





# **LTE Planning and dimensioning**

# ITU PITA Workshop on Mobile network planning and security

Sami TABBANE 23-25 October 2019 – Nadi, Fiji Islands



#### CONTENTS

Introduction

- I. Radio Planning
- **II. Dimensioning**
- **III. Conclusions**





CONTENTS

# I. Radio planning



**PLANNING PRINCIPLES** 

## **1**. Necessity of network planning





### **NECESSITY OF NETWORK PLANNING**

Necessity of network planning

- Construct a radio network
- Spectrum allocation limitations
- New data services, and new technologies
- Extension in the future of existing network
- Optimization of the cost and guaranteeing the network service quality
- Efficient utilization of resources





#### **PLANNING PRINCIPLES**

## 2. Purpose



#### **NECESSITY OF NETWORK PLANNING**

Purpose

- ➢ Reach good quality
- ➢ Required radio coverage
- Maximum use of resources
- > Maintaining high level of system quality
- Provide both increased capacity and the

improvement in required network quality



#### **NECESSITY OF NETWORK PLANNING**

Input to network planning



Cost / Money



#### **PLANNING PRINCIPLES**

## 3. Main features of radio planning



The basic decisions that must be taken during the radio planning phase are:

- Where to install base stations
- How to configure base stations (antenna type, height, sectors orientation, tilt, maximum power, device capacity, etc.)





- FDMA/TDMA/OFDMA cellular systems adopt a two phases radio planning
  - Coverage planning



Capacity planning (frequency assignment)





- Coverage planning:
  - Percentage of the geographical area covered by the cellular service where mobile telephony is available
    - Select where to install base stations
    - Select antenna configurations
    - constraints on signal level in the area

➔ Guarantee the signal strength in the service area





## > Depending on the following factors

- *Natural*: geographical aspect/propagation conditions
- *Human*: landscape (urban, suburban, rural)

## > Methods

- Theoretically through link budget calculation and computer
- Simulation and optimization through the drive test and other measurements



- Capacity planning:
  - Number of calls that can be handled in a certain area within a certain period of time
  - Probability that users will be denied access to a system due to unavailability of radio channels
    - Define which radio resources can be used by each cell





Three essential parameters

- Estimated traffic
- Antenna parameters (height, tilt, azimuth, aperture, gain, ...)
- Frequency reuse factor





CONTENTS

## **II. Planning Procedures**





#### CONTENTS

- I. Planning Procedures
  - 1. Process overview
  - 2. Link budget
  - 3. Planning Input
  - 4. Planning phases
  - 5. Tools



**PLANNING PROCEDURES** 

## **1. Process overview**



### **PROCESS OVERVIEW**

### «*Traffic*» oriented area



In FDMA/TDMA cellular systems

«Coverage» oriented area









#### **PROCESS OVERVIEW**

## **1. Preliminary work**

- Propagation tool setup
- Terrain, clutter, vector data acquisition and setup
- Load master lease site location in data base
- Marketing Analysis
- Set initial Link Budget
- Initial cell radius calculation
- Initial cell number estimate







#### **PROCESS OVERVIEW**

## **General approch**



Determine height, tilts and azimuths of the antennas, power ... to meet the QoS constraints



PLANNING PROCEDURES

## 2. Link Budget



#### LINK BUDGET

- Link budget calculation
  - Signal strength loss on the path between base station and mobile phone
- Define the cell ranges along with the coverage thresholds
- Important components
  - Sensitivity, Fade margin, Connector and cable losses, Antenna gain





#### LINK BUDGET

- Antenna
- Directional antenna
  - Sectorized antenna
- Omni directional antenna
  - Radiates in all direction







#### LINK BUDGET

- Hierarchical Cells
- Macro Cell
  - Antenna above average rooftop height
- Micro Cell
  - Antenna below average rooftop height
- Pico Cell
- Indoors





PLANNING PROCEDURES

## **3.** Planning Input



#### **PLANNING INPUT**





#### **PLANNING INPUT**

- Capacity related
  - Spectrum available
  - Subscriber Growth
  - Traffic density Map( traffic per subscriber)
- Clutter related
  - Dense urban
  - Urban
  - Sub urban
  - Rural





PLANNING PROCEDURES

## 3. Planning phases



### Site choice

- 1) Determine the *power level* at the cell border (sensitivity, propagation, antennas, ...),
- 2) Choose an *available site*,
- 3) Compute its *coverage*,
- 4) Choose other sites and draw their coverage so that they *overlap*.

