

LTE-M and NB-IoT Networks

CoE Training on Traffic engineering and advanced wireless network planning

Sami TABBANE 30 September -03 October 2019 Bangkok, Thailand

Objectives

Present the evolution of LTE towards LTE-M and NB-IoT for IoT services introduction

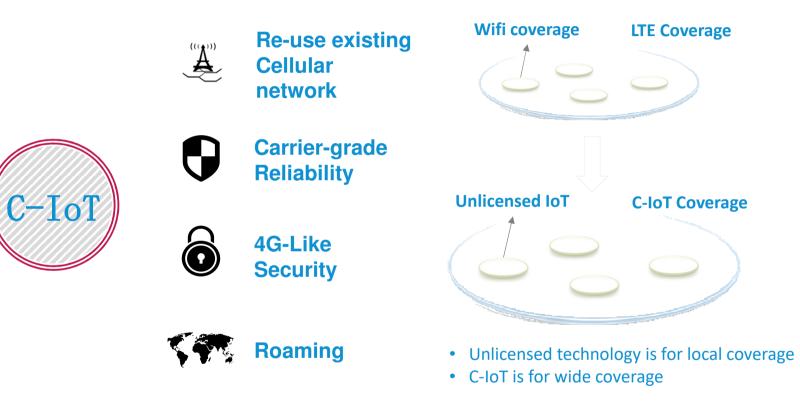
I. Introduction

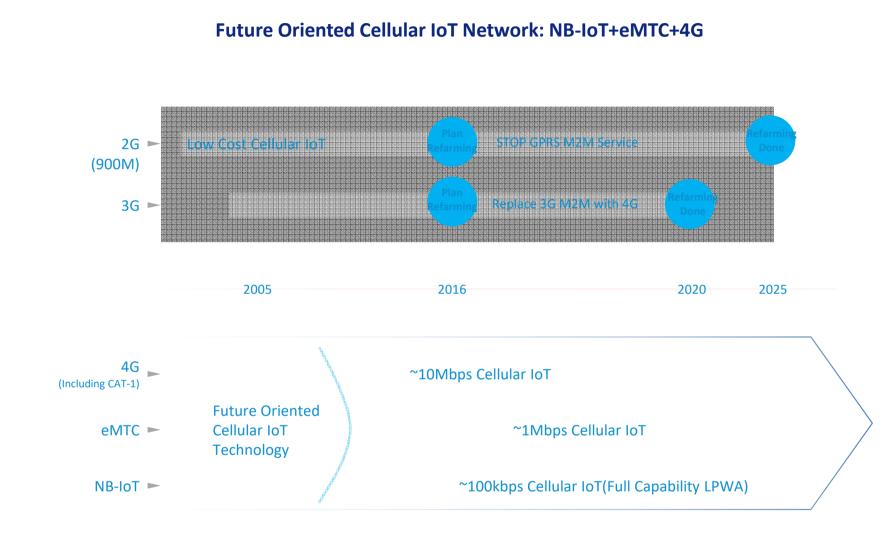
II. LTE-M

III. NB-IoT

IV. State of Art

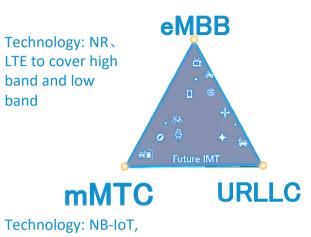
I. Introduction


LPWA could account 70% of Cellular IoT Connections in 2020


Market Segment	Connections in (Billion)	2020 Requirements	Technology
 CCTV(Camera) In-vehicle Entertainm 	nent 0.2B	l >10Mbps	3G/4G
 IoT Gateway Backha Wearable 	ul 0.8B	I ~1Mbps I Low power consumption	2G/3G/Cat-1 Cat-M1
 Sensors, Meters Asset Tracking Smart Parking Smart agriculture 	2B ⑦ ★ ① ● ★	I Low Throughput (<100kl I Deep Coverage (20dB) I Low power (10 Years) I Low cost (<\$5)	

LPWA: Low Power Wide Area

C-IoT provides wide WAN coverage



NB-IoT/eMTC Standard's evolution path to 5G

NB-IoT					
 Rel-14 Positioning: E-CID, OTDOA SC-PTM 14dBm output power Peak throughput improvement (DL 114kbps/UL 142.5kbps) 	Rel-15 TDD NB-IoT RRM measurement, latency improvement NPRACH enhancement Differ group QoS				
Rel-14 • Positioning: OTDOA • SC-PTM	Rel-15 • Capacity improvement: Sub-				
 VoLTE coverage improvement (5dB) 5MHz/20MHz bandwidth (UL 3Mbps/7Mbps; DL 4Mbps/27Mbps) 	 PRB eMTC (45KHz) 64QAM Low UE output power 				

- mMTC NR will not be considered until R17;
- NB-IoT will be used to cover 5G mMTC use case before R17

R14: Positioning to simplify device requirement

Device cost: ~50USD
Accuracy: 10m
Latency:30s
Power consumption: 0.3mAh/Report

NB-IoT Tracking Technologies Overview:

- Device cost: ~40USD
- OTDOA: 30~50m
- Latency:10s
- Power consumption:
 0.2mAb/Report
- 0.2mAh/Report

BaaS Business Model: Kids tracking (GizmoPal)

Monthly service fee: 5USD

Kids tracking (Filip2 Tracker)

