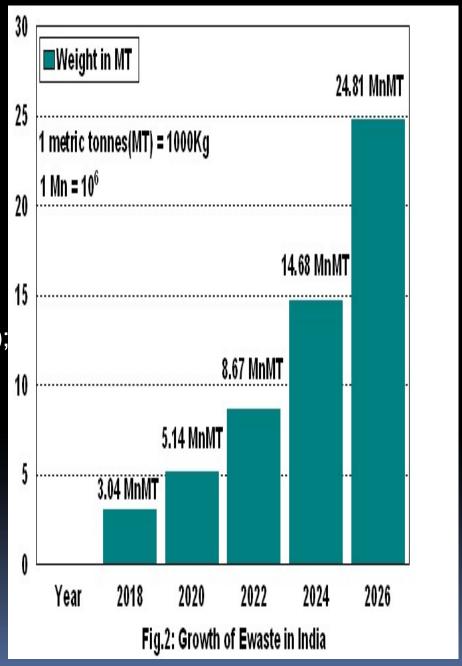
Low cost E-waste Recycling Technologies

Dr. Sandip Chatterjee
Director,
Ministry of Electronics Information Technology
Government of India
sandip@meity.gov.in

E-Waste Inventory

Globally:


- 2014: 41.8 MT
- 2016: 45.7 MT
- 2018: 49.8 MT

Continent wise: (2014)

- Asia: 16MT (3.7Kg/inh); America: 11.7MT (12.2Kg/inh); Europe:11.6MT(15.6Kg/inh); Africa: 1.9MT (1.7Kg/inh)

India:

- 2014: 1.7MT
- 2016: 2 Mn MT to reach 5.2 Mn MT by 2020 with 30% CAGR.
- 2018: 3 MT

Source: United Nation University, 2014, ASSCHAM 2016

Present Scenario of E-waste Recycling in India

- 90-95% e-waste recycling in non-formal sector
- PCBs are treated in primitive methods to remove components & value metals
- Burning cables to recover copper & unwanted materials in open air
- Leaching of heavy metals/ chemicals into landfills and incinerator hazardous
- Recovery yield is poor (~10-20%)- loosing precious metals
- 5-10% e-waste is recycled in formal sector
- Segregating, disassembling to recover: structural metal parts, cables, Printed Circuit Board (PCB), glass components etc.
- Limited PCB treatment or Exported them for further process to recover precious metals

Potential Materials Recovered from E-waste

Recovered Items		Recycling Option	Used	
 2. 3. 	Small & large structural metal parts, heat sinks, Ferrous metal Ferrite & ceramic components Non ferrous metal scrap mainly Cu & Al Glass components	Dismantling, Segregation, Smelting Available with local smelters	Recovered materials can be sold at market price	
4.	Precious metal scrap, PCBs with IC Chips, electronic components and connectors	Exported/ High end imported Technology Required Indigenous technology developed: Smelting + Hydro- metallurgy + Electro-chemical Process	High value extracted Precious metals can be sold	
5.6.	Small & large structural plastic parts, flame retardants plastic Cables and wires	low value/ dealt in informal sector Indigenous Technology Developed	Value added master batch made high value extracted metals	
7.	Hazardous wastes like CFC, Mercury (Hg) Switches, CRT, and capacitor	Indigenous Technology Developed	Extracted metals to be sold to market	
8.	Hazardous wastes like batteries specially Lithium ion	High end imported Technology Required Indigenous technology developed:	High value extracted Precious metals can be sold	

Technology Developed for Extraction of Metals

- Processing technology successfully developed for recycling and reuse of electronic waste
 - Pulverization, physical separation, chemical leaching etc.
 - Pilot Plant level demonstration done to recover precious metal from 1 Metric Tonnes of e-waste with a recovery rate of 95%.
 - Commercialization