➔ In a cellular network, all the sites must be considered together.





### Radio sites choice criteria

- Examine users needs, service area, frequencies, power constraints, ...
- Survey of the service area to identify the preferred sites,
- Search existing sites in the considered areas,
- Validate the sites and determine the possibility of site sharing.



## **Radio sites location determination**





A. Radio design

## 1st constraint: link budget

System tuning should allow *uplink* and *downlink* balancing.





A. Radio design

## 2nd constraint: Minimum cell overlapping required for the handover

Common area between adjacent cells: power difference between the signals received from each cells should be within a margin of a few dBs (e.g., HO\_Margin)





A. Radio design

## 3rd constraint: Network coverage continuity

Network coverage should be continuous, at least in dense areas or for the main transportation axes (roads, highways, railways, ...)


## A. Radio design

## 4rth constraint: Homogeneity

→Sites and antennas parameters should respect, as much as possible, the homogeneity constraint:

- Hexagonal cluster,
- Antennas heights,
- Antennas azimuths,
- Antennas tilts.









## **B.** Site survey

- Practical sites research for BSs positioning
  - Information about the environment
- ≻General information (morphology, structure, ...)

## in digital maps,

➢ Specific and detailed information.





## **B.** Site survey

- ✓ Identify the highest sites,
- ✓ Take pictures of the sites and environment,
- ✓ Identify the towers and leur height,
- ✓ Estimate the cables length (feeder, ...),
- Identify the existing infrastructure (buildings, energy, access, ...),
- ✓ Collect sites coordinates,

✓ ....



## Steps and process





## Survey outputs

✓ List of available sites.

- ✓ Antennas constraints (type, height, aperture, ...).
- ✓ EIRP limitations.

✓ Forbidden areas.



C. Coverage simulation tools

**Radio engineering tools** 

✓To benefit from all network deployment required features (coverage calculation, data display, network optimization, ...)

✓ Very important gains in time and costs.



## **Propagation prediction tools**

prediction: coverage, interference, performance, etc.

databases:

- geographical: topography, morphology, buildings, highways, etc.
- statistics: marketing, traffic density, ...
- antenna systems,
- propagation prediction models,
- frequency allocation algorithms,
- sites (to be positioned),

determine the position of the sites,

distribute the frequencies to the sites,

determine the technical characteristics of the bas





## Software modules

- Graphical user interface,
- Coverage prediction models,
- Frequency allocation algorithms,
- Network dimensioning methods (in BSs and BSCs number),
- Interfaces with data transmission networks (to collect measurements and counters from the OSS),
- Interfaces with radio signal measurements tools,
- Integration of advanced features (diversity, ...),
- Handovers simulation modules, ...



## Radio penetration thresholds

- Based on statistical techniques,
- Modeled by an additional loss (in-building),
- Model predicted loss = outdoor loss + indoor loss.

| Type of penetration | Loss  | Standard deviation |
|---------------------|-------|--------------------|
| Dense urban         | 20 dB | 8 dB               |
| Urban               | 15 dB | 8 dB               |
| Suburban            | 10 dB | 8 dB               |
| Rural               | 8 dB  | 8 dB               |
| In-car              | 6 dB  | 6 dB               |



## **Tuned parameters**

- When coverage or quality criteria are not fulfilled, sites characteristics are modified:
  - Transmission power,
  - Antennas azimuths,
  - Antennas tilts,
  - Sites sectorisation,
  - Sites position changing,
  - Sites addition,

•



## **Optimized and considered data**

## **Transmitted data**

- antenna,
- •technical parameters (power and frequency margins, sensitivity, ...).

#### Data network

- Sites,
- Cells, sectors, links,
- •Neighbors,
- Frequency plan, reuse clusters.

#### Interfering networks data

- Other operators offering the same service,
- •Other services,
- •Other countries.