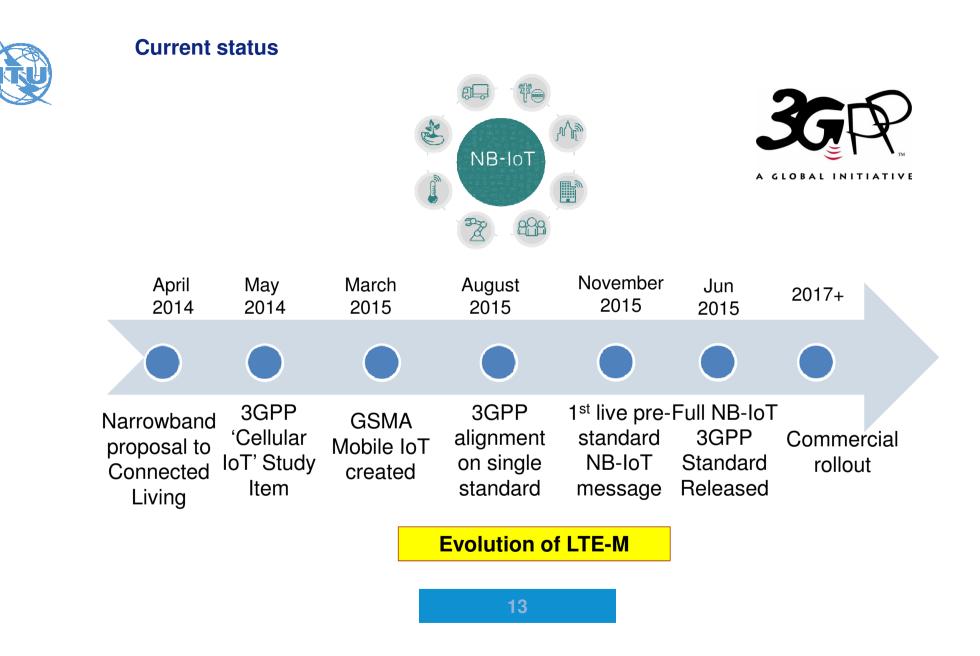
et at &t


Monthly fee:

USD10 for voice and data

Release-13 3GPP evolutions to address the IoT market

- eMTC: LTE enhancements for MTC, based on Release-12 (UE Cat 0, new PSM, power saving mode)
- NB-IOT: New radio added to the LTE platform optimized for the low end of the market
- EC-GSM-IoT: EGPRS enhancements in combination with PSM to make GSM/EDGE markets prepared for IoT

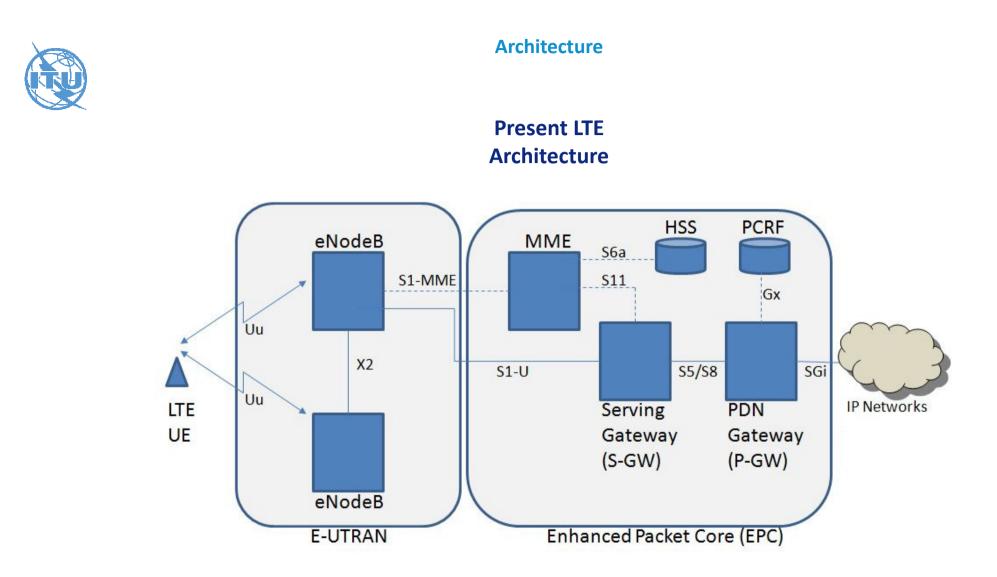


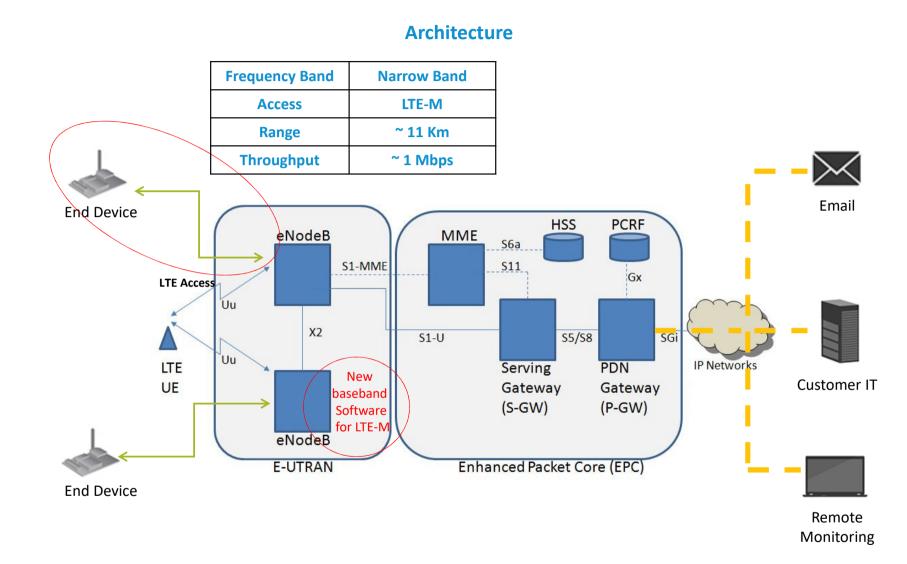
Main eMTC, NB-IoT and EC-GSM-IoT features

	eMTC (LTE Cat M1)	NB-IOT	EC-GSM-IoT
Deployment	In-band LTE	In-band & Guard-band LTE, standalone	In-band GSM
Coverage*	155.7 dB	164 dB for standalone, FFS others	164 dB, with 33dBm power class 154 dB, with 23dBm power class
Downlink	OFDMA, 15 KHz tone spacing, Turbo Code, 16 QAM, 1 Rx	OFDMA, 15 KHz tone spacing, 1 Rx	TDMA/FDMA, GMSK and 8PSK (optional), 1 Rx
Uplink	SC-FDMA, 15 KHz tone spacing Turbo code, 16 QAM	Single tone, 15 KHz and 3.75 KHz spacing SC-FDMA, 15 KHz tone spacing, Turbo code	TDMA/FDMA, GMSK and 8PSK (optional)
Bandwidth	1.08 MHz	180 KHz	200kHz per channel. Typical system bandwidth of 2.4MHz [smaller bandwidth down to 600 kHz being studied within Rel-13]
Peak rate (DL/UL)	1 Mbps for DL and UL	DL: ~50 kbps UL: ~50 for multi-tone, ~20 kbps for single tone	For DL and UL (using 4 timeslots): ~70 kbps (GMSK), ~240kbps (8PSK)
Duplexing	FD & HD (type B), FDD & TDD	HD (type B), FDD	HD, FDD
Power saving	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX
Power class	23 dBm, 20 dBm	23 dBm, others TBD	33 dBm, <mark>23 dB</mark> m

