

Processing Multispectral Images with Pix4D

Sasanka Madawalagama
Geoinformatics Center
Asian Institute of Technology
Thailand

Data Collection

- Location ARRI, Ayuthaya
- Crop Rice (70 Days)
- Drone Modified Phantom 3 Pro
- Sensors
 - Parrot Sequoia Multispectral (G,R,RE,NIR)
 - Parrot Sequoia RGB
 - Phantom 3 Pro camera RGB

Requirements

• Software

- Pix4D Desktop as a 15days complete trial or licenced
- Additional QGIS 2.18

• System

Recommended

- Windows 8, 10 64 bits.
- CPU quad-core or hexa-core Intel i7/Xeon.
- GeForce GPU compatible with OpenGL 3.2 and 2 GB RAM.
- Hard disk: SSD.
- Small projects (under 100 images at 14 MP): 8 GB RAM, 15 GB SSD Free Space.
- Medium projects (between 100 and 500 images at 14 MP): 16GB RAM, 30 GB SSD Free Space.
- Large projects (over 500 images at 14 MP): 32 GB RAM, 60 GB SSD Free Space.
- Very Large projects (over 2000 images at 14 MP): 64 GB RAM, 120 GB SSD Free Space.

First Steps

- Inspect the data
- Remove unnecessary images
- Build clear folder structure

- Open Pix4DDesktop
- 2. Open New Project

3. Name your project

Give the path where you need to save your project

Click Next

4. Click Add Images

Navigate to your image folder and select all multispectral images (excluding the images in calibration folder)

Click open

Click Next

5. In the image properties, make sure that *sequoia* is selected as the camera model.

Remark

Pix4D has a rich camera database. It can automatically select the camera model from the data read by image EXIF data.

6. Input and output coordinate systems will be determined automatically.

Click Next

Remark

As the image geotags are coming form GPS, the input coordinate system is WGS84 (geographic)

For the output coordinate system it will use WGS84 UTM 47N as Thailand is in UTM zone 47

7. Under processing options select *Ag Multispectral* template.

Click Finish

Remarks

This will set the processing options for optimum values to process multispectral images. If you need higher accuracy or additional products it can be set later.

If the dataset is **RGB images**, either from phantom or sequoia, select Ag RGB

If everything goes correctly, you can see the Map View with the image locations marked in red dots.

8. Click *Processing Options*

9. In *Initial Processing* tab, **uncheck** the *Generate Orthomosaic Preview* in Quality Report. This will save some time

10. From DSM and Orthomosaic: Make GeoTIFF format and Merge Tiles are selected

Remarks

GeoTIFF is a common raster file format that can be imported into GIS and RS software

11. Go to tabs

DSM, Orthomosaic →

Index tab

Go to *Index Calculator*

Make sure that *Camera* and *Sun Irradiance* is selected as the camera type for all 4 sensors

Scroll Down

Under *Reflectance Map*, Enable *GeoTIFF* and *Merge Tiles* options

Under *Indices*Enable all the outputs

Click OK

12. In main menu go to Map View → Processing Area → Draw

13. Draw a polygon to define processing area

mouse Left click – Add vertex mouse Right mouse click – Complete polygon

14. Start the processing

Relax, This will take time ;)

- Not Calibrated
- Calibrated
- Computing matches
- Calibrating / Optimizing

After the processing is competed, the products can be explored in index calculator

15. Go to the *index calculator*

Enable show index map

16. To load NDVI map, select *ndvi* from *Index Map* Section

17. To make a new index,

Click *Indices* from *Index Map*

Click Add

Lets Define Normalized Difference RedEdge Index

Write the formula as shown below.

(red_edge-red)/(red_edge+red)

**Use *Reflectance Map Band Selection* and *Operations* to provide the inputs

Click OK

Rename the defined index as *ndre*

Click OK

18. After Select *ndre* from index map section and click *Generate* to make the index map

All the products are saved under

Your_project_path\your_project_name\4_index\indices

Further Analysis

- Be familiar and use GIS software to do further analysis
 - ArcGIS user friendly, stable, costs a lot
 - QGIS Open source, free, community supported, lot of functions, bit complicated

Useful Links

 Processing Sequoia Images using Pix4D -<u>https://support.pix4d.com/hc/en-us/articles/209362146-How-to-process-Sequoia-imagery#label1</u>

• Sequoia Specs - https://www.parrot.com/business-solutions-us/parrot-professional/parrot-sequoia

end