Coverage by transmitter: Display the best server coverage

**Coverage by signal level:** Display the signal level across the studied area

**Overlapping zones:** Display the signal level across the studied area







## PLANNING PROCEDURES

# 8. Tools





#### Main Planning Tools:

- Aircom Asset
- Mentum Planet
- Atoll FORSK
- ATDI
- WinProp
- EDX Signal Pro
- CelPlan
- Siradel
- Pathloss

#### Main Optimization Engines

- Actix
- Capesso



- Used to assets designing an optimizing Wireless network by :
  - Prediction of coverage
  - Frequency planning automatically
  - Creating neighboring list
- With a data base takes into account :
  - Clutter
  - Antenna radiation
  - Terrain
  - Number of users
  - Services supported



Geographical databases

- Digital terrain map (DTM).
- Clutter.
- 3D databases.
- Indoor architecture.







## MNT + Clutter









- DTM Digital Terrain Model
- DEM Digital Elevation Model

Sources

- paper maps
- satellite images

- ...

Typical resolution:

– 20m – 1000m per pixel









- Parameters used for coverage prediction
- Coordinates of the transmitter
- Radiated power
- Frequency
- Antenna diagram







- Coverage simulation
- Static/Dynamic simulation
- Distributions (snapshots)
- By iteration,



→ UL/DL cell load, connection status and rejected reason for each mobile



# **II.** Dimensioning



#### **CIRCUIT SWITCHED VERSUS PACKET SWITCHED DIMENSIONING**



|                                  | Circuits                        | Packets                                                  |
|----------------------------------|---------------------------------|----------------------------------------------------------|
| Maximum bitrate / connection     | Fixed (limited)                 | Variable (≤ maximum)                                     |
| QoS (GoS, throughput, data loss) | Deterministic                   | Unpredictable                                            |
| Traffic models                   | Simples                         | Complexes                                                |
| Simultaneous connections number  | Limited                         | Adaptable and flexible                                   |
| Network resources                | No optimization, possible waste | Optimization with complex resource allocation algorithms |
| Resource management              | Simple                          | Complex                                                  |







#### **EXAMPLES OF TRAFFIC TRACES**



http service traffic is more bursty than video streaming and ftp services traffic



#### **TRAFFIC AGGREGATION**









#### DIFFERENT BURSTINESS LEVELS EXAMPLE AT SAME PACKET RATE





#### DATA SERVICES DIMENSIONING PROCESS

**Classification of the traffic for priority handling** 





- Models integrated into a simulator which generates, for different scenarios (e.g., service usage, subscriber types, codecs, ...) an aggregated traffic volume used to dimension the capacity of the nodes and/or the interfaces.
- **Drawback**: complex, time consuming and requires accurate hypothesis.



#### QOS ASPECTS: EXAMPLE OF LTE QCI VALUES

| QCI | RESOURCE<br>TYPE | PRIORITY | PACKET DELAY<br>BUDGET (MS) | PACKET ERROR<br>LOSS RATE | EXAMPLE SERVICES                                                                                |
|-----|------------------|----------|-----------------------------|---------------------------|-------------------------------------------------------------------------------------------------|
| 1   | GBR              | 2        | 100                         | 10-2                      | Conversational voice                                                                            |
| 2   | GBR              | 4        | 150                         | 10 <sup>-3</sup>          | Conversational video (live streaming)                                                           |
| 3   | GBR              | 5        | 300                         | 10 <sup>-6</sup>          | Non-conversational video (buffered streaming)                                                   |
| 4   | GBR              | 3        | 50                          | 10 <sup>-3</sup>          | Real-time gaming                                                                                |
| 5   | Non-GBR          | 1        | 100                         | 10-6                      | IMS signaling                                                                                   |
| 6   | Non-GBR          | 7        | 100                         | 10 <sup>-3</sup>          | Voice, video (live streaming), interactive gaming                                               |
| 7   | Non-GBR          | 6        | 300                         | 10-6                      | Video (buffered streaming)                                                                      |
| 8   | Non-GBR          | 8        | 300                         | 10 <sup>-6</sup>          | TCP-based (for example, WWW, e-mail), chat, FTP, p2p file sharing, progressive video and others |
| 9   | Non-GBR          | 9        | 300                         | 10-6                      |                                                                                                 |



# **Bandwidth based dimensioning**



#### **GENERAL APPROACH DESCRIPTION**

- Dimensioning (UL or DL): based on the services required bandwidth estimation.
- Contention ratios: to reflect the bursty nature of the *traffic* and of the *service activity* as well as the *priorities* of the users and services.
- Aggregation of the traffic flows bitrates: to estimate the *total link* or *node capacity*.
- If overload (unpredicted users and services behavior): *scheduling* and *queuing* mechanisms maintain the QoS of high priority traffic. QoS parameters of some services will be degradated (e.g., bitrate, jitter, delay, BLER, ...).



