Overview of ITU-T activities on 5G/IMT-2020

Denis ANDREEV
TSB, Advisor of ITU-T SG11
Terms & Definition

- **IMT-2020 [ITU-R M-2083-0]:** systems, system components, and related aspects that support to provide far more enhanced capabilities than those described in Recommendation ITU-R M.1645 (IMT-2000)
- **IMT-2020 Radio:** IMT evolution + new RAT revolution
- **IMT-2020 Network:** flat architecture + white-box-hardware + Virtualization + LINP/ Slices + Softwarization + MEC + DAN (ICN/ CCN) + e-2-e VoLTE enabling + ...
Terms & Definition (cont.)

- **Slice**: Logically isolated set of programmable infrastructure resources (i.e., physical and/or logical resources) to enable functions and services of IMT-2020 network.

- **Network Softwarization**: Automation mechanism for the configuration deploying, managing and maintaining of network equipment and network components.

- **FMC**: Capabilities that provide services and application to the end user regardless of the fixed or mobile access technologies being used and independent of the user's location.
Service Trends

Everything connected by wireless
- Monitor/collect information & control devices
 - Multiple personal devices
 - Interaction across multiple devices
 - Transportation (Car/Bus/Train)
 - Entertainment, Navigation, Traffic information
 - Consumer electronics
 - Remote operation using personal terminal
 - Watch/jewelry/cloths
 - Human interface (HI) and healthcare sensors
 - House
 - Remote control of facilities
 - House security
 - Sensors
 - Smart power grid
 - Agriculture and farming
 - Factory automation
 - Weather/Environment
 - Cloud computing
 - All kinds of services supported by the mobile personal cloud
Extension/enrichment of wireless services
- Deliver rich content in real-time & ensure safety
 - Video streaming
 - 4K/8K video resolutions
 - Video on newspapers
 - Background video
 - New types of terminal/HI
 - Glasses/Tactile Internet
 - Healthcare
 - Remote health check & counseling
 - Education
 - Distance (remote) learning
 - Any lesson anywhere/anytime
 - Safety and lifeline system
 - Prevention of accidents
 - Robustness to disasters

Source: NTTDocumo
Challenges & Gaps

- **Latency**: 1 ms E2E Latency
- **Throughput**: 10Gbps Per Connection
- **Connections**: 1,000K Connections Per km²
- **Mobility**: 500 km/h High-speed Railway
- **Network Architecture**: LINP Ability Required

GAP
- **30~50x**
- **100x**
- **100x**
- **1.5x**
- **NFV/SDN**

LTE
- **30~50ms**
- **100Mbps**
- **10K**
- **350Km/h**
- **Inflexible**

Challenges because many of these requirements are conflicting.

Networks are challenged by wide range of requirements

Source: Huawei
IMT-2000, IMT-Advanced & IMT-2020

• All of today’s 3G and 4G mobile broadband systems are based on the ITU’s IMT standards

• IMT provides the global platform on which to build the next generations of mobile broadband connectivity

• ITU established the detailed specifications for IMT-2000 and the first 3G deployments commenced around the year 2000

• In January 2012, ITU defined the next big leap forward with 4G wireless cellular technology – IMT-Advanced – and this is now being progressively deployed worldwide

• The detailed investigation of the key elements of IMT-2020 is well underway, using the partnership ITU has with the mobile broadband industry and the wide range of stakeholders in the 5G community
IMT-2020 vision: 5G usage scenarios

- Enhanced Mobile Broadband
 - Gigabytes in a second
 - 3D video, UHD screens
 - Work and play in the cloud
 - Augmented reality
 - Industry automation
 - Mission critical application, e.g. e-health
 - Self Driving Car

- Smart Home/Building
 - Voice

- Smart City

- Future IMT

- Massive Machine Type Communications

- Ultra-reliable and Low Latency Communications
The values in the figures above are targets for research and investigation for IMT-2020 and may be revised in the light of future studies. Further information is available in the IMT-2020 Vision Recommendation (Recommendation ITU-R M.2083)
IMT2020 Architecture Overview

