

Session 5: NB-IoT Networks

ITU Asia-Pacific Centre of Excellence Training On

"Traffic engineering and advanced wireless network planning"

17-19 October 2018, Suva, Fiji

Sami Tabbane

 Present the evolution of LTE towards LTE-M and NB-IoT for IoT services introduction

- I. Introduction
- II. LTE-M
- III. NB-loT
- IV. State of Art

I. Introduction

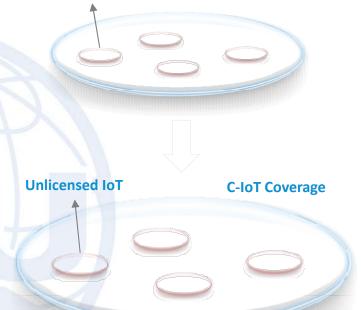
LPWA could account 70% of Cellular IoT Connections in 2020

Market Segment	Connections in 2020 (Billion)	Requirements	Technology
CCTV(Camera)In-vehicle Entertainm	ent 0.2B	I >10Mbps	3G/4G
IoT Gateway BackharWearable	0.8B	I ~1Mbps I Low power consumption	2G/3G/Cat-1 Cat-M1
Sensors, MetersAsset TrackingSmart ParkingSmart agriculture	2B P 1 1 1 4 4	I Low Throughput (<100kb I Deep Coverage (20dB) I Low power (10 Years) I Low cost (<\$5)	ps) Short Range Tech. Sigfox, LoRa NB-IoT

LPWA: Low Power Wide Area

C-IoT provides wide WAN coverage

Re-use existing Cellular network

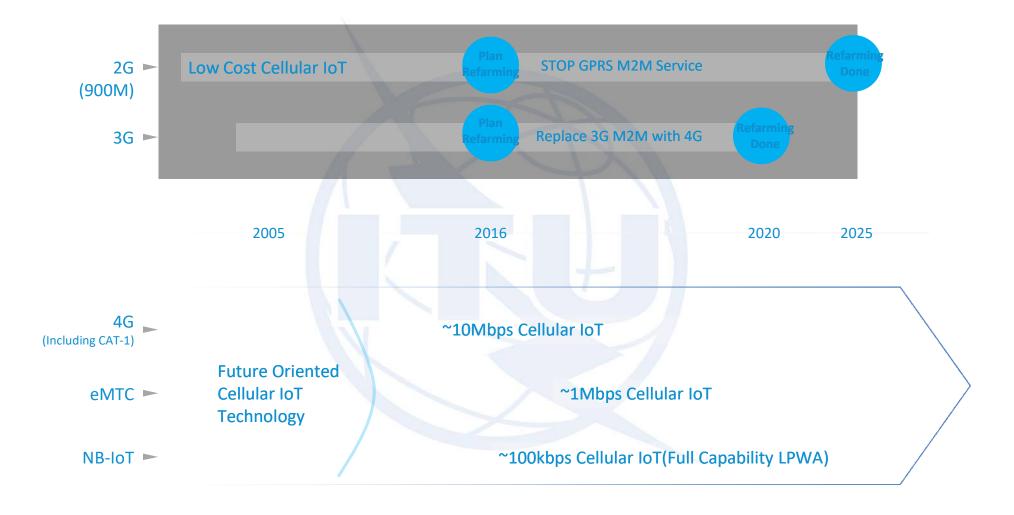

Carrier-grade Reliability

4G-Like Security

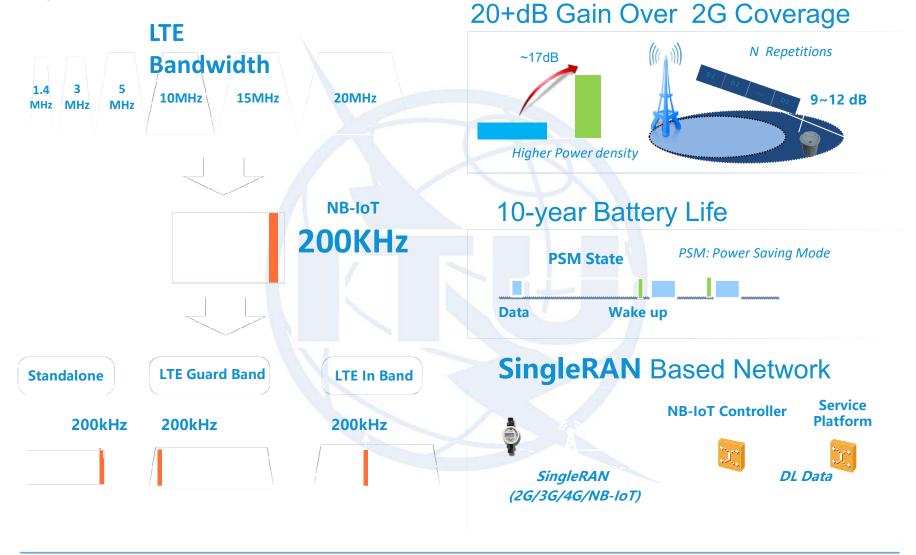
Roaming

LTE Coverage

- Unlicensed technology is for local coverage
- C-IoT is for wide coverage


Wifi coverage

Future Oriented Cellular IoT Network: NB-IoT+eMTC+4G



NB-IoT Network Performance

NB-IoT/eMTC Standard's evolution path to 5G

NB-IoT

Rel-14

- Positioning : E-CID , OTDOA
- SC-PTM
- 14dBm output power
- Peak throughput improvement (DL 114kbps/UL 142.5kbps)

Rel-15

- TDD NB-IoT
- RRM measurement, latency improvement
- NPRACH enhancement
- Differ group QoS


eMTC

Rel-14

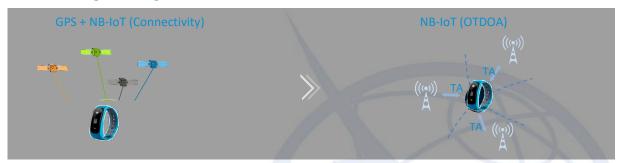
- Positioning: OTDOA
- SC-PTM
- VoLTE coverage improvement (5dB)
- 5MHz/20MHz bandwidth (UL 3Mbps/7Mbps; DL 4Mbps/27Mbps)

Rel-15

- Capacity improvement: Sub-PRB eMTC (45KHz)
- 64QAM
- Low UE output power

Technology: NB-IoT,

- mMTC NR will not be considered until R17;
- NB-IoT will be used to cover 5G mMTC use case before R17



R14: Positioning to simplify device requirement

NB-IoT Tracking Technologies Overview:

- Device cost: ~50USD
- Accuracy: 10m
- Latency:30s
- Power consumption:
 - **0.3**mAh/Report

- Device cost: ~40USD
- Latency:10s

OTDOA: 30~50m

- Power consumption:
- 0.2mAh/Report

NB-IoT Tracker

BaaS Business Model:

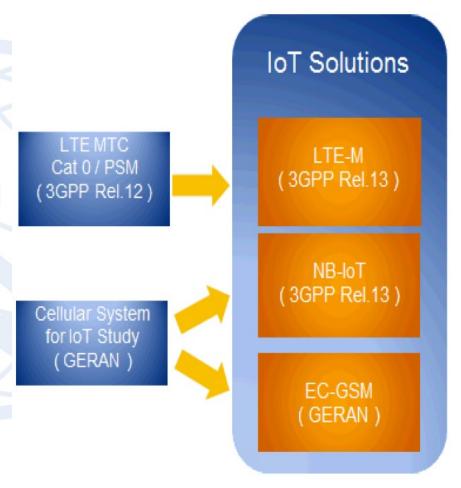
Kids tracking (GizmoPal)

Monthly service fee: 5USD

Kids tracking (Filip2 Tracker)

Monthly fee:

USD10 for voice and data



Release-13 3GPP evolutions to address the IoT market

eMTC: LTE enhancements for MTC, based on Release-12 (UE Cat 0, new PSM, power saving mode)

- ➤ NB-IOT: New radio added to the LTE platform optimized for the low end of the market
- EC-GSM-IoT:
 enhancements
 combination with
 make
 GSM/EDGE
 markets
 prepared for IoT