#### **ELASTIC APPLICATIONS**

Elastic



71



#### **EXAMPLES OF ELASTIC APPLICATIONS**

- E-mail:
  - asynchronous
  - message is not real-time
  - delivery in several minutes is acceptable
- File transfer:
  - interactive service
  - require "quick" transfer
  - "slow" transfer acceptable

- Network file service:
  - interactive service
  - similar to file transfer
  - fast response required
  - (usually over LAN)
- WWW:
  - interactive
  - file access mechanism(!)
  - fast response required
  - QoS sensitive content on WWW pages


#### **INELASTIC APPLICATIONS**





### **BURTSINESS, ACTIVITY RATE, CONTENTION RATIO**





### SERVICES CLASSIFICATION AND QUEUING EXAMPLE





### SERVICES CLASSIFICATION AND QUEUING EXAMPLE





#### SERVICES TRAFFIC AGGREGATION AND PRIORITIZATION EXAMPLE





#### **RADIO INTERFACE DIMENSIONING**

# **Aggregated bearers**



*Dimensioning purpose*: determine the bearer bitrate **D** 



#### THEORETICAL CELL AVAILABLE BANDWIDTH

| Cell load | Inter site distance |         |  |  |  |
|-----------|---------------------|---------|--|--|--|
| Cell load | 500 m.              | 1732 m. |  |  |  |
| 0%        | 2.17384             | 1.68426 |  |  |  |
| 5%        | 2.16822             | 1.44588 |  |  |  |
| 10%       | 2.07655             | 1.25680 |  |  |  |
| 15%       | 1.96951             | 1.16004 |  |  |  |
| 20%       | 1.86613             | 1.12126 |  |  |  |
| 25%       | 1.77003             | 1.08615 |  |  |  |
| 30%       | 1.67839             | 1.03514 |  |  |  |
| 35%       | 1.59381             | 1.03514 |  |  |  |
| 40%       | 1.51367             | 1.02943 |  |  |  |
| 45%       | 1.44084             | 1.01242 |  |  |  |
| 50%       | 1.37164             | 1.00934 |  |  |  |
| 55%       | 1.30975             | 1.00622 |  |  |  |
| 60%       | 1.25242             | 1.00491 |  |  |  |
| 65%       | 1.20192             | 1.00328 |  |  |  |
| 70%       | 1.15599             | 1.00211 |  |  |  |
| 75%       | 1.11735             | 1.00000 |  |  |  |
| 80%       | 1.08236             | 1.00000 |  |  |  |
| 85%       | 1.05467             | 1.00000 |  |  |  |
| 90%       | 1.03153             | 1.00000 |  |  |  |
| 95%       | 1.01523             | 1.00000 |  |  |  |
| 100%      | 1.00000             | 1.00000 |  |  |  |
| ٨         |                     |         |  |  |  |

### Capacity = C<sub>total</sub>\*Loading Factor\*Scaling Factor

| 3GPP<br>Release | User<br>Equipment<br>Category | Maximum L1<br>datarate<br>Downlink | Maximum<br>number of<br>DL <u>MIMO</u> layers | Maximum L1<br>datarate <mark>Uplink</mark> |
|-----------------|-------------------------------|------------------------------------|-----------------------------------------------|--------------------------------------------|
| Release 8       | Category 1                    | 10.3 Mbit/s                        | 1                                             | 5.2 Mbit/s                                 |
| Release 8       | Category 2                    | 51.0 Mbit/s                        | 2                                             | 25.5 Mbit/s                                |
| Release 8       | Category 3                    | gory 3 102.0 Mbit/s 2              |                                               | 51.0 Mbit/s                                |
| Release 8       | Category 4                    | 150.8 Mbit/s                       | 2                                             | 51.0 Mbit/s                                |
| Release 8       | Category 5                    | 299.6 Mbit/s                       | 4                                             | 75.4 Mbit/s                                |
| Release 10      | Category 6                    | 301.5 Mbit/s                       | 2 or 4                                        | 51.0 Mbit/s                                |
| Release 10      | Category 7                    | 301.5 Mbit/s                       | 2 or 4                                        | 102.0 Mbit/s                               |
| Release 10      | Category 8                    | 2998.6 Mbit/s                      | 8                                             | 1497.8 Mbit/s                              |