- **NaaS (LINEP, Slice)**
- **Virtualized Telco Functions**
 - Network Functions (Radio, EPC, IMS,..)
 - Other Functions
- **Resource Virtualization**
- **HW Resources**
 - Computing
 - Storage
 - Networking
- **Distributed Functions**
 - Edge Cloud
 - SDN enhanced Transport NW
 - Internet
- **Centralized Functions**
 - Centralized Cloud
Ultra Low Latency Broadband Communication in IMT2020 Networks

ICN Information Centric Networking (new Y. 3071 – 03/2017)

- Recognition of user requests and their corresponding responses by networks due to its name based routing.
- Overlay/ native transport
- See also ITU-T Y.3032 “Configurations of node identifiers and their mapping with locators in future networks”
Example: 5G concept of end to end slice

If \mathcal{U} is the set of all resource sets \{Antennas, Fronthaul, ..\} then

Slice \mathcal{S}_i is a set of resource subsets taken from resource sets \{Antennas, Fronthaul ..\}
Key areas of study: (1) Network softwarization

- **Softwarization**: Designing, implementing, deploying, managing and maintaining networks using software
- Exploits characteristics such as flexibility and rapidity of design
- Softwarization creates conditions that enable the re-design of network and service architectures
- Optimization of costs and processes, self-management
Key areas of study: (2) Network slicing

- **Slice**: Unit of programmable resources, e.g., network, computation, storage
- Allows logically isolated network partitions
- Envisaged to cover a wide range of use cases with one network, e.g., one slice for voice communications, a separate slice for automated driving
Key areas of study: (3) Architecture enabling convergence

- Fixed access networks to interwork with radio access networks
- Goals for IMT-2020: A converged access-agnostic core - identity, mobility, security, etc., are decoupled from the access technology
- Network architecture to support fixed / mobile convergence, with seamless user experience

Architecture discussion at a Focus Group meeting, Palo Alto, September 2016
5G, open source and IPR

There is a collaboration of ITU-T SGs with open source initiatives to develop proofs of concept addressing technical issues identified

- **ITU-NGMN workshop** on "Open Source and Standards in 5G" (25 May 2016)
- **Conclusions:**
 - Open source needed in the context of 5G
 - Open source components will complement the development of standards in 5G
 - Open source and standards are converging and both can benefit in 5G from each other, e.g., interoperability, virtualization of network functionalities or software defined networking
 - Open source and standards are not two different worlds, they do not live in silos, and close cooperation creates opportunities for both
FG **IMT-2020 Workshop and Demo Day**: Wireline Technology Enablers for 5G
(Geneva, December 2016)
Deliverables of FG IMT-2020
(FG IMT-2020 achieved nine deliverables, December 2016, see here)

- Draft Terms and definitions for IMT-2020 (IMT-O-040)
- Draft Recommendation: Requirements of IMT-2020 from network perspective (IMT-O-042)
- Draft Recommendation: Framework of IMT-2020 network architecture (IMT-O-043)
- Draft Recommendation: Requirements of IMT-2020 Fixed and Mobile Convergence (IMT-O-044)
- Draft Recommendation: IMT-2020 Network Management Requirements (IMT-O-046)
<table>
<thead>
<tr>
<th>Work item</th>
<th>Q</th>
<th>Timing</th>
<th>Liaison relationship</th>
<th>Subject / Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y.IMT2020-terms</td>
<td>Q20/13</td>
<td>2017-11</td>
<td>-</td>
<td>Terms and definitions for IMT-2020</td>
</tr>
<tr>
<td>Y.IMT2020-reqts</td>
<td>Q20/13</td>
<td>2017-11</td>
<td>-</td>
<td>Requirements of IMT-2020 network</td>
</tr>
<tr>
<td>Y.IMT2020-frame</td>
<td>Q20/13</td>
<td>2017-11</td>
<td>-</td>
<td>Framework of IMT-2020 network</td>
</tr>
<tr>
<td>Y.IMT2020-arch</td>
<td>Q20/13</td>
<td>Q2 2018</td>
<td>-</td>
<td>Architecture of IMT-2020 network</td>
</tr>
<tr>
<td>Y.IMT2020-CE-Req</td>
<td>Q20/13</td>
<td>2017-11</td>
<td>-</td>
<td>Requirements of capability exposure in IMT-2020 networks</td>
</tr>
<tr>
<td>Y.IMT2020-CEF</td>
<td>Q20/13</td>
<td>Q2 2018</td>
<td>-</td>
<td>Capability exposure function in IMT-2020 networks</td>
</tr>
<tr>
<td>Suppl. To Y.IMT2020 serirs</td>
<td>Q21/13</td>
<td>2017-07</td>
<td>-</td>
<td>Standardization and open source activities related to network softwarization of IMT-2020</td>
</tr>
<tr>
<td>Y.IMT2020-MultiSL</td>
<td>Q21/13</td>
<td>Mid 2018</td>
<td>-</td>
<td>Framework for the support of Multiple Network Slicing</td>
</tr>
<tr>
<td>Y.IMT2020-mgmt-frame</td>
<td>Q21/13</td>
<td>2017-07</td>
<td>-</td>
<td>IMT-2020 Network Management Framework</td>
</tr>
<tr>
<td>Y.IMT2020-mgmt-req</td>
<td>Q21/13</td>
<td>2017-07</td>
<td>-</td>
<td>IMT-2020 Network Management Requirements</td>
</tr>
<tr>
<td>Y.IMT2020-NetSoft</td>
<td>Q21/13</td>
<td>2017-11</td>
<td>-</td>
<td>High level technical characteristic of network softwarization for IMT-2020</td>
</tr>
</tbody>
</table>
Current work items of SG11 related to IMT-2020 technologies (as of June 2017)