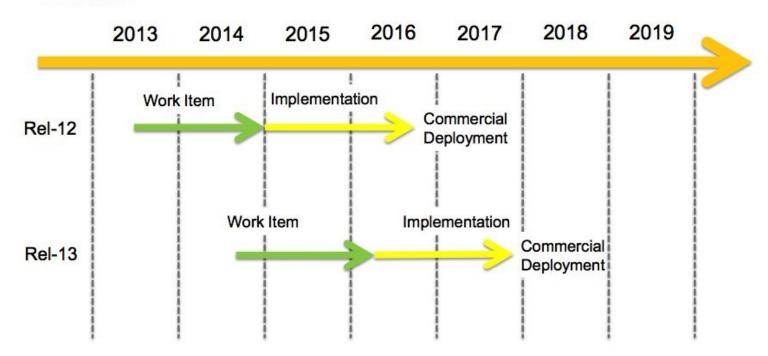
Main eMTC, NB-IoT and EC-GSM-IoT features

	eMTC (LTE Cat M1)	NB-IOT	EC-GSM-IoT
Deployment	In-band LTE	In-band & Guard-band LTE, standalone	In-band GSM
Coverage*	155.7 dB	164 dB for standalone, FFS others	164 dB, with 33dBm power class 154 dB, with 23dBm power class
Downlink	OFDMA, 15 KHz tone spacing, Turbo Code, 16 QAM, 1 Rx	OFDMA, 15 KHz tone spacing, 1 Rx	TDMA/FDMA, GMSK and 8PSK (optional), 1 Rx
Uplink	SC-FDMA, 15 KHz tone spacing Turbo code, 16 QAM	Single tone, 15 KHz and 3.75 KHz spacing SC-FDMA, 15 KHz tone spacing, Turbo code	TDMA/FDMA, GMSK and 8PSK (optional)
Bandwidth	1.08 MHz	180 KHz	200kHz per channel. Typical system bandwidth of 2.4MHz [smaller bandwidth down to 600 kHz being studied within Rel-13]
Peak rate (DL/UL)	1 Mbps for DL and UL	DL: ~50 kbps UL: ~50 for multi-tone, ~20 kbps for single tone	For DL and UL (using 4 timeslots): ~70 kbps (GMSK), ~240kbps (8PSK)
Duplexing	FD & HD (type B), FDD & TDD	HD (type B), FDD	HD, FDD
Power saving	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX
Power class	23 dBm, 20 dBm	23 dBm, others TBD	33 dBm, 23 dBm

Evolution of LTE optimized for IoT

A GLOBAL INITIATIVE

- Low power consumption and extended autonomy
- Easy deployment
- Interoperability with LTE networks


- Low overall cost
- Excellent coverage: up to 11 Km
- Maximum throughput: ≤ **1 Mbps**

Timeline

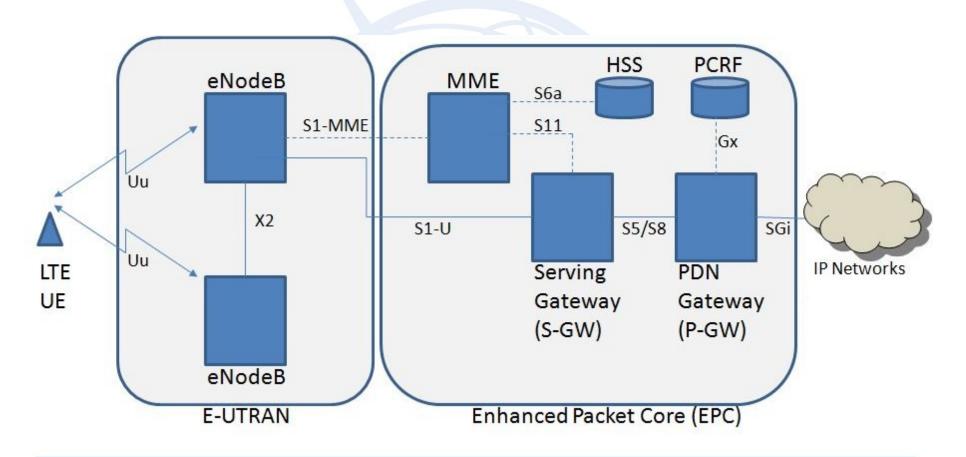
- First released in Rel.1in 2 Q4 2014
- Optimization in Rel.13
- Specifications completed in Q1 2016
- Available in 2017

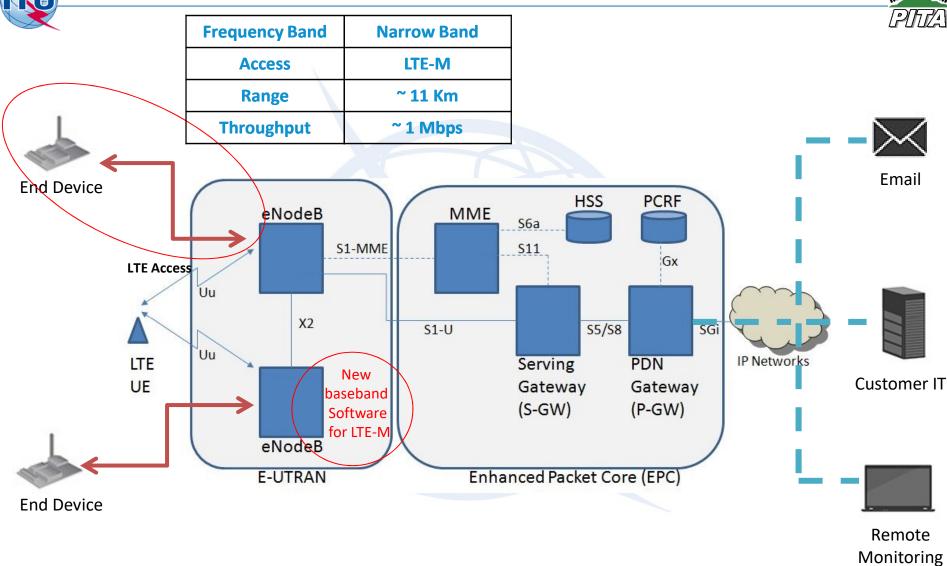
3GPP Releases	8 (Cat.4)	8 (Cat. 1)	12 (Cat.0) LTE-M	13 (Cat. 1,4 MHz) LTE-M
Downlink peak rate (Mbps)	150	10	1	1
Uplink peak rate (Mbps)	50	5	1	1
Number of antennas (MIMO)	2	2	1	1
Duplex Mode	Full	Full	Half	Half
UE receive bandwidth (MHz)	20	20	20	1.4
UE Transmit power (dBm)	23	23	23	20

Release 12

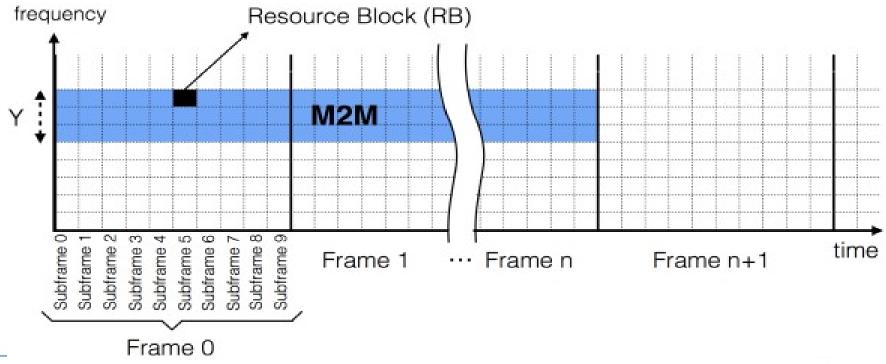
Release 13

- New category of UE ("Cat-0"): lower
 complexity and low cost devices
- Half duplex FDD operation allowed
- Single receiver
- Lower data rate requirement (Max: 1 Mbps)


- Reduced receive bandwidth to 1.4 MHz
- Lower device power class of 20 dBm
- 15dB additional link budget: **better coverage**
- More energy efficient because of its extended discontinuous repetition cycle (eDRX)


Present LTE Architecture

Architecture



- Licensed Spectrum
- Bandwidth: 700-900 MHz for LTE
- Some resource blocks allocated for IoT on LTE bands
- Reserved For M2M Traffic

Current status

November April May March August Jun 2017+ 2015 2014 2014 2015 2015 2015

Narrowband proposal to Connected Living

3GPP 'Cellular IoT' Study Item

GSMA Mobile IoT created

3GPP alignment on single standard

1st live pre-Full NB-IoT standard NB-IoT message

3GPP Standard Released

Commercial rollout

Evolution of LTE-M

Comparison with LTE-M

Attributo	CAT-1	LTE-M		NB-IOT	
Attribute		Rel 13	Rel 14	Rel 13	Rel 14
Spectrum	LTE bands	LTE bands Stand Alone (1.4MHz)		LTE Bands Stand Alone (200KHz)	
Typical MNO	LTE Coverage	Good LTE Coverage		Mix LTE and 2G	
Bandwidth	20 MHz	1.08MHz 5 MHz (CAT-M1) (CAT-M2)		180kHz	
Number of DL Antennas	2	1		1	
Duplex Modes	FD-FDD/TDD	HD-FDD, FD-FDD,TDD		HD-FDD	
UL Modulation	QPSK, 16QAM	QPSK, 16QAM		Pi/2 BPSK, Pi/4 QPSK	
DL Modulation	QPSK, 16QAM	QPSK, 16QAM		QPSK	
Spectral Efficiency	V.Good	Good		0	K
Power Class	Class 3 (23dBm)	Class 3 (23 dBm) Class 5 (20 dBm)		Class 3 and 5	* 14 dBm
UL Multple Access	LTE SC-FDMA	LTE SC-FDMA		LTE SC-FDMA + Single tone transmission with 3.75kHz and 15kHz bandwidths	

Reuses the LTE design extensively: numerologies, DL OFDMA, UL SC-FDMA, channel coding, rate matching, interleaving, etc.