II. LTE-M

Comparison with LTE-M

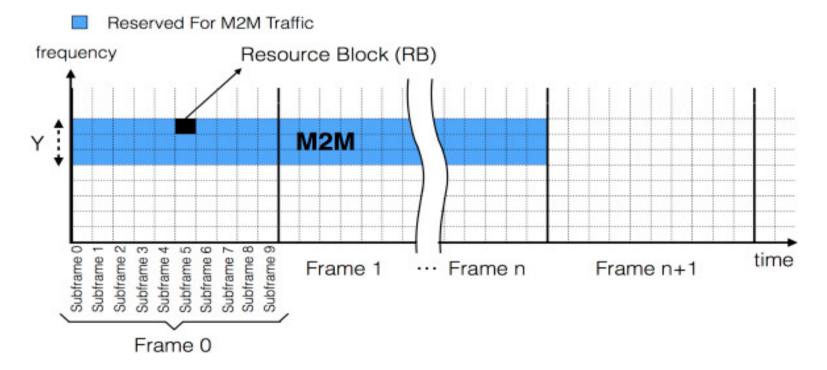

Attribute	CAT-1	LTI	E-M	NB-IOT			
Attribute	CAI-I	Rel 13 Rel 14		Rel 13	Rel 14		
Spectrum	LTE bands	LTE bands Stand Alone (1.4MHz)		LTE Bands Stand Alone (200KHz)			
Typical MNO	LTE Coverage	Good LTE	Coverage	Mix LTE and 2G			
Bandwidth	20 MHz	1.08MHz 5 MHz (CAT-M1) (CAT-M2) 180kHz		kHz			
Number of DL Antennas	2		1	1			
Duplex Modes	FD-FDD/TDD	HD-FDD, FD-FDD, TDD		HD-FDD			
UL Modulation	QPSK, 16QAM	QPSK, 16QAM		Pi/2 BPSK, Pi/4 QPSK			
DL Modulation	QPSK, 16QAM	QPSK, 16QAM		QPSK			
Spectral Efficiency	V.Good	Good		0	к		
Power Class	Class 3 (23dBm)	Class 3 (23 dBm) Class 5 (20 dBm)		Class 3 and 5	* 14 dBm		
UL Multple Access	LTE SC-FDMA	LTE SC-FDMA		LTE SC-FDMA		Single tone tran	FDMA + nsmission with kHz bandwidths



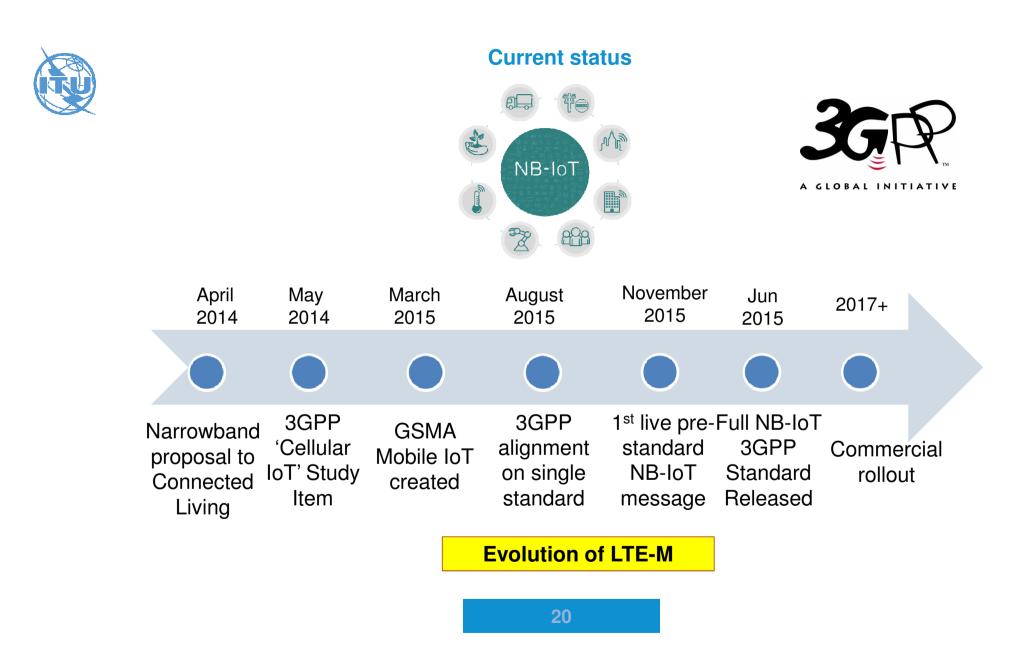
|--|

LTE to LTE-M

3GPP Releases	8 (Cat.4)	8 (Cat. 1)		12 (Cat.0) LTE-M	13 (Cat. 1,4 MHz) LTE-M	
Downlink peak rate (Mbps)	150	10		1	1	
Uplink peak rate (Mbps)	50		5	1	1	
Number of antennas (MIMO)	2		2 1		1	
Duplex Mode Full			ull	Half	Half	
UE receive bandwidth (MHz) 20		20		20	1.4	
UE Transmit power (dBm) 23		23		23	20	
Release 12				Releas	e 13	
• New category of UE ("Cat-0"): lower			Reduced receive bandwidth to 1.4 MHz			
complexity and low cost devices			Lower device power class of 20 dBm			
Half duplex FDD operation allowed			• 15dB additional link budget: better coverage			
Single receiver			More energy efficient because of its extended			
Lower data rate requirement (Max: 1 Mbps)			discontinuous repetition cycle (eDRX)			