NML, Jamshedpur

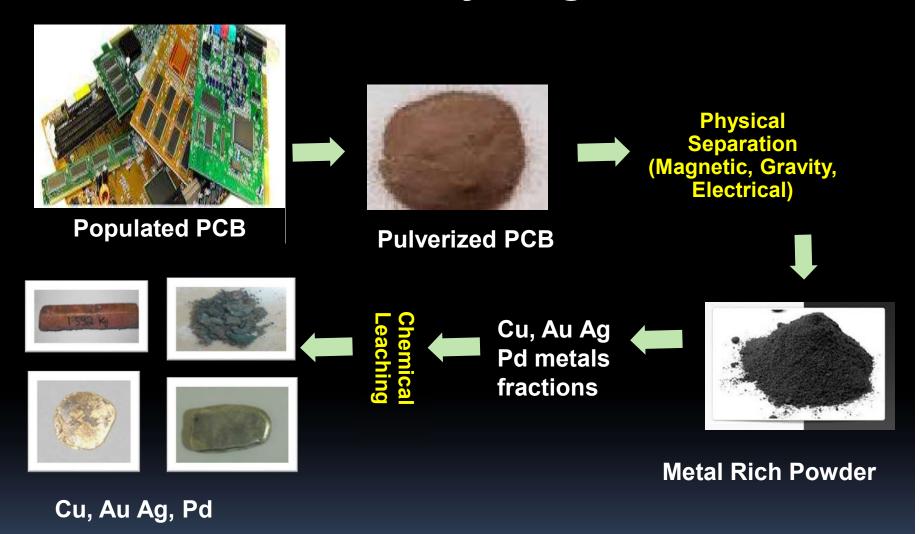
- Printed circuit boards processing technology was successfully developed
 & demonstrated
 - Depopulation, pyrolysis, calciner, chemical leaching etc.

CMET, Hyderabad & E-parisara, Bangalore

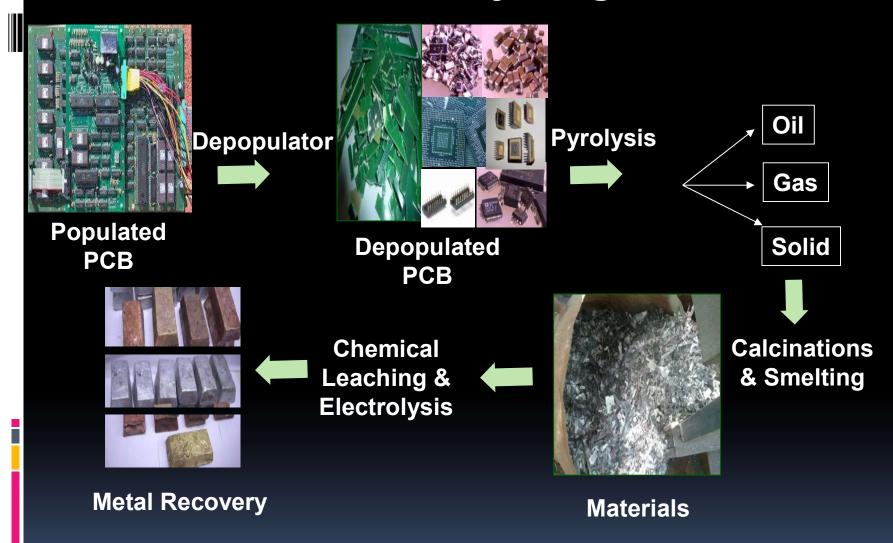
Dismantling and Segregation

Initial Process

Electronic Products



Segregated Components


Printed Circuit Boards

PCB Recycling

NML, Jamshedpur- process

PCB Recycling

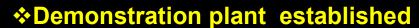
CMET, Hyderabad & E-Parisara, B'lr- process

Process Chart

Anode mud processing (5kg/batch)

Precious metals

Printed circuit boards



Depopulation (10kg/hour)

Environmental sound PCB
Recycling Technology: 100Kg
capacity

❖Flue gases are treated in a secondary burner and the dioxin and furnas contents within admissible emission limit of CPCB

Electro-refining

(5kg Cu/day)

Refining of copper (150kg/day)

Vimta Labs Limited

Registered Office 142, IDA Phase II, Cherlapally Hyderabad-500 051, India T: +91 40 2726 4141 F: +91 40 2726 3657

ISSUED TO:

M/S. CENTRE FOR MATERIALS FOR ELECTRONICS

Report Number

VLL/VLS/18-19/10658/01

TECHNOLOGY (C-MET)

Issued Date 2018-12-10

(Scientific Society, Ministry of Electronics and Information

Your Ref

HD/PUR/SP-32/GASAN/84/2018-

Technology (Melty), Govt of India).

19/5-12-2018

IDA Phase-III, Cherlapally, HCL (PO),

And Date

2018-12-05

Hyderabad-500051 Telangana State INDIA.