Reduced time to develop:

- > Full specifications.
- ➤ NB-IoT products for existing LTE equipment and software vendors.

June 2016: core specifications completed.

Beginning of 2017: commercial launch of products and services.

NB-loT is non backwards compatible version of LTE targeted for cellular based IoT applications.

Main features

Objectives

- Lower cost than eMTC
- Extended coverage: 164 dB maximum coupling loss or link budget (at least for standalone) to be compared to GPRS link budget of 144dB and LTE of 142.7 dB
- Receiver sensitivity = -141 dBm
- Long battery life: 10 years with 5 Watt Hour battery (depending on traffic and coverage needs)
- Support for massive number of devices: at least 50.000 per cell

Main simplification

Reduced data rate/bandwidth, mobility support and further protocol optimizations

3 modes of operation:

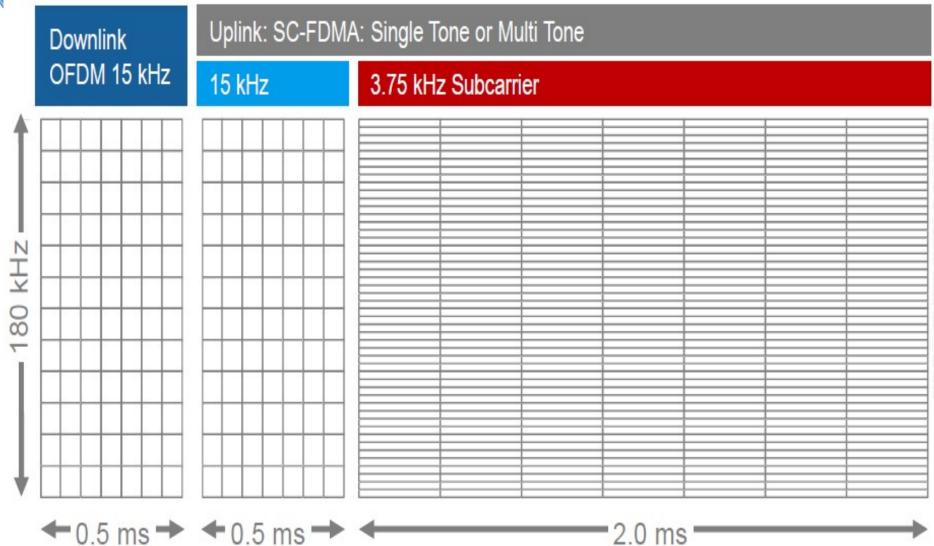
- **Stand-alone:** stand-alone carrier, e.g. spectrum currently used by GERAN systems as a replacement of one or more GSM carriers
- Guard band: unused resource blocks within a LTE carrier's guard-band
- In-band: resource blocks within a normal LTE carrier

Main features

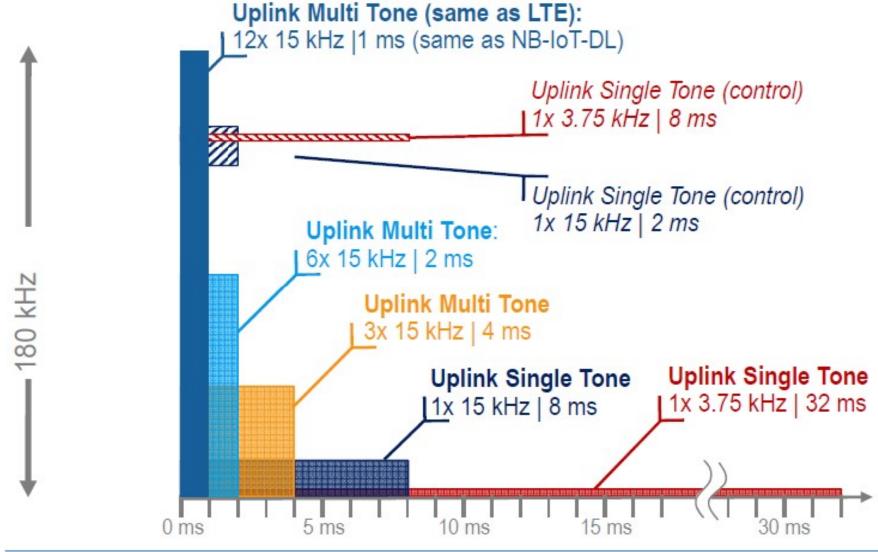
Main PHY features:

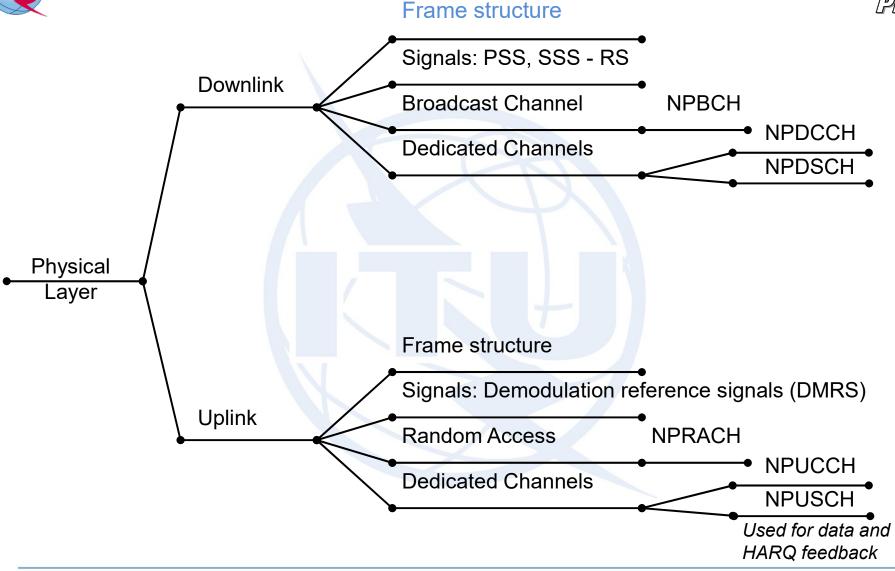
- Narrow band support of 180 kHz
- Supports two modes for uplink
 - > Single tone with 15 kHz and/or 3.75 kHz tone spacing
 - ➤ Multiple tone transmissions with 15 kHz tone spacing
- No support of Turbo code for the downlink
- Single transmission mode of SFBC for PBCH, PDSCH, PDCCH
- New narrowband channels: NPSS, NSSS, NPBCH, NPDCCH, NPDSCH, NPUSCH, NPRACH

Main radio protocol features:

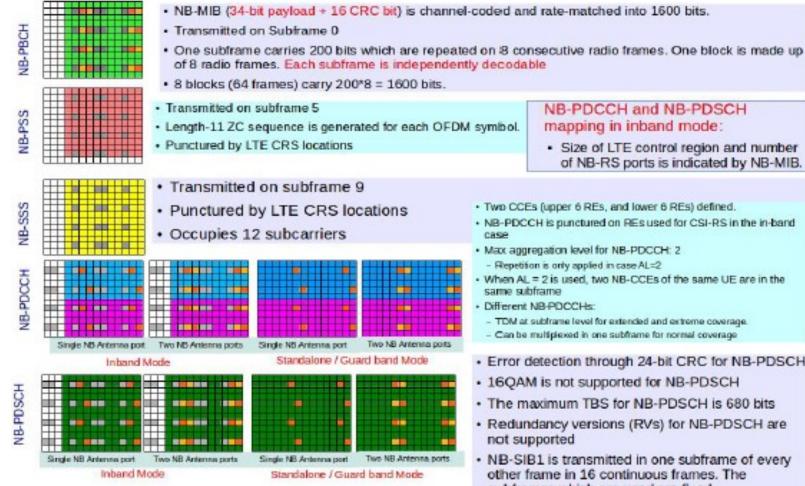

- Single HARQ process
- Only RLC AM mode with simplified status reporting
- Two PDCP options:
 - > SRB 0 and 1 only. No AS security (NAS security is used instead). PDCP operating in TM.
 - ➤ SRB 0, 1, 2 and one DRB. AS security, which is cached upon RRC connection release. RRC connection suspend/resume procedures to maintain AS security context
- Reduced broadcast system information

Frame and Slot Structure – NB-IoT – 7 symbols per slot





NB-IoT Channels



Physical downlink channels

NB-PDCCH and NB-PDSCH mapping in inband mode:

· Size of LTE control region and number of NB-RS ports is indicated by NB-MIB.