<table>
<thead>
<tr>
<th>Work item</th>
<th>Q</th>
<th>Timing</th>
<th>Liaison relationship</th>
<th>Subject / Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.rrp</td>
<td>Q8/11</td>
<td>2017-11</td>
<td>ITU-T SG13</td>
<td>Request routing protocol for content delivery</td>
</tr>
<tr>
<td>Q. NEA-REQ</td>
<td>Q7/11</td>
<td>2018-12</td>
<td>SG13, ETSI</td>
<td>Signalling Requirements of NFV Entity Management for Network Attachment</td>
</tr>
<tr>
<td>Q.SAN-MIM</td>
<td>Q7/11</td>
<td>2017-11</td>
<td>SG13, JCA-SDN, IEEE 802.21</td>
<td>Signalling requirements of SDN-based access networks with media independent management capabilities</td>
</tr>
<tr>
<td>Q.BNG-CFS</td>
<td>Q5/11</td>
<td>2019-07</td>
<td></td>
<td>Signalling requirements for control and forwarding plane separation in vBNG</td>
</tr>
<tr>
<td>Q.BNG-DBoD</td>
<td>Q5/11</td>
<td>2017-11</td>
<td>SG13, JCA-SDN</td>
<td>Signalling requirements for dynamic bandwidth adjustment on broadband network gateway implemented by SDN technologies</td>
</tr>
<tr>
<td>Q.BNG-IAP</td>
<td>Q5/11</td>
<td>2018-12</td>
<td></td>
<td>Signalling requirements of IP address pool based on broadband network gateway by SDN technologies</td>
</tr>
<tr>
<td>Q.SCO</td>
<td>Q4/11</td>
<td>2017-07</td>
<td>SG13, JCA-SDN</td>
<td>Scenarios and signalling requirements for SDN based Central Office</td>
</tr>
<tr>
<td>Q.SD-WAN</td>
<td>Q4/11</td>
<td>2019-03</td>
<td>ONUG, SG13</td>
<td>Signalling Requirement for SD-WAN service</td>
</tr>
<tr>
<td>Q.SMO</td>
<td>Q4/11</td>
<td>2018</td>
<td>SG13, JCA-SDN</td>
<td>Signalling requirements of Software-defined Metro Orchestration</td>
</tr>
<tr>
<td>Q.SVDC</td>
<td>Q4/11</td>
<td>2018-12</td>
<td>SG13, JCA-SDN</td>
<td>Signalling requirements of the Sew interface for Virtual Data Center</td>
</tr>
</tbody>
</table>
Existing ITU-T Standards related to IMT2020