SAMPLE PARTICULARS

SOURCE EMISSION MONITORING AT INCINERETOR STACK

arent section (reserving		annuer entireschil	Indian Aming the strength of the	un .	
Sample Registration Date	Í	2018-12-08	Sampling Date	-	2018-12-08
Analysis Starting Date	÷	2018-12-10	Analysis Completion Date	4	2018-12-10
Test Required		Oxygen, Carbon Mo	onoxide, Carbon dioxide, Sulphur Diox	ide and	Oxides of Nitrogen;
SAMPLE COLLECTED BY VIMTY	ALARS				AR REE SE

TEST REPORT

SI. No.	PARAMETERS	UOM	METHOD OF TESTING	RESULTS	Limits
1	Diameter of stack	m	9	0.5	- 0
2	Flue gas temperature	10		58	,
3	Velocity	m/sec		6.5	- 1
4	Volumetric flow rate	Nm /Sec		1.128	
5	Volumetric flow rate	Nm³/Sec		4061.52	
6	Oxygen	17.	Flue Gas Analyzer	8.4	- 10
7	Carbon Monoxide	mg/Nm ³	Flue Gas Analyzer	3.7	100
8	Carbon Dioxide		Flue Gas Analyzer	7.32	10
9	Sulphur Dioxide	mg/Nm ³	Flue Gas Analyzer	BOL	200
10	Oxides of Nitrogen	mg/Nm ³	Flue Gas Analyzer	55.35	400

Instruments used: For HF and HCI - Ion selective Electrode analyzer,

All the Values are represented at 11% O:

Dr.SubbaReddy Mallampati Group Leader-Environment

Vimta Labs Limited

Registered Office 142, IDA Phase II, Chertapally Hyderabad-500 051, India T: +91 40 2726 4141 F: +91 40 2726 3657

Lab Report

ISSUED TO:

M/S. CENTRE FOR MATERIALS FOR ELECTRONICS

Report Number : VLL/VLS//18/010658/02

TECHNOLOGY (C-MET)

(Scientific Society, Ministry of Electronics and Information Technology

Issue Date

: 2018-12-21

(Melty), Govt of India). IDA Phase-III, Chertapally, HCL (PO),

Your Ref

: HD/PUR/SP-32/GASAN/84/2018-19/5-12-2018

Hyderabad-500051 Telangana State. INDIA.

and Date

: 2018-12-05

Sample Particulars: SOURCE EMISSION MONITORING FOR INCINERATOR STACK

Page 1 of 1

Sample Registration Date: 2018-12-08 Analysis starting date : 2018-12-10

2018-12-08

Quantity received: XAD Module, Filter Paper and Methanol/MeCl₂ Line Washing: Samples collected at E-WASTE CALICINATION / INCINERATION:

Analysis Completion date: 2018-12-21

Test Required: PCDD and PCDF: SAMPLE COLLECTED BY VIMTA LABS LTD.

LAB REF.: EC:

40.00		TEST RESULTS	
SI. No.	PARAMETERS	UOM	P. C.
1	Height	m	RESULTS
2	Diameter of stack	m	6.0
3	Load	Kg/hr	0.5
3	Flue gas temperature	C	100
4	Velocity	m/sec	58
5	Volumetric flow rate	Nm³/hr	6,5
- 6	Oxygen as O ₂	%	4061.52
Dioxin and Furan	5	/6	6.4
6	2,3,7,8-TCDF	ng/Nm³, TEQ	
7	1.2.3.7.8-PeCDF	ng/Nm³, TEQ	0.00233
8	2.3.4.7.8-PeCDF	ng/Nm², TEQ	0.00171
9	1,2,3,4,7,8-HxCDF	ng/Nm², TEQ	0.00181
10	1,2,3,6,7,8-HxCDF	ng/Nm³, TEQ	0.00171
11	2,3,4,6,7,8-HxCDF		0.00220
12	1,2,3,7,8,9-HxCDF	ng/Nm³, TEQ	0.00181
13	1.2.3.4.6.7.8-HpCDF	ng/Nm³, TEQ	0.00164
14	1.2,3,4,7,8,9-HpCDF	ng/Nm³, TEQ	0.00175
15	OCDF	ng/Nm³, TEQ	0.00216
16	2,3,7,8-TCDD	ng/Nm³, TEQ	0.00202
17	1,2,3,7,8-PeCDD	ng/Nm³, TEQ	0.00217
18	1,2,3,4,7,8-HxCDD	ng/Nm³, TEQ	0.00237
19	1,2,3,6,7,8-HxCDD	ng/Nim³, TEQ	0.00234
20	1,2,3,7,8,9-HxCDD	ng/Nm³, TEQ	0.00215
21	1,2,3,4,6,7,8-HpCDD	ng/Nm², TEQ	0.00189
22	OCDD	ng/Nm², TEQ	0.00191
Total Furans & Dioxins		ng/Nm², TEQ	0.00172
		ng/Nm², TEQ Corrected to 11%	0.03369
Limit		O ₂ Concentration	179270
		ng TEQ/Nm²	0.1

Method of Testing: As per USEPA Method-23A & 8290 Instrument used: Auto Spec premier (HRGC/HRMS) Minimum Detectable Limit - 0.01pg All the values are corrected to 11% O2 as per CPCB guidelines.