- Two CCEs (upper 6 REs, and lower 6 REs) defined.
- NB-PDCCH is punctured on REs used for CSI-RS in the in-band
- Max aggregation level for NB-PDCCH: 2
- Repetition is only applied in case AL=2
- When AL = 2 is used, two NB-CCEs of the same UE are in the same subframe
- Different NB-PDCCHs:
- TDM at subframe level for extended and extreme coverage.
- Can be multiplexed in one subframe for normal coverage
- Error detection through 24-bit CRC for NB-PDSCH
- 16QAM is not supported for NB-PDSCH
- The maximum TBS for NB-PDSCH is 680 bits
- Redundancy versions (RVs) for NB-PDSCH are not supported
- NB-SIB1 is transmitted in one subframe of every other frame in 16 continuous frames. The subframes which are used are fixed.

Maximum Transmission Block Size = 680 bits

Inband mode: 100 to 108 symbols – Standalone/Guard band mode: 152 to 160 symbols

Packets transmission on the PUSCH

RU Duration

8 ms

4 ms

2 ms

1 ms

Smallest unit to map a transport block: resource unit (RU).

NPUSCH format 1

> 3.75 kHz subcarrier spacing, an RU = 1 subcarrier in the frequency range,

and 16 slots in the time range (length of 32 ms)

➤ 15 kHz subcarrier spacing 4 options:

	RUs with	n one subcarrie	er, BPSK or QPSK,
--	-----------------	-----------------	-------------------

• Other RUs: QPSK.

NPUSCH format 2

RU always composed of one subcarrier with a length of 4 slots.

- > 3.75 kHz subcarrier spacing the RU has an 8 ms duration,
- > 15 kHz subcarrier spacing has an 2 ms duration.

Modulation scheme: BPSK.

UCI: Uplink Control Information

Physical channel	Transport channel	Number of carri- ers	Modulation scheme	Channel coding
NPUSCH format 1	UL-SCH	1 (single-tone)	π/2-BPSK π/4-QPSK	Turbo 1/3
		> 1 (multitone)	QPSK	
NPUSCH format 2	UCI	1 (single-tone)	π/2-BPSK	Block 1/16

Number of

subcarriers

1

3

6

12

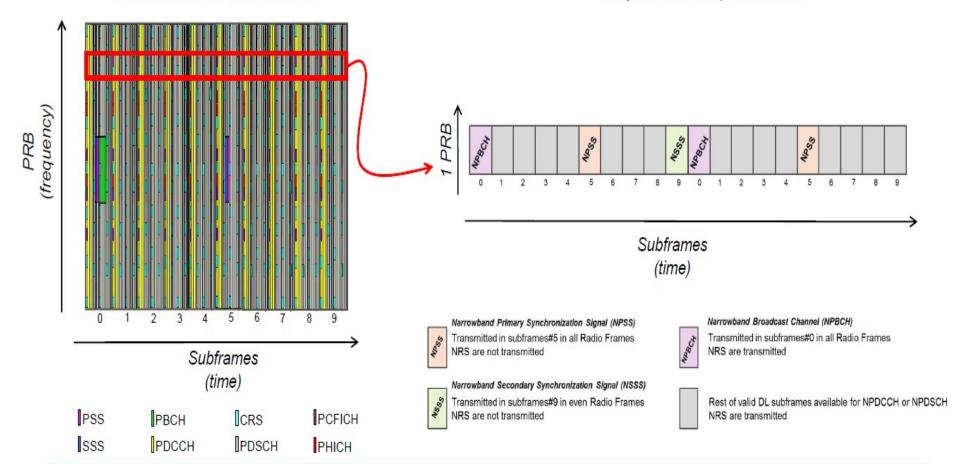
Number of

slots

16

8

2



Downlink Frame Structure

Channels are time and frequency multiplexed; Multiple channels per subframe Each physical channel occupies the whole PRB; Only one channel per subframe

NB-IoT Repetitions

15 kHz subcarrier

A transport block *test*

word (TW) is transmitted

Each RU is transmitted

over 3 subcarriers and 8

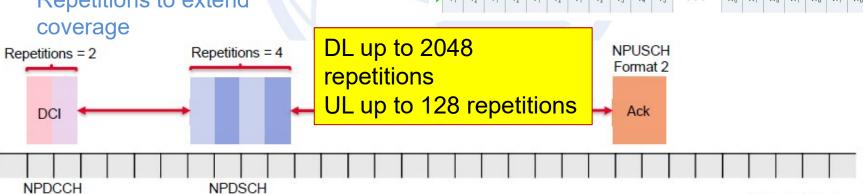
T₁ | T₂ | T₁ | T₂ | T₁ | T₂ | T₃ | T₄ | T₃

spacing.

on two RUs

slots

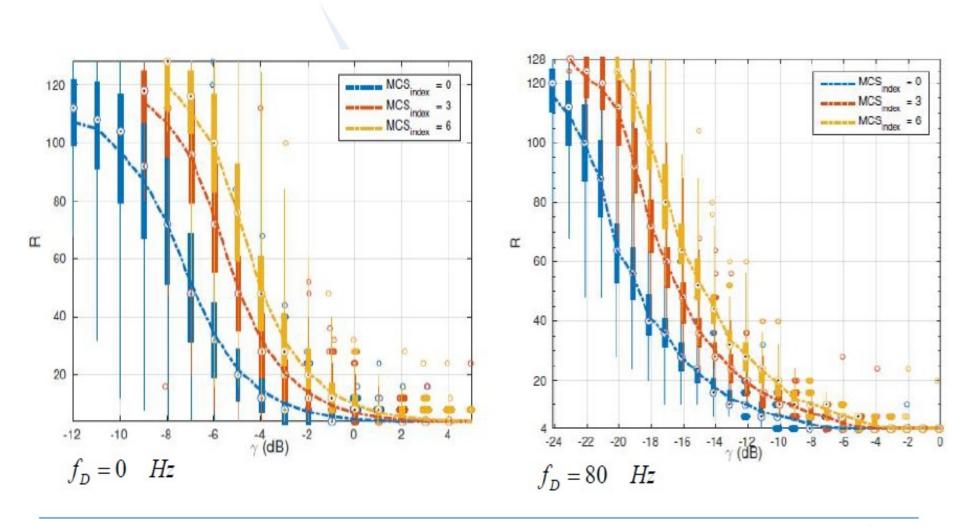
(b)


(a)

W₆ | W₇ | W₈ | W₇ | W₈ | W₇ | W₈ | W₇

 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 W_1 W_2 W_3 W_4 W_5 W_6

transmission several times:


- Achieve extra coverage (up to 20 dB compared to GPRS)
- Each repetition is selfdecodable
- SC is changed for each transmission to help combination
- Repetitions are ACK-ed just once
- All channels can use Repetitions to extend coverage

Example: Repetitions used in NB-IoT in NPDCCH and NPDSCH charnels

Physical signals and channels and relationship with LTE

	Physical channel	Relationship with LTE	L
	NPSS	 New sequence for fitting into one PRB (LTE PSS overlaps with middle six PRBs) All cells share one NPSS (LTE uses 3 PSSs) 	
	NSSS	 New sequence for fitting into one PRB (LTE SSS overlaps with middle six PRBs) NSSS provides the lowest 3 least significant bits of system frame number (LTE SSS does not) 	
Doumlink	NPBCH	• 640 ms TTI (LTE uses 40 ms TTI)	
Downlink	NPDCCH	 May use multiple PRBs in time, i.e. multiple subframes (LTE PDCCH uses multiple PRBs in frequency and 1 subframe in time) 	
	NPDSCH	 Use TBCC and only one redundancy version (LTE uses Turbo Code with multiple redundancy versions) Use only QPSK (LTE also uses higher order modulations) Maximum transport block size (TBS) is 680 bits. (LTE without spatial multiplexing has maximum TBS greater than 70000 bits, see [9]) Supports only single-layer transmission (LTE can support multiple spatial-multiplexing layers) 	
Uplink	NPRACH	 New preamble format based on single-tone frequency hopping using 3.75 kHz tone spacing (LTE PRACH occupies 6 PRBs and uses multi-tone transmission format with 1.25 kHz subcarrier spacing) 	
	NPUSCH Format 1	 Support UE bandwidth allocation smaller than one PRB (LTE has minimum bandwidth allocation of 1 PRB) Support both 15 kHz and 3.75 kHz numerology for single-tone transmission (LTE only uses 15 kHz numerology) Use π/2-BPSK or π/4-QPSK for single-tone transmission (LTE uses regular QPSK and higher order modulations) Maximum TBS is 1000 bits. (LTE without spatial multiplexing has maximum TBS greater than 70000 bits, see [9]) Supports only single-layer transmission (LTE can support multiple spatial-multiplexing layers) 	
	NPUSCH Format 2	New coding scheme (repetition code) Uses only single-tone transmission	

NDSCH peak data rate achieved with the largest TBS of 680 bits transmitted over 3 ms.

♦ 226.7 *kb/s peak layer 1 data rate (multitone configuration).* **NPUSCH peak data rate** achieved with the largest TBS of 1000 bits transmitted over 4 ms.

\$250 kb/s peak layer 1 data rate (multitone configuration) and 20 kb/s (single tone configuration).