Spectrum and access


- Licensed Spectrum
- Bandwidth: 700-900 MHz for LTE
- Some resource blocks allocated for IoT on LTE bands

18

III. NB-IOT

Comparison with LTE-M

Attribute	CAT-1	LTI	E-M	NB-IOT					
Attribute	CAI-I	Rel 13 Rel 14		Rel 13	Rel 14				
Spectrum	LTE bands	LTE bands Stand Alone (1.4MHz)			Bands le (200KHz)				
Typical MNO	LTE Coverage	Good LTE	Coverage	Mix LTE and 2G					
Bandwidth	20 MHz	1.08MHz 5 MHz (CAT-M1) (CAT-M2)		180kHz					
Number of DL Antennas	2	1		1					
Duplex Modes	FD-FDD/TDD	HD-FDD, FD-FDD,TDD		HD-FDD					
UL Modulation	QPSK, 16QAM	QPSK, 16QAM		Pi/2 BPSK, Pi/4 QPSK					
DL Modulation	QPSK, 16QAM	QPSK, 16QAM		QPSK					
Spectral Efficiency	V.Good	Good		o	К				
Power Class	Class 3 (23dBm)	Class 3 (23 dBm) Class 5 (20 dBm)		Class 3 and 5	* 14 dBm				
UL Multple Access	LTE SC-FDMA	LTE SC-FDMA		LTE SC-FDMA		LTE SC-FDMA		Single tone trai	FDMA + nsmission with kHz bandwidths

Reuses the LTE design extensively: numerologies, DL OFDMA, UL SC-FDMA, channel coding, rate matching, interleaving, etc.

June 2016: core specifications completed.

Beginning of 2017: commercial launch of products and services.

NB-IoT is non backwards compatible version of LTE targeted for cellular based IoT applications.

Main features

Objectives

- Lower cost than eMTC
- Extended coverage: 164 dB maximum coupling loss or link budget (at least for standalone) to be compared to GPRS link budget of 144dB and LTE of 142.7 dB
- Receiver sensitivity = -141 dBm
- Long battery life: **10 years** with 5 Watt Hour battery (depending on traffic and coverage needs)
- Support for massive number of devices: at least 50.000 per cell

Main simplification

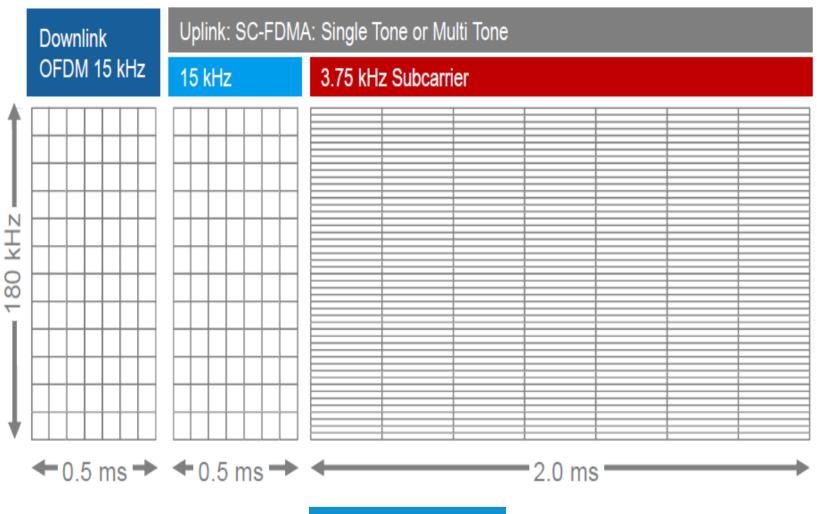
Reduced data rate/bandwidth, mobility support and further protocol optimizations

3 modes of operation:

- **Stand-alone:** stand-alone carrier, e.g. spectrum currently used by GERAN systems as a replacement of one or more GSM carriers
- Guard band: unused resource blocks within a LTE carrier's guard-band
- In-band: resource blocks within a normal LTE carrier

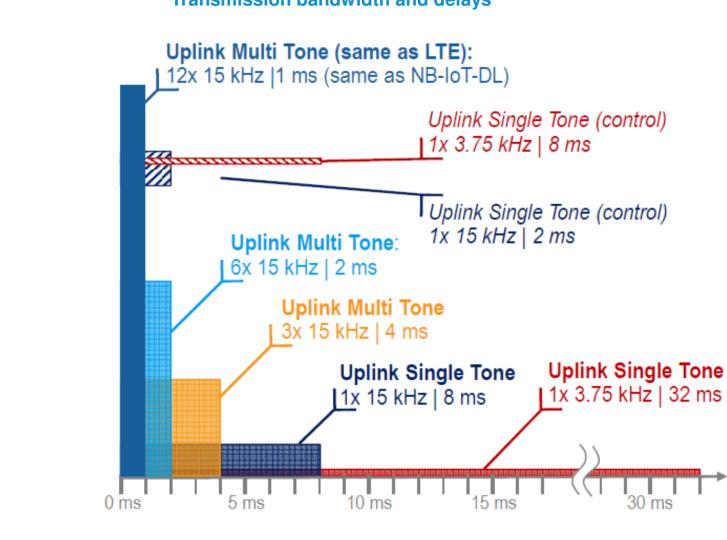
Main features

Main PHY features:

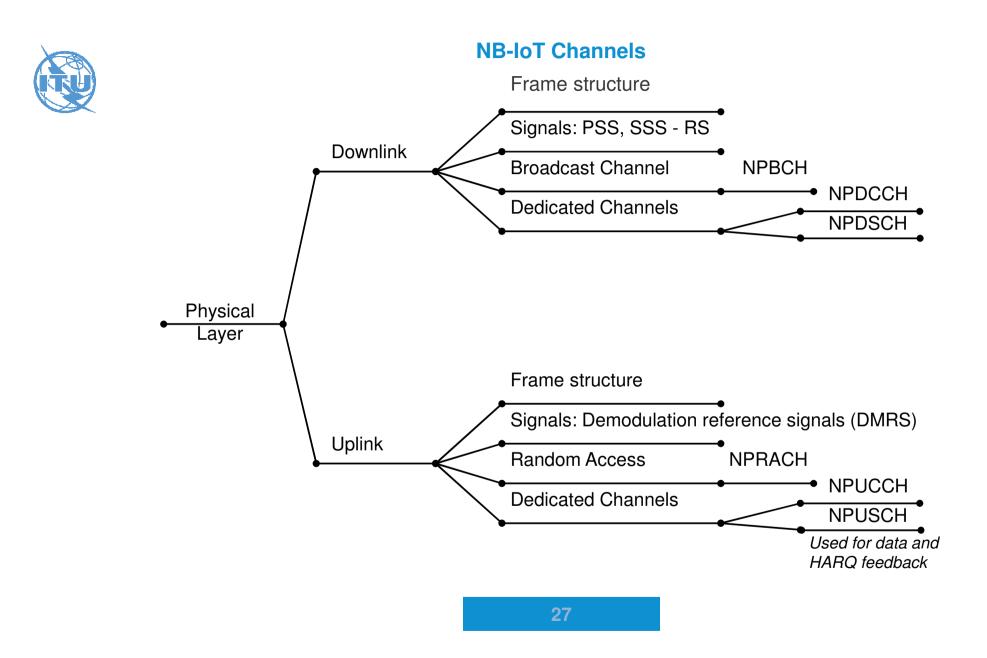

- Narrow band support of 180 kHz
- Supports two modes for uplink
 - Single tone with 15 kHz and/or 3.75 kHz tone spacing
 - > Multiple tone transmissions with 15 kHz tone spacing
- No support of Turbo code for the downlink
- Single transmission mode of SFBC for PBCH, PDSCH, PDCCH
- New narrowband channels: NPSS, NSSS, NPBCH, NPDCCH, NPDSCH, NPUSCH, NPRACH

Instantaneous peak rates: **170 kbps** (DL) and **250 kbps** (UL) Main **radio protocol features**:

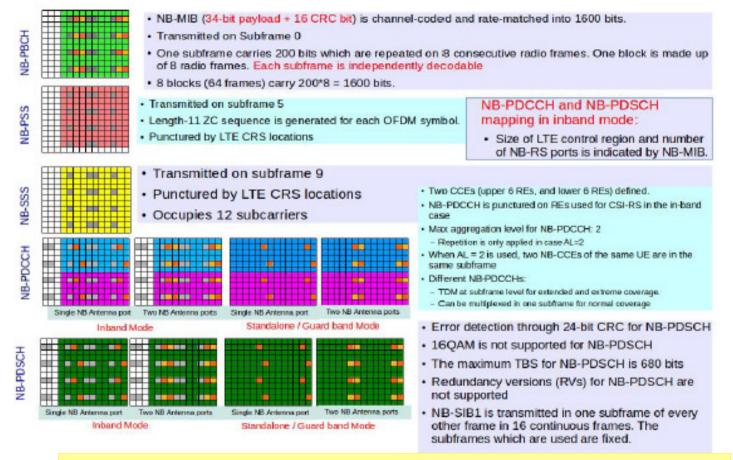
- Single HARQ process
- Only RLC AM mode with simplified status reporting
- Two PDCP options:
 - SRB 0 and 1 only. No AS security (NAS security is used instead). PDCP operating in TM.
 - SRB 0, 1, 2 and one DRB. AS security, which is cached upon RRC connection release. RRC connection suspend/resume procedures to maintain AS security context
- Reduced broadcast system information


Frame and Slot Structure – NB-IoT – 7 symbols per slot

25



180 kHz


26

Transmission bandwidth and delays

Maximum Transmission Block Size = **680 bits** Inband mode: **100 to 108 symbols** – Standalone/Guard band mode: **152 to 160 symbols**

Packets transmission on the PUSCH

Smallest unit to map a transport block: resource unit (RU).

NPUSCH format 1

- ➤ 3.75 kHz subcarrier spacing, an RU = 1 subcarrier in the frequency range, and 16 slots in the time range (length of 32 ms).
- > 15 kHz subcarrier spacing 4 options:
- RUs with one subcarrier, *BPSK* or *QPSK*,
- Other RUs: QPSK.

NPUSCH format 2

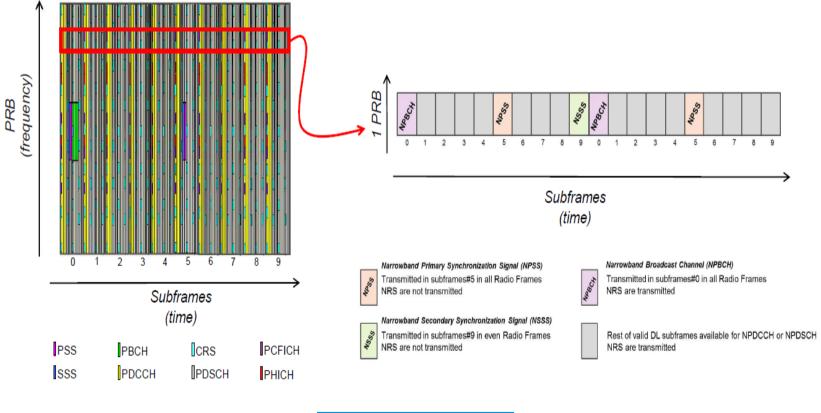
	Number of subcarriers	Number of slots	RU Duration
	1	16	8 ms
•	3	8	4 ms
	6	4	2 ms
	12	2	1 ms

RU always composed of one subcarrier with a length of 4 slots.

- > 3.75 kHz subcarrier spacing the RU has an 8 ms duration,
- > 15 kHz subcarrier spacing has an 2 ms duration.

Modulation scheme: BPSK.