### Theoretical capacity: C<sub>Total</sub>

*Example*: *C*<sub>total</sub> = 150.8 Mb/s, *Loading Factor* = 60% and *Scaling Factor* = 1.25242 (for cell radius = 500m.) Capacity = 150.8\*0.60\*1.25242 = 113.319 Mb/s

Loading factor Scaling factor



### **DIMENSIONING PROCESS**

**Step 1**: initial configuration (dimensioning and planning)





### **DIMENSIONING PROCESS**

**Step 2**: final configuration

Cell available bandwidth (Mb/s) Aggregate required capacity (Mb/s) Coverage and interference characteristics Radio interface characteristics New radio planning: optimization

Final number of required cells and sites configuration







# INPUTS

- Subscribers classes,
- Service usage/subs. class,
- Contention ratios/subs. class,
- Subscribers geographic distribution,
- Services bitrates,
- Services and protocols overheads.



### MCS DESCRIPTION AND REQUIRED RECEIVER SENSIBILITY

|                    |                |      | S <sub>RX</sub> |        |  |
|--------------------|----------------|------|-----------------|--------|--|
| Modulation<br>Type | Coding<br>Rate | SNR  | 5 MHz           | 10 MHz |  |
|                    | 1/2            | 5    | -92,30          | -89,29 |  |
| QPSK               | 3/4            | 8    | -89,30          | -86,29 |  |
|                    | 1/2            | 10,5 | -86,80          | -83,79 |  |
| 16-QAM             | 3/4            | 14   | -83,30          | -80,29 |  |
|                    | 1/2            | 16   | -81,30          | -78,29 |  |
|                    | 2/3            | 18   | -79,30          | -76,29 |  |
| 64-QAM             | 3/4            | 20   | -77,30          | -74,29 |  |



### MSC DISTRIBUTION AMONG USERS IN THE CELL EXAMPLE

| Modulation Type | Coding<br>Rate | Weight | K |
|-----------------|----------------|--------|---|
| BPSK            | 1/2            | 5.0%   | 1 |
| QPSK            | 1/2            | 2.5%   | 2 |
| Gron            | 3/4            | 2.5%   | 2 |
| 16-QAM          | 1/2            | 5.0%   | 4 |
|                 | 3/4            | 5.0%   | 4 |
| 64-QAM          | 2/3            | 40.0%  | 6 |
|                 | 3/4            | 40.0%  | 6 |



### DISTRIBUTION OF THE CAPACITY PER QOS TYPE



85



### **CONTENTION RATIO**

- Measures the simultaneity of users requesting bit rate from the BS because most users won't demand data at the same time. The absolute peak demand on shared resources rarely occurs. User simultaneity is defined by the *contention ratio*.
- If many of the connected subscribers demand data, their packets will be delivered assuming some latency or jitter (less priority).
- *Example*: if 2 **contention ratios** are defined for the nonguaranteed partition of the bandwidth (e.g., **30** for *residential users* (less priority) up to **10** for *business users* (higher priority and throughput)), we have:

| Subscriber class      | DL BE service | Offered data rates    |
|-----------------------|---------------|-----------------------|
| Residential Class     | X = 512 kbps  | X' = 512/30=17 kbps   |
| <b>Business Class</b> | Y = 1 Mbps    | Y' = 1000/10=100 kbps |

Sector Actual data-rates considered in the system capacity calculations.



### OVER SUBSCRIPTION RATIO (1)

- OSR = ratio of the total subscriber's demand over the reference capacity of the base station when taking into account the adaptive modulation.
- The reference capacity of the base station corresponds to the available bit rate of the lowest modulation scheme served with that BS (here BPSK1/2).

 $C_{ref} = FFT_{used}/2T_s$ 

• *FFT<sub>used</sub>* and *T<sub>s</sub>* (symbol duration) values depend on the channel bandwidth (in LTE: from 72 to 1200) and the Cyclic Prefix factor respectively (=CP/Symbol duration).



### OVER SUBSCRIPTION RATIO (2)

- *Residential class* = **A%** of the users in the cell,
- *Business class* = **B%** of the users in the cell.
- Total capacity for OSR calculation:

 $C_{tot} = N_*(A\%_*X + B\%_*Y)$  $OSR = C_{tot}/C_{ref}$ 





$$BW raw = \frac{FFT_{used} \times \Sigma(\%P \cdot k \cdot OCR)}{T_{s}}$$

- *FFT<sub>used</sub>* = number of data subcarriers dependent on the channel bandwidth (from 72 to 1200 in LTE).
- %*P* = percentage (weight),
- *k* = number of bits per symbol,
- **OCR** = overall coding rate.



