

... to identify as soon as possible future ITU T Recommendations that need to be developed associated with the interconnection of 4G, 5G/IMT-2020 networks and beyond...

Instructs the study group 11

... to develop ITU-T Recommendations which specify the framework and signalling architectures to be used for establishing interconnection of 4G, IMT-2020 networks and beyond to achieve interoperability worldwide...

Instructs the study group 2

... to develop ITU-T Recommendations which specify the ENUM architecture to be used for networks and beyond...interconnection of 4G, IMT-2020

Resolves

... that ITU-T Recommendations to address network architectures, roaming principles, numbering issues, charging and security mechanisms as well as interoperability and conformance testing for interconnection of 4G, IMT-2020 networks and beyond shall be progressed as quickly as possible...

IMT-2020/5G Workshop and Demo Day

09:00 - 09:20	Opening and Welcome Opening Remarks Welcome Remarks
09:20 - 10:20	IMT-2020/5G related activities in ITU-T SGs
10:20 - 10:40	Coffee Break
10:40 - 12:00	5G Wireline Network and Aspects: a view by operators and vendors
12:00 - 13:30	Lunch
13:30 - 14:30	IMT2020/5G Demos and Proof of Concept
14:30 - 15:50	IMT-2020/5G Technical and Standard Progress in other groups
15:50 - 16:10	Cofee Break
16:10 - 16:50	(continuation) IMT-2020/5G Technical and Standard Progress in other groups
16:50 - 17:30	Demonstrations
17:30 - 17:50	Summary on workshop results by Study Group 13 Chairman

Geneva, Switzerland, 11 July 2017

Contact: tsbworkshops@itu.int

Web page: <u>https://www.itu.int/en/ITU-T/Workshops-and-</u> Seminars/201707/Pages/default.aspx

Conclusions

- The scope of IMT-2020 is broader than previous generations of mobile broadband communication systems
- Use cases foreseen include enhancement of the traditional mobile broadband scenarios as well as ultra-reliable and low latency communications and massive machine-type communications
- ITU's work in developing the specifications for IMT-2020, in close collaboration with the whole gamut of 5G stakeholders, is well underway, along with the associated spectrum management and spectrum identification aspects
- IMT-2020 will be a cornerstone for all of the activities related to attaining the goals in the 2030 Agenda for Sustainable Development
- Academia has the unique opportunity to participate in ITU's standardization activities and to contribute to the development of future 5G systems

Denis ANDREEV TSB, Advisor of ITU-T SG11

Email: denis.andreev@itu.int

