

СОДЕРЖАНИЕ

- 1. Особенности радиоконтроля радиорелейных линий
- 2. Поиск незарегистрированных радиорелейных линий
- 3. Аппаратура для регистрации микроволнового излучения
- 4. Чувствительность измерительных систем

Порядок присвоения и использования радиочастот РРЛ

- **1.** Лицо, планирующее использовать радио частоты, (заявитель) подаёт заявку Службе управления связи (RRT) с просьбой выделить частоту для радио релейной линии;
- **2**. RRT, после рассмотрения заявки, в случае выполнения всех требований (условий), принимает решение выделить частоту и, возможно, устанавливает основные условия её использования;
- **3**. заявитель выполняет все необходимые финансовые обязательства перед государством и RRT;
- **4**. RRT определяет условия использования частоты, выдаёт разрешение на её пользование и заносит в базу данных параметры радиорелейной линии.


RRT выдаёт разрешения на использование частот для радиорелейных линий в диапазоне от 1,35 GHz до 86 GHz.

RRT осуществляет радиоконтроль радиочастот (включая устранение радио помех). Эти услуги ежемесячно **оплачиваются** пользователями радиочастот.

Пользователи РРЛ

Реальные задачи радиоконтроля РРЛ

Основными реальными задачами радиоконтроля у RRT являются две:

- устранение помех;
- поиск несанкционированных РРЛ и, обычно, их последующая регистрация.

Устранение радиопомех РРЛ не требует особых усилий, поскольку заявки на их устранение поступают крайне редко: **1 заявка в 2-3 года**.

Основные усилия радиоконтроля РРЛ уходят на поиск незарегистрированных станций РРЛ.

Поиск незарегистрированных РРЛ

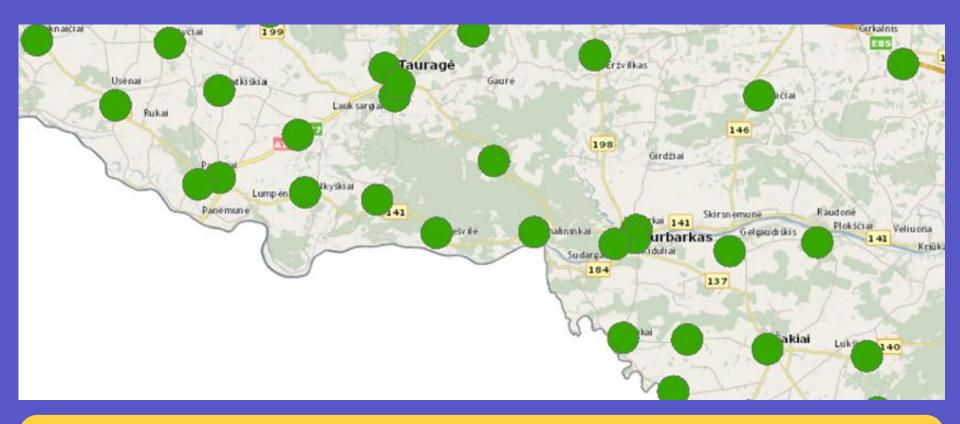
В общем случае поиск незарегистрированных РРЛ затруднён из-за сильной направленности излучения.

В RRT разработан эффективный метод поиска незарегистрированных РРЛ в сотовых сетях подвижной связи, где сосредоточено их основное количество.

Предпосылки метода:

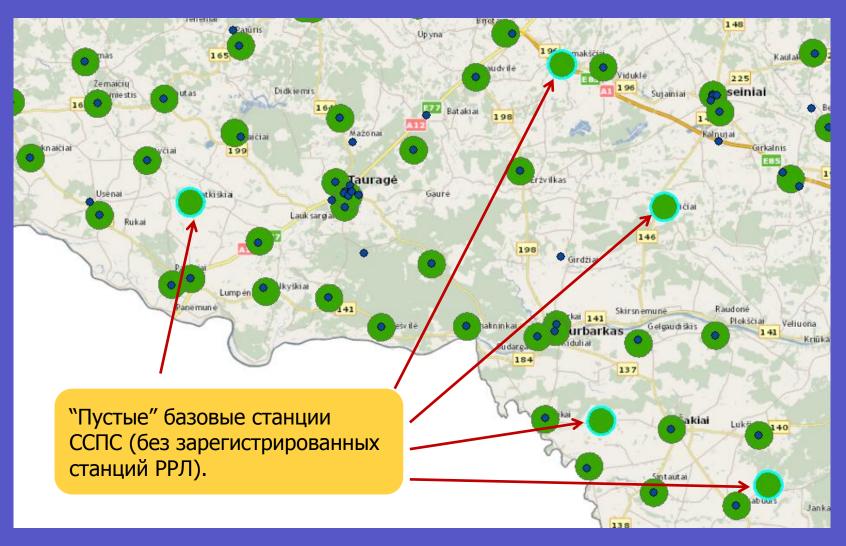
- В состав базовой станции сотовой сети подвижной связи (ССПС) обычно входит одна или несколько станций РРЛ, причём, практически все базовые станции ССПС зарегистрированы в RRT;
- в базах данных RRT имеются координаты всех зарегистрированных базовых станций ССПС и станций РРЛ.

Первый этап – поиск "на бумаге"



В итоге поиска находятся "пустые " базовые станции ССПС (не имеющие в своём составе зарегистрированных станций РРЛ)

Формирование районов поиска РРЛ станций

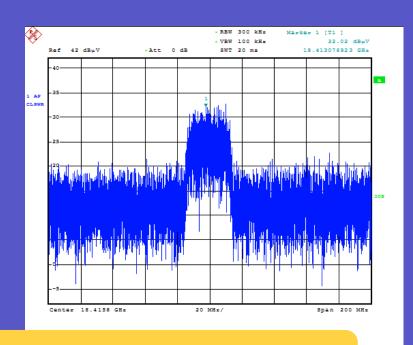


Чтобы избежать ошибок, обусловленных возможными расхождениями координат базовых ССПС и РРЛ станций в базах данных, вокруг базовых станций формируются круговые, радиусом 2 км, **зоны поиска** РРЛ.

Карта станций РРЛ, расположенных вблизи базовых станций ССПС

Второй этап – поиск на местности

Для поиска станций РРЛ и фиксации их излучений RRT использует специализированную мобильную СВЧ станцию радиоконтроля



Основное оборудование станции:

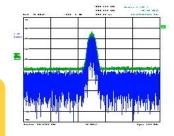
- анализатор спектра R&S®FSQ с диапазоном частот до 40 GHz;
- антенна R&S®AC025DP;
- антенна R&S®AC008.

Фиксация излучения РРЛ

Обычно фиксируется излучение

боковых лепестков антенны.

LIETUVOS RESPUBLIKOS RYŠIŲ REGULIAVIMO TARNYBOS RADIJO SPEKTRO KONTROLĖS IR RINKOS PRIEŽIŪROS DEPARTAMENTO VILNIAUS KONTROLES SKYRIUS


RADIJO DAŽNIŲ (KANALŲ) NAUDOJIMO PATIKRINIMO PROTOKOLAS

2011-05-03 Nr. (18.23) 1MP - 158 Vilnius

- 1. Dažnis (kanalas): 22,3755 GHz.
- 2. Data, laikas: 2011 m. balandžio 29 d. nuo 11 val. 20 min. iki 12 val. 00 min.
- 3. Radijo bangu šaltinis: radijo relinės linijos.
- 4. Radijo bangų šaltinio vieta: Svirkų k., Svenčionių r.

- 5. Šaukinys ar kitoks identifikavimas: UAB "Omnitel" GSM bazinė stotis 975D Svirkos.
- 6. Spinduliuotės klasė: 7M00D7W.
- 7. Diagrama: elektromagnetinio lauko stiprio priklausomybė nuo dažnio

Первый лист протокола проверки использования частоты

Чувствительность измерений (1)

Диапазон частот 18 - 40 GHz

Для регистрации излучения РРЛ используется активная антенна R&S®AC025DP и анализатор спектра R&S®FSQ. Коэффициент усиления по мощности интегрированного усилителя антенны заметно превышает коэффициент шума анализатора, поэтому чувствительность по полю измерительной системы определяется чувствительностью активной антенны.