UCI: Uplink Control Information


Physical channel	Transport channel	Number of carri- ers	Modulation scheme	Channel coding
NPUSCH format 1	UL-SCH	1 (single-tone)	π/2-BPSK π/4-QPSK	Turbo 1/3
		> 1 (multitone)	QPSK	
NPUSCH format 2	UCI	1 (single-tone)	π/2-BPSK	Block 1/16

Downlink Frame Structure

LTE

Channels are time and frequency multiplexed; Multiple channels per subframe NB-loT

Each physical channel occupies the whole PRB; Only one channel per subframe

 \succ

 \geq

DCI

NPDCCH

NPDSCH

NB-IoT Repetitions Consists on repeating the same 15 kHz subcarrier (a) Т W transmission several times: spacing. Achieve extra coverage (up A transport block *test* to 20 dB compared to word (TW) is transmitted **GPRS**) on two RUs T₁ T₂ T₃ T₄ T₅ T₆ T₇ T₈ W₁ W₂ W₃ W₄ W₅ W₆ W₇ W₈ Each repetition is selfdecodable Each RU is transmitted SC is changed for each transmission to help over 3 subcarriers and 8 combination slots Repetitions are ACK-ed just $T_1 \quad T_2 \quad T_1 \quad T_2 \quad T_1 \quad T_2 \quad T_1 \quad T_2 \quad T_1 \quad T_2 \quad T_3 \quad T_4 \quad T_3$ W₆ W₇ W₈ W₇ W₈ W₇ W₈ W₇ ... once All channels can use $\rightarrow T_1 \quad T_2 \quad T_3 \quad T_4 \quad T_3$ W₆ W₇ W₈ W₇ W₈ Repetitions to extend coverage DL up to 2048 Repetitions = 4 NPUSCH Repetitions = 2 Format 2 repetitions

(b)

(c)

Time: in Sub-frames (1ms) **Example**: Repetitions used in NB-IoT in NPDCCH and NPDSCH channels

UL up to 128 repetitions

Ack

31

NB-IoT link budget

Link Budget	15kHz	3.75 kHz
(a) Transmit power (dBm)	23	23
(b) Thermal noise (dBm/Hz)	-174	-174
(c) Receiver noise figure (dB)	3	3
(d) Occupied channel bandwidth (Hz)	15 000	3 750
(f) Effective noise power (b)+(c)+10log_10(d) (dBm)		
(g) Required SINR (dB)	-11.8	-5.7
(h) Receiver sensitivity (c)+(g) (dBm)	-141	-141
(i) Maximum coupling loss (a)-(h)	164	164

23 dB improvement over LTE Urban: Deep in-building penetration Rural: Long rage (10 – 15 km)

Capacity

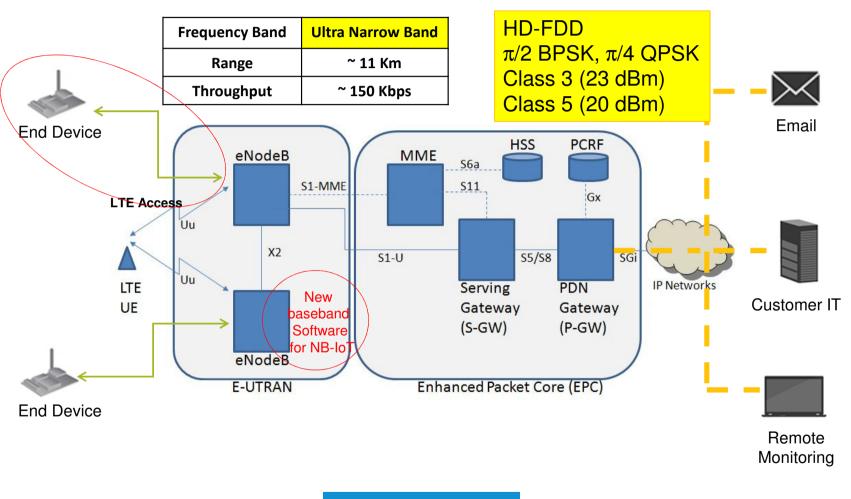
NB-IoT supports massive IoT capacity with **only one PRB in both UL and DL**.

NB-IoT can support multiple carrier operation to get more IoT capacity.

Sub-PRB UE scheduled bandwidth is introduced in the uplink, including single-subcarrier NPUSCH.

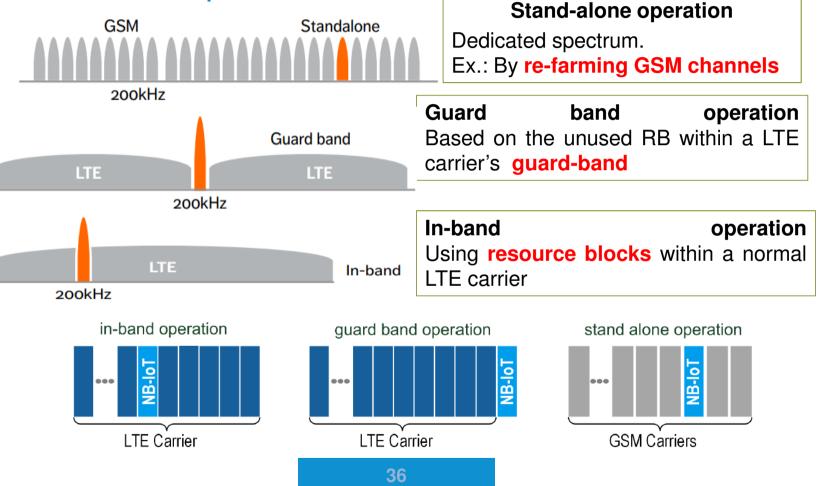
Based on a traffic model with a split of devices is:

- 80%: MAR (Mobile Autonomous Reporting)
 periodic
- 20%: Network Command is MAR periodic.
- Solution State Content and State Content and