Peak throughputs of both DL and UL are lower than these figures when the time offsets between DCI, NPDSCH/NPUSCH, and HARQ acknowledgment are taken into account.

Coverage

- > Maximum coupling loss 20 dB higher than LTE Rel-12.
- Coverage extension is achieved by trading off data rate through increasing the number of repetitions.
- ➤ Coverage enhancement is also ensured by introducing single subcarrier NPUSCH transmission and π/2-BPSK modulation to maintain close to 0 dB PAPR → Reduces the coverage potential issues due to power amplifier backoff.
- ➤ NPUSCH with 15 kHz single-tone gives a layer 1 data rate of approximately 20 b/s when the highest repetition factor (i.e., 128) and the most robust MCS are applied,
- ➤ NPDSCH gives a layer 1 data rate of 35 b/s with a repetition factor 512 and the most robust MCS.
- These configurations support close to 170 dB coupling loss (compared to Rel-12 LTE designed for up to approximately 142 dB coupling loss).

Link Budget	15kHz	3.75 kHz
(a) Transmit power (dBm)	23	23
(b) Thermal noise (dBm/Hz)	-174	-174
(c) Receiver noise figure (dB)	3	3
(d) Occupied channel bandwidth (Hz)	15 000	3 750
(f) Effective noise power (b)+(c)+10log_10(d) (dBm)		
(g) Required SINR (dB)	-11.8	-5.7
(h) Receiver sensitivity (c)+(g) (dBm)	-141	-141
(i) Maximum coupling loss (a)-(h)	164	164

23 dB improvement over LTE

Urban: Deep in-building penetration

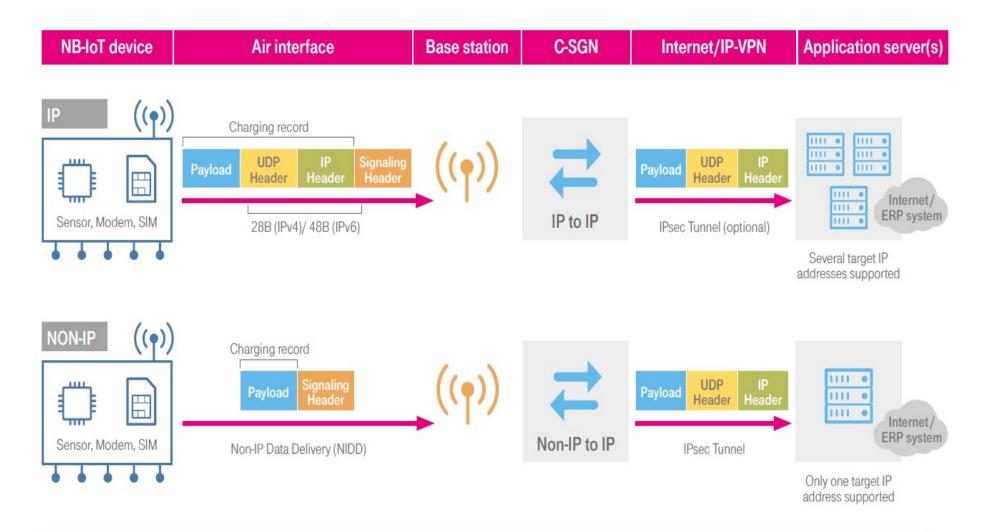
Rural: Long rage (10 - 15 km)

ITU

Data transmission options

2 possibilities for data transmission between NB-IoT devices and the AS:

- 1. **IP**: Depending on the capabilities of the radio module and the operator, *IPv4* and *IPv6* are supported. UDP is the common and recommended transport protocol. On the air interface, TCP is in supported for NB-IoT (and specified in the 3GPP standard), but not recommended due to the resulting higher data volume. HTTP and HTTPS over the air interface cannot be implemented, because they rely on TCP and require additional data volume for their overhead.
- 2. **Non-IP**: If possible, a non-IP based data transmission is recommended for NB-IoT because it reduces the transmitted data volume. The is forwarded by the network to the application via IP. Data can only be sent to one target IP address (server).


Application protocols like MQTT, MQTT-SN, COAP and oneM2M can be used.

Data transmission options

Supporting bands: Band 1, 3, 5, 8, 12, 13, 17, 19, 20, 26, 28

NB-IOT Operating Band	Uplink (UL) operating band BS receive UE transmit F _{UL_low} – F _{UL_high}	Downlink (DL) operating band BS transmit UE receive F _{DL_low} – F _{DL_high}	Duplex Mode
	80 W 20 M 2		IID EDD
1	1920 MHz - 1980 MHz	2110 MHz - 2170 MHz	HD-FDD
3	1710 MHz - 1785 MHz	1805 MHz - 1880 MHz	HD-FDD
5	824 MHz – 849 MHz	869 MHz – 894MHz	HD-FDD
8	880 MHz – 915 MHz	925 MHz — 960 MHz	HD-FDD
12	699 MHz - 716 MHz	729 MHz - 746 MHz	HD-FDD
13	777 MHz – 787 MHz	746 MHz - 756 MHz	HD-FDD
17	704 MHz - 716 MHz	734 MHz - 746 MHz	HD-FDD
19	830 MHz – 845 MHz	875 MHz – 890 MHz	HD-FDD
20	832 MHz – 862 MHz	791 MHz – 821 MHz	HD-FDD
26	814 MHz – 849 MHz	859 MHz – 894 MHz	HD-FDD
28	703 MHz – 748 MHz	758 MHz – 803 MHz	HD-FDD

NB-IoT supports massive IoT capacity with **only one PRB in both UL and DL**.

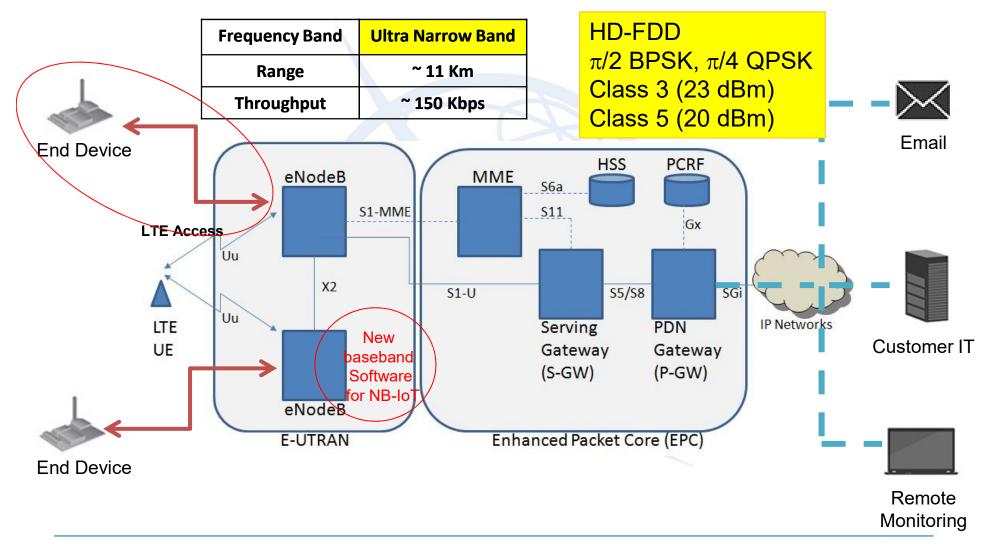
NB-IoT can support multiple carrier operation to get more IoT capacity.

Sub-PRB UE scheduled bandwidth is introduced in the uplink, including single-subcarrier NPUSCH.

Based on a traffic model with a split of devices is:

- 80%: MAR (Mobile Autonomous Reporting) periodic
- 20%: Network Command is MAR periodic.
- ⇒ NB-IoT with one PRB supports more than 52,500
 UEs per cell.

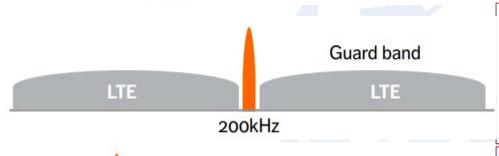
Extended C-DRX and I-DRX operation


- Connected Mode (C-eDRX):
- Extended DRX cycles of 5.12s and 10.24s are supported
- Idle mode (I-eDRX):
- Extended DRX cycles up to ~44min for eMTC
- Extended DRX cycles up to ~3hr for NB-IOT

Architecture

Spectrum and access

Designed with a number of deployment options for **GSM**, **WCDMA** or **LTE** spectrum to achieve spectrum efficiency.


Use licensed spectrum.

GSM Standalone 200kHz

Stand-alone operation

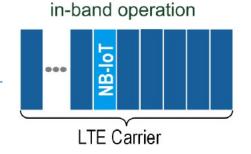
Dedicated spectrum.