<table>
<thead>
<tr>
<th>Awareness</th>
<th>Approved Recommendations</th>
</tr>
</thead>
</table>
| **Service** | Y.3011: Framework of network virtualization for future networks
Y.3012: Requirements of network virtualization for future networks
Y.3300: Framework of software-defined networking
Y.3320: Requirements for applying formal methods to software-defined networking
Y.3321: Requirements and capability framework for NICE implementation making use of software-defined networking technologies |
| **Data** | Y.3031: Identification framework for future networks
Y.3032: Configuration of node IDs and their mapping with locators in future networks
Y.3033: Framework of data aware networking
Y.3034: Architecture for interworking of heterogeneous component networks in FNs |
| **Environment** | Y.3021: Framework of energy saving for future networks
Y.3022: Measuring energy in networks |
| **Socio-Economic** | Y.3013: Socio-economic assessment of future networks by tussle analysis
Y.3035: Service universalization in future networks |
| **Smart Ubiquitous Net.** | Y.3041, Y.3042, Y.3043, Y.3044, Y.3045 |
| **Control plane** | Q.3051: Signalling architecture for the control plane of distributed service networking
Supplement 67 “Framework of signalling for software-defined networking”
Q.3315: Signalling requirements for flexible network service combination on broadband network gateway
Q.3711: Signalling requirements for software-defined broadband access network
Q.3712: Scenarios and signalling requirements of unified intelligent programmable interface for IPv6
Q.3713: Signalling requirements for Broadband Network Gateway (BNG) pool (under AAP, LC is 28.03.2017)
Q.4040: The framework and overview of cloud computing interoperability testing |
Resolution 93 of WTSA-16
“Interconnection of 4G, IMT-2020 networks and beyond”

Instructs the study groups
... to identify as soon as possible future ITU T Recommendations that need to be developed associated with the interconnection of 4G, 5G/IMT-2020 networks and beyond...

Instructs the study group 11
... to develop ITU-T Recommendations which specify the framework and signalling architectures to be used for establishing interconnection of 4G, IMT-2020 networks and beyond to achieve interoperability worldwide...

Instructs the study group 2
... to develop ITU-T Recommendations which specify the ENUM architecture to be used for networks and beyond...interconnection of 4G, IMT-2020

Resolves
... that ITU-T Recommendations to address network architectures, roaming principles, numbering issues, charging and security mechanisms as well as interoperability and conformance testing for interconnection of 4G, IMT-2020 networks and beyond shall be progressed as quickly as possible...
IMT-2020/5G Workshop and Demo Day

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 09:00 - 09:20 | Opening and Welcome
- Opening Remarks
- Welcome Remarks |
| 09:20 - 10:20 | IMT-2020/5G related activities in ITU-T SGs |
| 10:20 - 10:40 | Coffee Break |
| 10:40 - 12:00 | 5G Wireline Network and Aspects: a view by operators and vendors |
| 12:00 - 13:30 | Lunch |
| 13:30 - 14:30 | IMT2020/5G Demos and Proof of Concept |
| 14:30 - 15:50 | IMT-2020/5G Technical and Standard Progress in other groups |
| 15:50 - 16:10 | Coffee Break |
| 16:10 - 16:50 | (continuation) IMT-2020/5G Technical and Standard Progress in other groups |
| 16:50 - 17:30 | Demonstrations |
| 17:30 - 17:50 | Summary on workshop results by Study Group 13 Chairman |

Geneva, Switzerland, 11 July 2017

Contact: tsbworkshops@itu.int

Web page: https://www.itu.int/en/ITU-T/Workshops-and-Seminars/201707/Pages/default.aspx
Conclusions

• The scope of IMT-2020 is broader than previous generations of mobile broadband communication systems

• Use cases foreseen include enhancement of the traditional mobile broadband scenarios as well as ultra-reliable and low latency communications and massive machine-type communications

• ITU’s work in developing the specifications for IMT-2020, in close collaboration with the whole gamut of 5G stakeholders, is well underway, along with the associated spectrum management and spectrum identification aspects

• IMT-2020 will be a cornerstone for all of the activities related to attaining the goals in the 2030 Agenda for Sustainable Development

• Academia has the unique opportunity to participate in ITU’s standardization activities and to contribute to the development of future 5G systems
Denis ANDREEV
TSB, Advisor of ITU-T SG11

Email: denis.andreev@itu.int