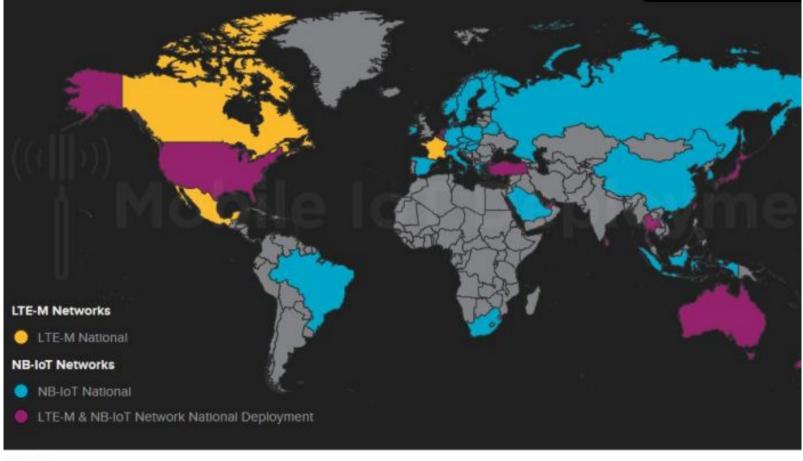
Extended C-DRX and I-DRX operation

- Connected Mode (C-eDRX):
- Extended DRX cycles of 5.12s and 10.24s are supported
- Idle mode (I-eDRX):
- Extended DRX cycles up to ~44min for eMTC
- Extended DRX cycles up to ~3hr for NB-IOT


Architecture

Spectrum and access

- Designed with a number of deployment options for **GSM**, **WCDMA** or **LTE** spectrum to achieve spectrum efficiency.
- Use licensed spectrum.


LTE-M to NB-IoT

3GPP Release	12 (Cat.0) LTE-M	13(Cat. 1,4 MHz) LTE-M	13(Cat. 200 KHz) NB-IoT
Downlink peak rate	1 Mbps	1 Mbps	300 bps to 200 kbps
Uplink peak rate	1 Mbps	1 Mbps	144 kbps
Number of antennas	1	1	1
Duplex Mode	Half	Half	Half
UE receive bandwidth	20 MHz	1.4 MHz	200 kHz
UE Transmit power (dBm)	23	20	23

- Reduced throughput based on single PRB operation
- Enables lower processing and less memory on the modules
- 20dB additional link budget -> better area coverage

LTE-M Networks in 2019

Mobile IoT Deployments

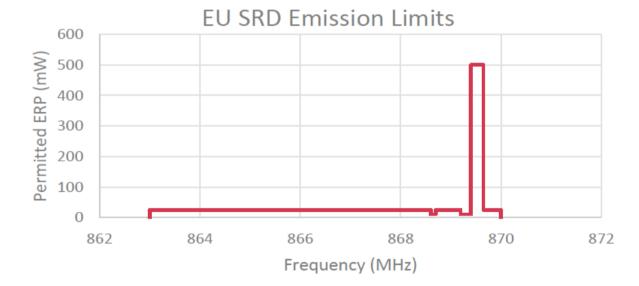
IV. State of Art


A. Regulation

Frequency bands of SRDs

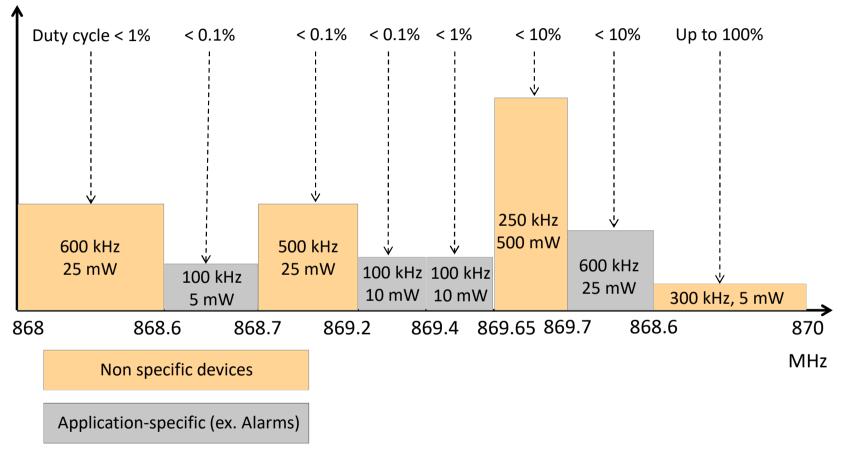
Global Only in Europe Only in Americas <u>ISM bands</u> 6,780 kHz; 13,560 kHz 27,120 kHz; 40.68 MHz 433.92 MHz 915 MHz 2,450 MHz; 5,800 MHz 24.125 GHz; 61.25 GHz 122.5 GHz; 245 GHz 9-148.5 kHz; 3,155-3,400 kHz 9 kHz- 47 MHz (specific SRDs) 7,400-8,800 kHz 138.20-138.45 MHz 169.4-216 MHz 312-315MHz (non Europe) 402-405 MHz medical devices 470-489 MHz (normally individually licensed) 823-832 MHz and 1,785-1,805 MHz 862-875 MHz in some Asian counties 862-876MHz Non-Specific SRDs 915-921 MHz (in some countries) 5,150-5,350 & 5,470-5,725 MHz 57-64GHz, 76-77GHz, 77-81GHz

non-ISM candidate bands for SRDs



IOT regulations

Link	Activity rate	Power
DL	10%	25 mW
UL	1%	500 mW


Arcep France

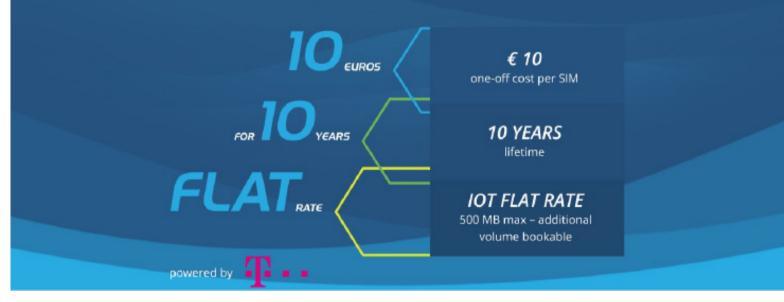
43

ISM 868MHz Band Plan

Effective radiated power (mW)

B. Prices

NB-IoT pricing in Deutsche Telekom


- The NB-IoT Access entry package is available from EUR 199 and includes a 6-month activation of up to 25 SIM-cards with 500 KB per SIM pooled in Germany's NB-IoT network. As a further optional add-on – a private APN with IPsec-key encryption is available.
- 2. The **NB-IoT Access & Cloud of Things** entry package is available from **EUR 299** and additionally includes direct access to Deutsche Telekom's Cloud of Things platform for device and data management.