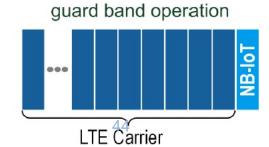
Ex.: By re-farming GSM channels

Guard b

band operation

Based on the unused RB within a LTE carrier's **guard-band**




In-band


operation

Using resource blocks within a normal

LTE carrier

LTE-M to NB-IoT

3GPP Release	12 (Cat.0) LTE-M	13(Cat. 1,4 MHz) LTE-M	13(Cat. 200 KHz) NB-IoT
Downlink peak rate	1 Mbps	1 Mbps	300 bps to 200 kbps
Uplink peak rate	1 Mbps	1 Mbps	144 kbps
Number of antennas	1	1	1
Duplex Mode	Half	Half	Half
UE receive bandwidth	20 MHz	1.4 MHz	200 kHz
UE Transmit power (dBm)	23	20	23

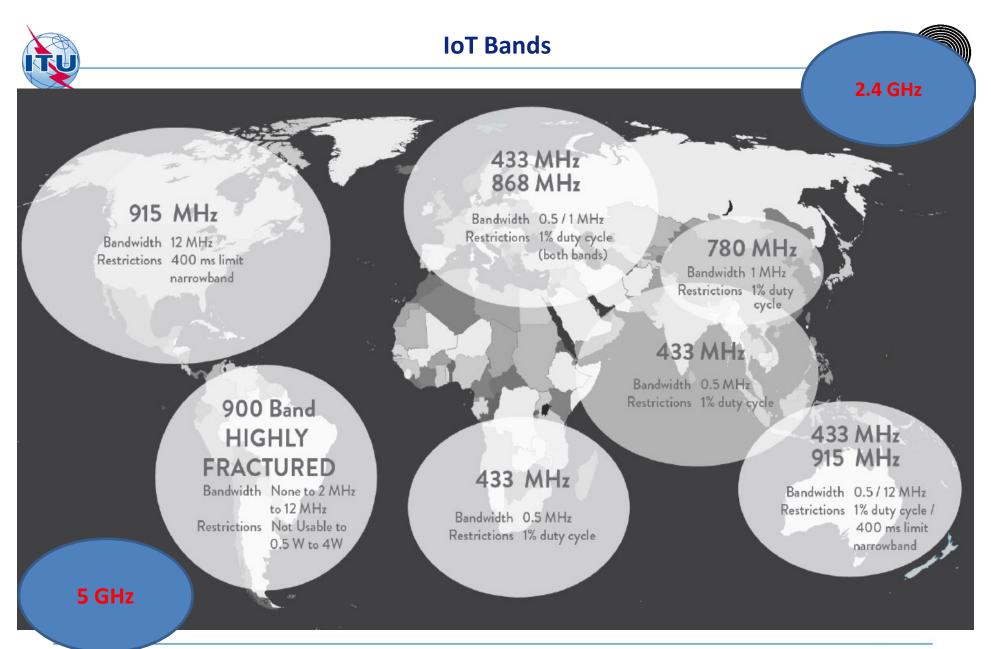
- Reduced throughput based on single PRB operation
- Enables lower processing and less memory on the modules
- 20dB additional link budget -> better area coverage

IV. State of Art

A. Regulation

Frequency bands of SRDs

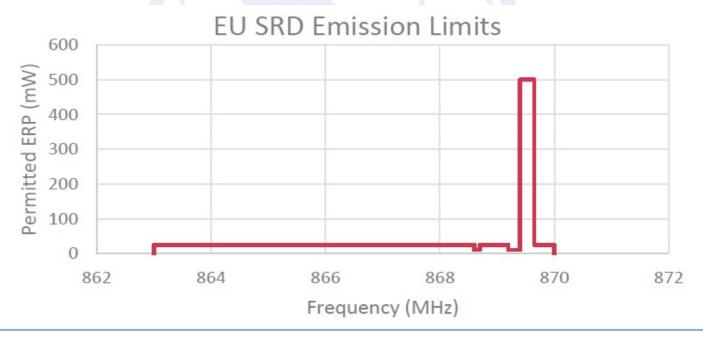
Global
Only in Europe
Only in Americas


ISM bands

6,780 kHz; 13,560 kHz 27,120 kHz; 40.68 MHz 433.92 MHz 915 MHz 2,450 MHz; 5,800 MHz 24.125 GHz; 61.25 GHz 122.5 GHz; 245 GHz 9-148.5 kHz; 3,155-3,400 kHz 9 kHz- 47 MHz (specific SRDs) 7,400-8,800 kHz 138.20-138.45 MHz 169,4-216 MHz 312-315MHz (non Europe) 402-405 MHz medical devices 470-489 MHz (normally individually licensed) 823-832 MHz and 1,785-1,805 MHz 862-875 MHz in some Asian counties 862-876MHz Non-Specific SRDs 915-921 MHz (in some countries) 5,150-5,350 & 5,470-5,725 MHz

57-64GHz, 76-77GHz, 77-81GHz

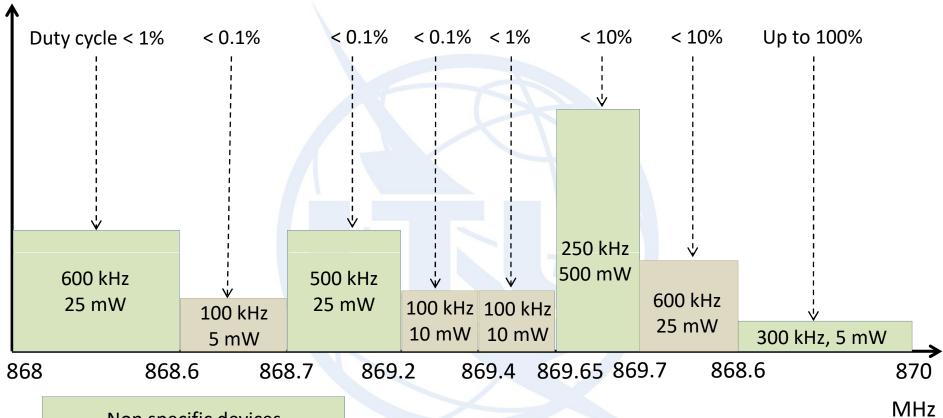
non-ISM candidate bands for SRDs



IOT regulations

Link	Activity rate	Power
DL	10%	25 mW
UL	1%	500 mW

Arcep France

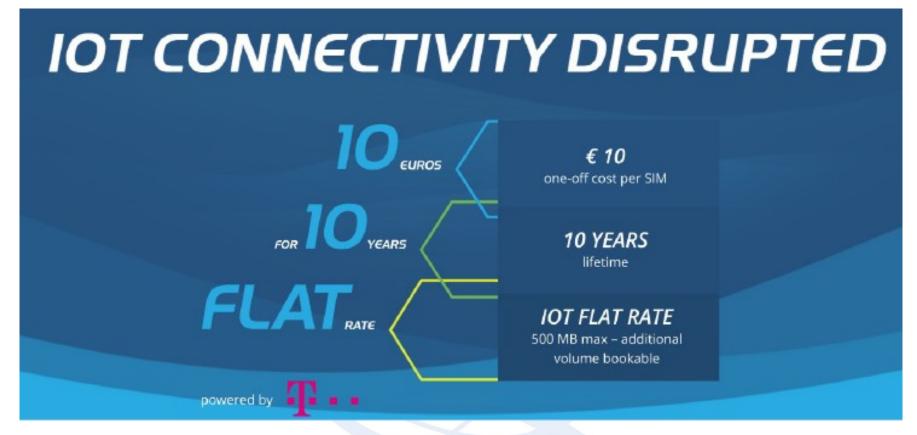


Effective radiated power (mW)

Non specific devices

Application-specific (ex. Alarms)

B. Prices



- 1. The NB-IoT Access entry package is available from EUR 199 and includes a 6-month activation of up to 25 SIM-cards with 500 KB per SIM pooled in Germany's NB-IoT network. As a further optional add-on a private APN with IPsec-key encryption is available.
- 2. The NB-IoT Access & Cloud of Things entry package is available from EUR 299 and additionally includes direct access to Deutsche Telekom's Cloud of Things platform for device and data management.

SK Telecom (South Korea) LoRaWan prices

SK Telecom completed a nationwide LTE-M rollout in March 2017 but only LoRaWAN services are available.

Price plans for LoRaWAN-based IoT services:

- 1. 350 won (\$0.30) per month per device for a 100kb allocation
- 2. 2,000 won (\$1.77) for a 100MB allocation.

Discounts available for multiple lines, ranging from 2% for those using 500 lines for 10% for those using 10,000 lines. Excess data will be charged at 0.005 won per 0.5KB. LoRa plans cost just a tenth of the price of its LTE-based IoT services.