Диапазон частот 1,35 - 18 GHz

Для регистрации излучения PPЛ используется пассивная антенна R&S®AC008 и анализатор спектра R&S®FSQ, поэтому чувствительность по полю определяется коэффициентом усиления антенны и коэффициентом шума анализатора.

Чувствительность измерений (2)

• В диапазоне частот 1,35-40 GH_Z нижний уровень измерения напряжённости поля ограничивается не радиошумами, а **внутренними шумами измерительной системы**. Их величина описывается выражением:

$$P(dBm) = 10\log(10^{\frac{NF}{10}} - 1) + 10\log B_n(MHz) - 114(dBm), \tag{1}$$

где NF – коэффициент шума измерительной системы, а B_n – шумовая полоса.

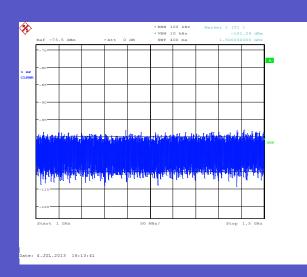
ullet Связь напряжённости поля с мощностью на клеммах антенны с усилением G_i описывает известное выражение:

$$E(dB\mu V/m) = P(dBm) + 20\log f(GHz) - G_i(dB) + 137dB.$$
 (2)

• Используя выражения (1) и (2) и пренебрегая потерями в антенном фидере, получаем следующее выражение для чувствительности по полю:

$$E(dB\mu V/m) = 10\log(10^{\frac{NF}{10}} - 1) + 10\log B_n(MHz) + 20\log f(GHz) - G_i(dB) + 23dB.$$
 (3)

Чувствительность измерений (3)



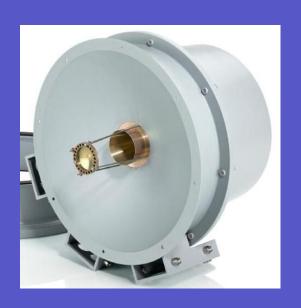
Уровень собственных шумов анализаторов спектра, как правило, характеризуется уровнем отображаемых шумов DANL (обычно, в полосе пропускания $1\ Hz$). В этом случае внутренние шумы измерительной системы описываются выражением:

$$P(dBm) = DANL + 10\log B_n(MHz) + 60dB, \tag{4}$$

а выражение для чувствительности по полю принимает следующий вид:

$$E(dB\mu V/m) = DANL + 10\log B_n(MHz) + 20\log f(GHz) - G_i(dB) + 197dB$$
. (5)

DANL в полосе 1 Hz и коэффициент шума NF связаны простым соотношением:


$$DANL(dBm) = 10\log(10^{\frac{NF}{10}} - 1) - 174dBm.$$
 (6)

У анализаторов спектра NF заметно больше $10 \ dB$ и поэтому выражение (6) упрощается:

$$DANL(dBm) = NF(dB) - 174dBm.$$
 (7)

Чувствительность активной антенны R&S®AC025DP

Расчётная чувствительность R&S®AC025DP практически не изменяется с частотой:

Частота <i>, GHz</i>	18	29	40
Чувствительность, $dB\mu V/m$	29.1	30	30.25

* $B_n = 5 MHz$

Основные параметры	Антенна	Усилитель
Диапазон частот, GHz	18 - 40	18 - 40
Поляризация	Линейная: вертикальная и/или горизонтальная	
Коэффициент усиления, dBi	26 - 32	Не менее 28
Коэффициент шума, dB		Не более 5

Чувствительность измерительной системы R&S®AC008+ R&S®FSQ

	Частота <i>,GHz</i>			
Основные параметры	1	7	13	26
Усиление антенны, dBi	15	32.5	37	42
DANL в полосе 1 Hz, dBm	-155	-153	-151	-147
Чувствительность, $dB\mu/m$	34	18.5	16	15

*
$$B_n = 5 MHz$$

Спасибо за внимание!

Спрашивайте!

Ph.D. Георгий Леонтьев
georgij.leontjev@rrt.lt
Служба управления связи Литовской Республики
www.rrt.lt