### **APPLICATION BANDWIDTH AND AVERAGE USAGE**

| Application                        | Data rate<br>(kbps) | Weight (average<br>usage during a<br>session) |
|------------------------------------|---------------------|-----------------------------------------------|
| Multiplayer interactive gaming     | D1 = 50             | W1 = 25.0 %                                   |
| VoIP and Video Conference          | D2 = 32             | W2 = 10.0 %                                   |
| Streaming Media                    | D3 = 64             | W3 = 12.5 %                                   |
| Web browsing and instant messaging | Nominal             | W4 = 32.5 %                                   |
| Media content downloading          | BE                  | W5 = 20.0 %                                   |



### CONTENTS

# **Dimensioning Method**



### **DIMENSIONING METHOD**

# **Planning Design: Application to LTE**





LTE dimensioning requires three steps:





### CONTENTS

# **Traffic Estimation**

- 1. Subscribers population
- 2. Mobility and Traffic Model
- 3. Cell Characteristics and Planning assumptions





### TRAFFIC ESTIMATION

# 1. Subscribers population





### SUBSCRIBERS POPULATION

Inputs - Outputs





### SUBSCRIBERS POPULATION

### Formulas



- (A) Subs. Number/Class = (1) x (2) x (3)
- (B) Density / Subs. Class = (A) ÷ (5)
- (C) Subs. Growth for n year(s) = (B)[ 1+ (6)] <sup>(7)</sup>



### **TRAFFIC ESTIMATION**

# 2. Traffic Model





### **TRAFFIC MODEL**

### Inputs – Outputs

### Mobility & Traffic Model

- (8) Service Average Bitrate (kb/s)
- (9) Service Activation Number at BH per Subs Class
- (10) Service Activity Rate
- (11) Burstiness Margin / Service
- (12) Service or Signaling Procedure Average Duration
- (13) Average BLER (for NRT services)
- (14) Contention Ratio / Service / Subs. Class
- (15) TAUs number / Subscriber at BH
- (16) HO number / Subscriber at BH
- (17) Mobility Margin (for the area)
- (18) Security Margin (for total traffic
- volume). Here taken instead of OSR
- (19) Signaling bitrate / Procedure
- (20) Low layers overhead
- (21) Carrier Bandwidth (MHz)





### **TRAFFIC MODEL**

### Formulas

- (D) Service bandwidth = (8) x (10) x [ 1 + (11)] x [ 1 + (13)] x [ 1 + (20)]
- (E) Throughput / Subscriber class = (D) x [(9) x (12) x (14) / 3600] + (19) x [((4), (15), (16)) x (12) / 3 600]
- (F) Bandwidth/ area =  $[\Sigma (A) \times (E)] \times [1 + (17)] \times [1 + (18)]$
- (G) Bandwidth Evolution =  $\sum$  (C) x (F)
- (H) Bandwidth / km<sup>2</sup> = (F) / (5)





### **TRAFFIC MODEL**

### Assumptions

- (K) Initial Cell Capacity value (Starting Assumption) = Peak Rate (100 Mb/s for LTE) x (21) / 20 MHz (for LTE) x 70%
- (M) Number of Cells (First estimation) = (F)/(K)



101



### TRAFFIC ESTIMATION

# 3. Cell Characteristics and Planning assumptions





Link Budget principle





# Radio Planning Overview





#### Planning Process



- 1. Model Tuning
- 2. User density and distribution
- 3. Site Selection
- 4. eNB number (M)
- 5. Configuration Planning (Tilt, Azimuth, Height,...)