Price Plan	Data Allowance* (Frequency of communication)	Monthly Flat Rate (VAT Excluded)	Examples of Services	Note	
Band IoT 35	100KB	KRW 350	Metering and monitoring services (e.g. Advanced Metering Infrastructure (AMI), environmental monitoring,	Discount benefits for long-term contracts: Ranging from a 5% discount for two-year	
Band IoT 50	500KB	KRW 500	water leakage monitoring, etc.)	contracts to a 20% discount for 5 year-	
Band IoT 70	ЗМВ	KRW 700	Tracking services (e.g. locating tracking	contracts	
Band loT 100	10MB	KRW 1,000	For people/things, asset management, etc.)	- Multi-line discount: Ranging from a 2%	
Band IoT 150	50MB	KRW 1,500	Control service (e.g. safety management,	discount for those using 500 lines to a	
Band IoT 200	100MB	KRW 2,000	lighting control, shared parking, etc.)	10% discount to those who use 10,000 lines	

^{*}Data usage exceeding the data allotment provided will be charged at KRW 0.005 per 0.5KB.

UnaBiz (Singapore) Sigfox prices

Network subscription charges: **US\$0.75 per device per month**, which comes with a data plan for up to 140 messages per day.

Qualified channel partners who **commit to volume** can ultimately enjoy subscription charges from as low as **US\$0.75** per device per

year.

Jonathan Tan, Vice
President Business
Development & Sales,
UnaBiz said, "Sigfox's
technology is built for
massive deployment and we
are offering ultra-low cost

connectivity to grow exponentially the base of devices that can access the network. Compared to existing local networks, businesses on our global network can generate savings of at least 90% off data plan subscription charges."

The new prepaid plans, which target developments businesses, include three tiers of data and text messages:

- 1. 1 gigabyte of data valid for up to 1 year and 500 text messages for \$25;
- 2. 3 GB of data valid for up to 1 year and 1,000 text messages for **\$60**;
- 3. 5 GB of data valid for up to 2 years and 1,500 text messages for \$100.

Country	Operator	Technology	Price/End- device/month	Conditions (/end-device/month)
Cormany	DT	ND IOT	US\$ 1.60	85 KB
Germany	DT	NB-IoT	US\$ 2.40	" + Cloud
South	SK	LoDa\A/AN	US\$ 0.30	100 KB
Korea	a Telecom	Telecom LoRaWAN	US\$ 1.77	100 MB
Singapore	UnaBiz	Sigfox	US\$ 0.75	140 messages
			US\$ 2.08	83 MB and 42 messages
USA	AT&T	LTE-M	US\$ 5	250 MB and 84 messages
			US\$ 4,2	210 MB and 63 messages

Interface

Stack / MAC

Stack implementation

Price

Interface

Stack / MAC

Stack implementation

Form factor

Price

UART

LoRaWAN

Microchip proprietary

\$14.27 @ single unit

\$10.90 @ 1000 units

UART

LoRaWAN

proprietary MultiTech

XBee compatible

~\$30.00 @ single unit

NB-IoT end-devices prices

NB-IoT Quectel BC95

AT Commands
3GPP Rel-13
Interfaces SIM/USIM 1 Transmission 100bps
€ 35,00

Quectel GSM/GPRS/UMTS/HSPA/NB-IoT Module

€ 60,00

Digi XBee Cellular NB-IOT

Solution Highlights: Up to ~60Kbps Downlink, 25Kbps Uplink 4-7x better range - strong building penetration Simple 1 antenna design 200 mW (23 dBm) Band 20 (800MHz) Band 8 (900MHz)

Digi XBee Cellular LTE-M

Solution Highlights: Up to ~350Kbps Down/Uplink

PSM (Power Saving Mode) and eDRX supported for ultra-low

power consumption

Simple 1 antenna design

200 mW (23 dBm)

Verizon: Band 13 (700MHz) Band 4 (1700MHz)

AT&T: Band 2 (1900MHz) Band 4 (1700MHz) Band 12 (700MHz)

C. Forecasts

Main technologies for LPWANs

2017 Facts

- Most of the commercial **NB-IoT** contracts were in **China**.
- Several operators launched LTE-M in 2017, including AT&T, Telstra and Verizon.
- The LTE-M share: less than 1% but this will grow significantly during the forecast period to reach 19% by 2026.
- LTE-M is a substitute for some 2G telematics applications in the automotive and fleet sectors, and has been adopted first by many of those operators that have decommissioned their 2G networks.
- Analysys Mason: 3G and 4G will capture a 27% market share in 2026
- 5G will constitute just over 1% of the total connections in 2026, but this will be the average across all application groups. For automotive and embedded SIMs specifically, 5G will have a 4% share of the total connections

Sigfox

- ➤ 2018: about 1,000 customers, including Airbus, Bosch, and Fujitsu, with services available in 42 countries and 18 more expected by the end of 2018
- > 2 million active devices with an additional 10 million in the pipeline
- ➤ Issue: Sigfox is a service provider without an option for private networks
- September 2017: End-node design capable of sending a Sigfox message that cost just 20 cents using a printed antenna and oscillator. One of the lowest cost of many ultra-simple designs
- ➤ Global roaming capabilities with nodes that automatically switch among four frequencies, depending on their region
- ➤ Enhance its **location-tracking** capabilities to within a kilometer using a form of triangulation

Forecasts in 2026

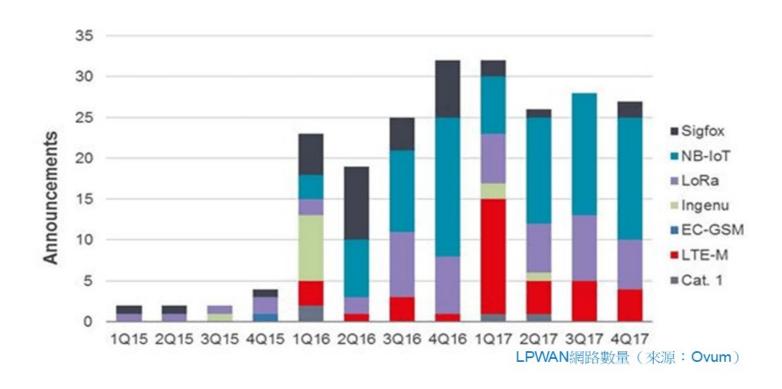
- ➤ NB-IoT will form the largest market in 2026
- Many operators are deploying more than one LPWA technology as all are relatively inexpensive to deploy
- LTE-M is better suited to supporting mobility, whereas LoRa or Sigfox better support static applications
- Analysys Mason: China will be the biggest market for IoT of all types by 2026 with North America and Europe in second and third places.
- ➤ Both Canada and the US are in the process of closing 2G networks, even though 2G connections formed 17% of the total in 2017.
- ➤ The market share for 3G/4G networks 55% of the total IoT connections in 2017 will decrease over the forecast period as LPWA networks take over.

- Comcast and Verizon: plans to deploy LoRa
- Semtech 2017 revenue for LoRa chips doubled to \$50 million and forecast that it will hit \$100 million in 2018
- ➤ HIS: LoRa has about three times the unit sales of modules for IoT end nodes as Sigfox.

NB-IoT

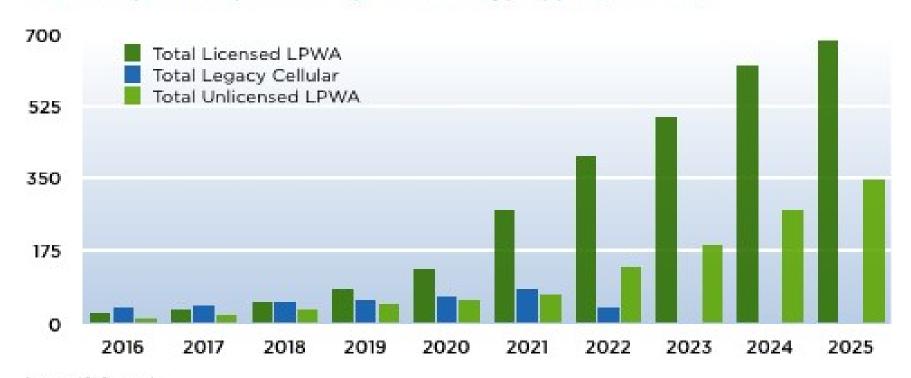
- China (June 2018): the government announced a policy with goals of reaching 600 million NB-IoT nodes by 2020.
- ➤ Will dominate IoT, but 3G and 4G cellular technologies, followed by LTE-M
- Analysys Mason: overall number of connections will reach **5.1 billion** in 2026, of these, **1.6 billion will use 2G, 3G, 4G and 5G cellular** connections and **3.5 billion will use low-power wireless access (LPWA)** including NB-IoT and LTE-M.
- No dominant LPWA technology
- ➤ LTE-M connections, which are largely complementary to those using NB-IoT, will grow at 131% a year to 9 million
- ➤ Other LPWA connections that are more direct substitutes for NB-IoT will grow in number to 617 million, driven by new network operators such as Thinxtra as well as traditional players such as Orange

Some issues with NB-IoT



- Actility: "Some companies oversold NB-IoT and now the operators realize it is not that easy a deployment. The software upgrades are quite expensive, there is still no ecosystem, there is still a Huawei implementation that is not the same as an Ericsson one -- it seems they are not interoperable."
- Interoperability problems between Ericsson and Huawei are hindering the rollout of NB-loT services (industry experts).