August 2019: New tariffs **7.95 Euro** (LPWA) once for 6 MB in the S tariff. 1000 MB including 250 SMS in tariff M costs **16.95 Euro** (M2M)

T-Mobile NB-IoT Offer

IOT CONNECTIVITY DISRUPTED

47

SK Telecom (South Korea) LoRaWan prices

SK Telecom completed a nationwide LTE-M rollout in March 2017 but only LoRaWAN services are available.

Price plans for LoRaWAN-based IoT services:

1. 350 won (**\$0.30**) per month per device for a 100kb allocation

2. 2,000 won (**\$1.77**) for a 100MB allocation.

Discounts available for multiple lines, ranging from 2% for those using 500 lines for 10% for those using 10,000 lines. Excess data will be charged at 0.005 won per 0.5KB. LoRa plans cost just a tenth of the price of its LTE-based IoT services.

	Data Allowance*	Monthly Flat Rate			
	(Frequency of communication)	(VAT Excluded)	Examples of Services	Note	
Band IoT 35	100KB	KRW 350	Metering and monitoring services (e.g. Advanced Metering Infrastructure (AMI), environmental monitoring,	discount for two-year contracts to a 20% discount for 5 year- contracts - Multi-line discount: Ranging from a 2% discount for those using 500 lines to a	
Band IoT 50	500KB	KRW 500	water leakage monitoring, etc.)		
Band IoT 70	3MB	KRW 700	Tracking services (e.g. locating tracking		
Band IoT 100	10MB	KRW 1,000	For people/things, asset management, etc.)		
Band IoT 150	50MB	KRW 1,500	Control service (e.g. safety management,		
Band IoT 200 100MB KRW 2,000		lighting control, shared parking, etc.)	10% discount to those who use 10,000 lines		

*Data usage exceeding the data allotment provided will be charged at KRW 0.005 per 0.5KB.

UnaBiz (Singapore) Sigfox prices

Network subscription charges: **US\$0.75 per device per month**, which comes with a data plan for up to 140 messages per day. Qualified channel partners who **commit to volume** can ultimately enjoy subscription charges from as low as **US\$0.75 per device per year**.

Jonathan	Та	n,	Vice
President		Bu	siness
Developmen	t	&	Sales,
UnaBiz sa	aid,	"S	igfox's
technology	is	built	t for
massive dep	loym	ent a	nd we
are offering	ultra	-low d	cost

connectivity to grow exponentially the base of devices that can access the network. Compared to existing local networks, businesses on our global network can generate savings of at least 90% off data plan subscription charges."

The new prepaid plans, which target develo

businesses, include three tiers of data and text

messages:

- 1 gigabyte of data valid for up to 1 year and 500 text messages for \$25;
- 3 GB of data valid for up to 1 year and 1,000 text messages for \$60;
- 5 GB of data valid for up to 2 years and 1,500 text messages for \$100.

Synthesis

Country	Operator	Technology	Price/End- device/month	Conditions (/end-device/month)	
Cormony	DT	NDIAT	US\$ 1.60	85 KB	
Germany	DT	NB-IoT	US\$ 2.40	" + Cloud	
South	SK Telecom	SK		US\$ 0.30	100 KB
Korea		om LoRaWAN	US\$ 1.77	100 MB	
Singapore	UnaBiz	Sigfox	US\$ 0.75	140 messages	
			US\$ 2.08	83 MB and 42 messages	
USA AT&T	LTE-M	US\$ 5	250 MB and 84 messages		
			US\$ 4,2	210 MB and 63 messages	

LPWA connections forecast – by tech

	2018		2023		2026		CAGR
NON-CELLULAR	116m	93.67%	576m	53.02 %	1.343bn	37.64%	34%
LoRaWAN	24m	19.11%	237m	21.86%	636m	17.84%	59%
Sigfox	4m	3.18%	112m	10.27%	431m	12.09%	70%
Other	88m	71.38%	227m	20.9%	275m	7.71%	13%
CELLULAR	8m	6.33%	510m	46.98%	2.224bn	62.36%	92%
LTE-M	1m	0.85%	221m	20.37%	925m	25.93%	102%
NB-IoT	7m	5.49%	289m	26.61%	1.299bn	36.43%	88%
TOTAL	123m	-	1.086bn	783%*	3.567bn	229%*	51%

Source: ABI Research

Comparison — ABI and IHS are about in line, whether they are counting connections or shipments: there is a 12 million delta between their 2021/2023 LoRa/LoRaWAN forecasts, which stretches to about 27 million for Sigfox and 66 million for NB-IoT. This looks surmountable over two-to-three years (2021-2023).

LPWA shipments forecast – by tech

	2019	2020	2021	CAGR
NON-CELLULAR	134.8m 56.19%	221.5m 53.77%	343.2m 55.5%	37%
LoRa	98.16m 40.91%	161.6m 39.23%	249.7m 40.39%	37%
Sigfox	27.95m 11.65%	52.82m 12.82%	85.04m 13.75%	
Other	8.7m 3.63%	7.07m 1.72%	8.4m 1.36%	-1%
CELLULAR	105.2m 43.81%	190.4m 46.23%	275.2m 44.5%	
LTE-M	20.28m 8.45%	28.8m 6.99%	52.29m 8.46%	37%
NB-IoT	84.88m 35.36%	161.6m 39.24%	222.9m 36.05%	38%
TOTAL	240m -	411.9m 71.64%*	622.4m 50.13%*	37%
			Sour	ce: IHS Markit

Quizz – LTE-M and NB-IoT

- 1) What are the main changes introduced in LTE-M for IoT services?
- 2) What are the main changes introduced in NB-IoT for IoT services?
- 3) Why regulators define an activity rate in IoT?
- 4) Is the activity rate applicable to LTE-M and NB-IoT?
- 5) By which value the link budget is improved in NB-IoT?

Thank you!