Coverage Planning

Planning

Optimization

- 1. Coverage Rate
- 2. Parameters Tuning
- 3. Interference Rate



Inputs - Outputs





### Coverage estimation

| (21) MCS   | (22) Bandwidth<br>(MHz) | (23) MIMO<br>Configuration | (24) Distribution of the subscribers | f[(21), (22), (23)} |
|------------|-------------------------|----------------------------|--------------------------------------|---------------------|
| QPSK 1/8   |                         |                            | x                                    | x                   |
| QPSK 1/5   |                         |                            | x                                    | х                   |
| QPSK 1/4   | 1,4                     | SISO                       | x                                    | х                   |
| QPSK 1/3   | . 3                     | SIMO                       | x                                    | х                   |
| QPSK 1/2   |                         |                            | x                                    | х                   |
| QPSK 2/3   | 5                       | MISO                       | x                                    | х                   |
| QPSK 4/5   | 10                      | MIMO                       | х                                    | х                   |
| 16 QAM 1/2 | . 15                    |                            | x                                    | х                   |
| 16 QAM 2/3 |                         |                            | х                                    | x                   |
| 16 QAM 4/5 | 20                      |                            | x                                    | х                   |
| 64 QAM 2/3 |                         |                            | x                                    | х                   |
| 64 QAM3/4  |                         |                            | х                                    | х                   |
| 64 QAM 4/5 |                         |                            | x                                    | х                   |

(O) Cell Capacity =  $\sum (24) \times f\{(21), (22), (23)\}$ 



# PEAK DATA RATES DL AND UL (IN LTE)

| Modulation c | oding         | 1.4 MHz | 3.0 MHz | 5.0 MHz | 10 MHz | 15 MHz | 20 MHz |
|--------------|---------------|---------|---------|---------|--------|--------|--------|
| QPSK 1/2     | Single stream | 0.7     | 2.1     | 3.5     | 7.0    | 10.6   | 14.1   |
| 16QAM 1/2    | Single stream | 1.4     | 4.1     | 7.0     | 14.1   | 21.2   | 28.3   |
| 16QAM 3/4    | Single stream | 2.2     | 6.2     | 10.5    | 21.1   | 31.8   | 42.4   |
| 64QAM 3/4    | Single stream | 3.3     | 9.3     | 15.7    | 31.7   | 47.7   | 63.6   |
| 64QAM 4/4    | Single stream | 4.3     | 12.4    | 21.0    | 42.3   | 63.6   | 84.9   |
| 64QAM 3/4    | 2x2 MIMO      | 6.6     | 18.9    | 31.9    | 64.3   | 96.7   | 129.1  |
| 64QAM 1/1    | 2x2 MIMO      | 8.8     | 25.3    | 42.5    | 85.7   | 128.9  | 172.1  |
| 64QAM 1/1    | 4x4 MIMO      | 16.6    | 47.7    | 80.3    | 161.9  | 243.5  | 325.1  |

| Modulation c | oding         | 1.4 MHz | 3.0 MHz | 5.0 MHz | 10 MHz | 15 MHz | 20 MHz |
|--------------|---------------|---------|---------|---------|--------|--------|--------|
| QPSK 1/2     | Single stream | 0.7     | 2.0     | 3.5     | 7.1    | 10.8   | 14.3   |
| 16QAM 1/2    | Single stream | 1.4     | 4.0     | 6.9     | 14.1   | 21.6   | 28.5   |
| 16QAM 3/4    | Single stream | 2.2     | 6.0     | 10.4    | 21.2   | 32.4   | 42.8   |
| 16QAM 1/1    | Single stream | 2.9     | 8.1     | 13.8    | 28.2   | 43.2   | 57.0   |
| 64QAM 3/4    | Single stream | 3.2     | 9.1     | 15.6    | 31.8   | 48.6   | 64.2   |
| 64QAM 1/1    | Single stream | 4.3     | 12.1    | 20.7    | 42.3   | 64.8   | 85.5   |
| 64QAM 1/1    | V-MIMO (cell) | 8.6     | 24.2    | 41.5    | 84.7   | 129.6  | 171.1  |


#### **CELL CHARACTERISTICS AND PLANNING ASSUMPTIONS**

Numbers of sites



If (R)  $\neq$  (M') new radio planning process is required. (O) may change and the new (R) may also change. Iterative process is then required until (R) = (M').