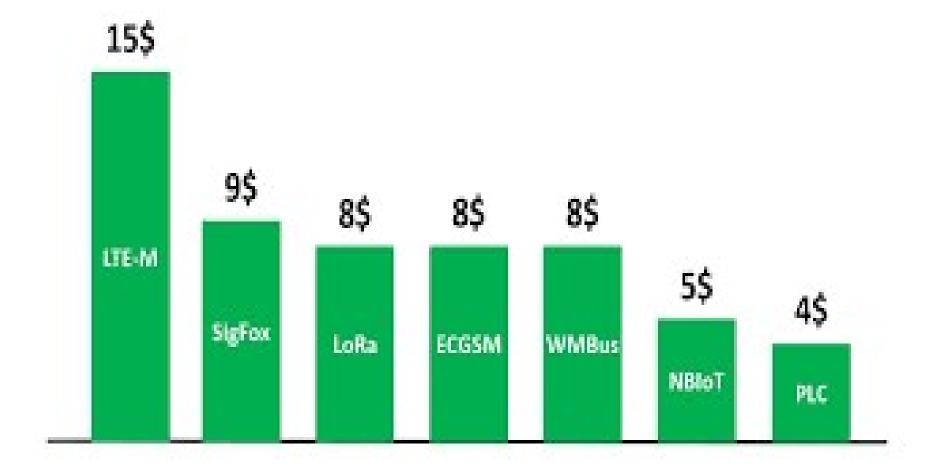
Enabling an Intelligent Planet


ADVANTECH

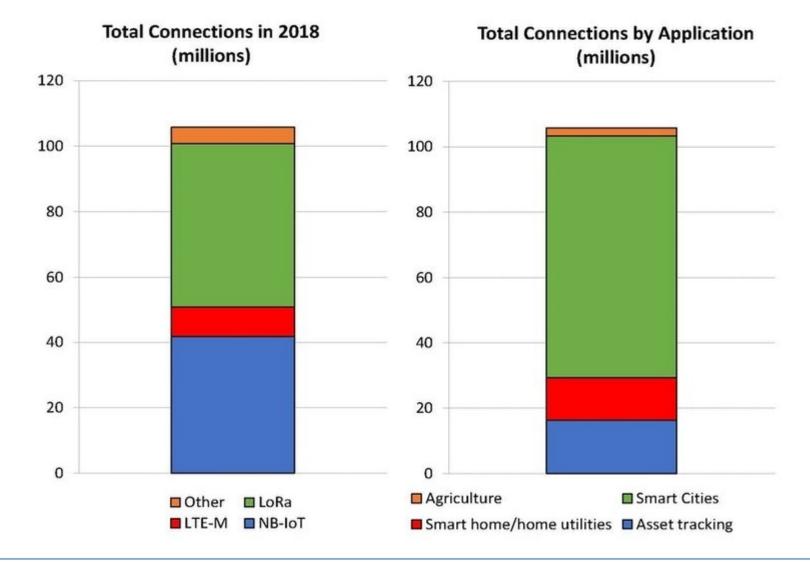
Total Chipset Shipments by Technology Type (Millions)

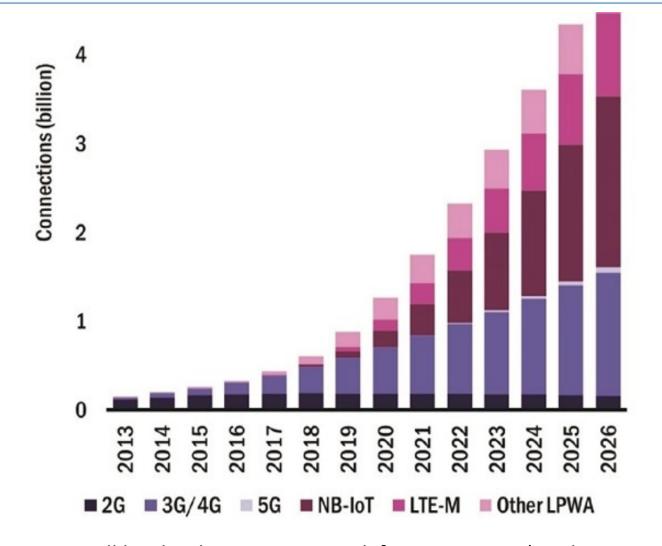
Source: ABI Research

Annual Unit Shipments of LPWA Modules (in thousands)


	2017	2018	2019	2020	2021	CAGR
Sigfox	8,424	14,538	27,951	52,821	85,042	219.5%
LoRa	32,316	57,298	98,162	161,561	249,724	92.3%
LTE Cat-M1	1,978	8,571	20,284	28,801	52,288	
NB-IoT	16,166	34,062	84,885	161,628	222,902	
Other	4,022	6,201	8,714	7,069	8,402	14.7%
Totals	62,905	120,667	239,996	411,881	622,358	95.0%

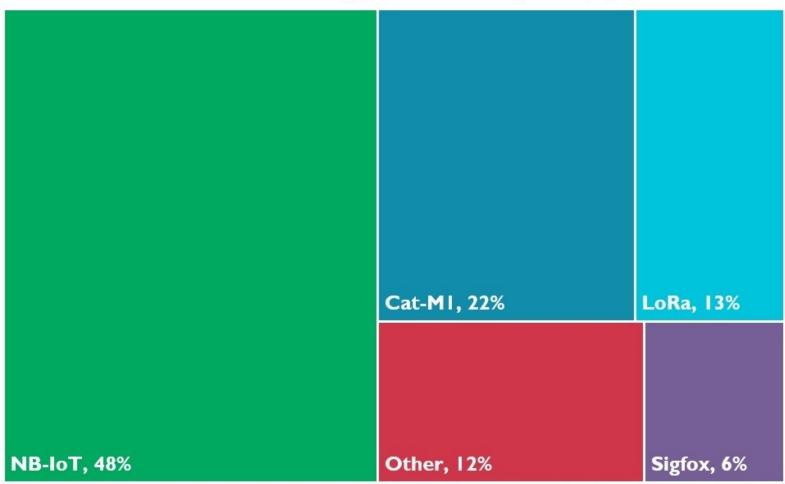
Source: IHS Markit



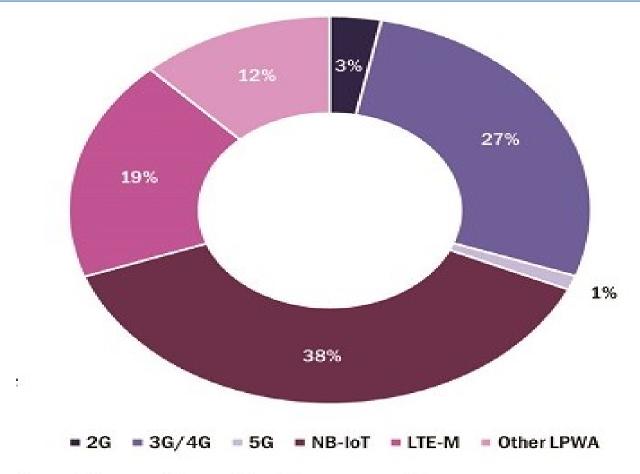


Future of IoT connectivity by network type across the world

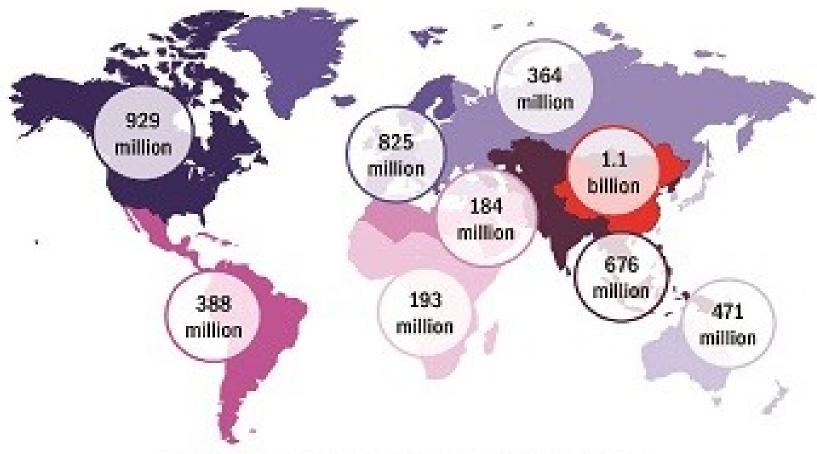
NB-IoT will be the dominant network for IoT in 2026 (Analysys Mason)



LPWAN Technology Share Forecast, 2025 (%)


Source: Global IoT Forecast, Machina, 2017

Share of LPWAN Connections in 2026


Share of worldwide connections by network type, 2026

NB-IoT will have 38% of total connections in 2026, backed by Chinese market

Total loT connections (cellular and LPWA) by region, 2026

China will dominate the market by 2026 with 1.1 billion connections

Thank you!