> Dr.SubbaReddy Mallampati Group Leader-Environment

Life Sciences Campus, # 5, MN Science & Technology Park, Genome Valley, Shamirpet, Hyderabad - 500 101, India T:+91 40 6740 4040 E:mdoffice@vimta.com URL:www.vimta.com

CIN: L24110TG1990PLC011977

Metal Extraction from PCB Recycling: Demonstration Plant

C-MET Hyderabad

Status:

ToT ready up till black copper & also precious metal

End user:

Copper smelters, E- waste recyclers

EPPL Bangalore

Capacity: 300 TPA
1000Kg PCB (35MT ewaste) /day

Capacity: 30 TPA

100Kg PCB (3.5MT e-waste) /batch

Metal Extraction from PCB Recycling: Demonstration Plant

C-MET Hyderabad

E-Waste Demo Plant at C-MET

Electro-Refining unit (5kg/day Deposition rate)

Metal Extraction from PCB Recycling: Demonstration Plant

EPPL Bangalore

Indigenously designed and fabricated low cost furnace for smelting of PCBs.

Ingots of Black copper

Metal Extraction from PCB Recycling: Demonstration Plant

EPPL Bangalore

Scaled up Electrolysis of Anode Copper to 99.9 % pure copper, collection of precious metals rich anode slime

Ingots of fire refined copper

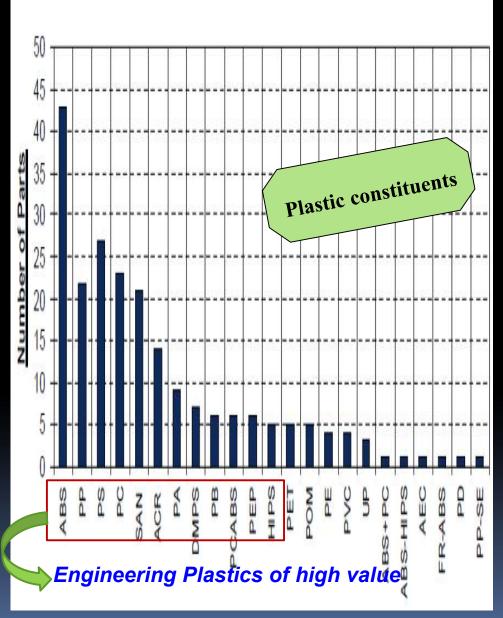
Typical Potential Materials from e-waste: Demonstration Plant

E-waste mixture (Desktop, laptop, refrigerator, TV, Washing machine etc.) 35MT

a. Ferrous (iron & steel):
b. Non ferrous (Cu, Al, Pb, Sn etc):
c. Plastics:
d. Glass:
e. PCB:
13.80 MT (39%)
10.20 MT (29%)
8.00 MT (23%)
2.00 MT (06%)
1.00 MT (03%)

a., b. and d. to be sold to smelter based on their market value c. and e. would be processed

a., b. c. d. e and h would be recovered


* Li-ion battery mixture (of mobile, laptop, tubular batteries etc. 10MT

a.	Aluminum:	1.50 MT (15%)
b.	Copper:	1.00 MT (10%)
C.	Cobalt:	1.80 MT (8%)
d.	Lithium:	0.18 MT (2%)
e.	Plastic:	0.90 MT (9%)
f.	Carbon:	2.00 MT (20%)
g.	Electrolyte:	1.90 MT (19%)
h.	Steel, Nickel, others:	0.72 MT (7%)

Technology developed for E-waste Plastics

7 categories of plastics (ABS, HIPS, PC, PP, PVC, nylons, Epoxy, phenolic, Polyesters etc.) Segregated in 3 Types:

- Homogenous type *Type 1:* (76%): housing, mouse etc..
 Processing technology developed to convert these plastic to Master batch for value added product, gained virgin properties, Process patented. TOT in progress
- Heterogenous type: Type 2
 (20.5%): connectors, catridge,
 etc., & Type 3 (3.5%):
 Thermoset plastics containing
 BFR, fillers & heavy metals

CIPET, Bhubaneswar

Technology developed for E-waste Plastics

CIPET, Bhubaneswar

Other Materials Processed: Demonstration Plant

- All types of wires/ connectors
- CFL / Fluorescent Tube
- Rare earth materials from Phosphors (Yttrium, Europium etc.)
- Rare earth materials from Neodymium (Nd) from Hard disc

Way forward

- Create infrastructure: Eco-park with public and private funding
- Provide affordable technologies, adequate tools machineries, handholding and training to informal sector: To make them formal
- Creating awareness to all stakeholders to channelize the materials to created infrastructures and formal sector
- Next step should be benchmarking the created facility and auditing the standard