## S1 U, S1 C and X2 Dimensioning

- 1. Bandwidth Inputs-Outputs
- 2. Traffic Model
- 3. Formulas





1. Bandwidth Inputs-Outputs





Inputs - Outputs











#### Codecs Model

| Traffic Model         | Codecs | Radio Interface<br>with HO<br>compression | Compression<br>Ratio | Radio Interface<br>without HO<br>compression |
|-----------------------|--------|-------------------------------------------|----------------------|----------------------------------------------|
| VoIP                  | AMR    | x                                         | х                    | х                                            |
| Video<br>Conference   | MPEG4  | x                                         | х                    | х                                            |
| НТТР                  | х      | ×                                         | х                    | х                                            |
| Web Browning          | x      | x                                         | х                    | x                                            |
| FTP                   | х      | x                                         | х                    | x                                            |
| Video Streaming       | MPEG4  | x                                         | х                    | x                                            |
| email                 | х      | x                                         | х                    | х                                            |
| Interactive<br>Gaming | х      | x                                         | х                    | х                                            |





## VOIP DIMENSIONING FOR G.711 AND G.729A

• The amount of bandwidth required to carry voice over an IP network depend on:

≻Codec (coder/decoder) and sample period

≻IP header (includes IP, UDP and RTP protocol layers)

➤Transmission medium

➢Silence suppression

RTP adds 12 octets, UDP adds 8 octets, IP adds 20 (v4) or 40 (v6) octets. Sample period of 20 ms and 40 octets headers  $\rightarrow$  16 kbps additional bitrate

➤ G.711 codec and 20 ms sample period → payload = 160 octets With 40 octets of IP header, total is 200 octets → 80 kbps for VoIP Ethernet adds 38 octets → 95.2 kbps for VoIP over Ethernet

With G.729a, the bitrate would be 39.200 kbps for VoIP over Ethernet Silence suppression reduces the demand for BW by 50%.



#### **CODEC THROUGHPUTS**

| Codec                  | Bandwidth | Sample<br>period | Frame<br>size | Frame/packet | Ethernet<br>bandwidth |
|------------------------|-----------|------------------|---------------|--------------|-----------------------|
| G.711 (PCM)            | 64 kbps   | 20 ms            | 160           | 1            | 95.2 kbps             |
| G.723.1A (ACELP)       | 5.3 kbps  | 30 ms            | 20            | 1            | 26.1 kbps             |
| G.7231A (MP-MLQ)       | 6.4 kbps  | 30 ms            | 24            | 1            | 27.2 kbps             |
| G.726 (ADPCM)          | 32 kbps   | 20 ms            | 80            | 1            | 63.2 kbps             |
| G.728 (LD-CELP)        | 16 kbps   | 2.5 ms           | 5             | 4            | 78.4 kbps             |
| G.729A (CS-CELP)       | 8 kbps    | 10 ms            | 10            | 2            | 39.2 kbps             |
| AMR (ACELP)            | 4.75 kbps | 20 ms            | 12            | 1            | 36.0 kbps             |
| AMR (ACELP)            | 7.4 kbps  | 20 ms            | 19            | 1            | 38.8 kbps             |
| AMR (CELP)             | 12.2 kbps | 20 ms            | 31            | 1            | 43.6 kbps             |
| AMR-WB/G.722.2 (ACELP) | 6.6 kbps  | 20 ms            | 17            | 1            | 38.0 kbps             |



#### • Traffic Model on S1 U link

| (22) Traffic Model | Codecs | Bit Rates<br>(Kbps) | (23) IP Overhead<br>(byte) | (24) % of use |
|--------------------|--------|---------------------|----------------------------|---------------|
| VoIP               | AMR    | 12,2                | 40                         | 50 %          |
| Video Conference   | MPEG4  | 64                  | 1 000                      | 30 %          |
| НТТР               | х      | 0,576               | 1071                       | 60 %          |
| Web Browning       | х      | 1,209               | 600                        | 20 %          |
| FTP                | х      | 2 000               | 2 000                      | 10 %          |
| Video Streaming    | MPEG4  | 64                  | 400                        | 10 %          |
| email              | х      | 80                  | 22,7                       | 10 %          |
| Interactive Gaming | х      | 128                 | 300                        | 5 %           |
| P2P                |        | 500                 | 500                        | 20%           |



• Link Mobility Model on S1 C link

| (25) Number of TAUs | 500 |  |
|---------------------|-----|--|
| (26) Number of HO   | 475 |  |





3. Formulas



119



## Formulas

- (T) S1 U BW =  $\sum 8kb/s \times (23) \times (24)$
- (U) S1 C BW = 8 kb/s [(25) + (26))]
- (V) "X" \_"2" = 3% S1 BW
- (W) Number of Links = (28) / [(29)/(30)]



# **Thank You**