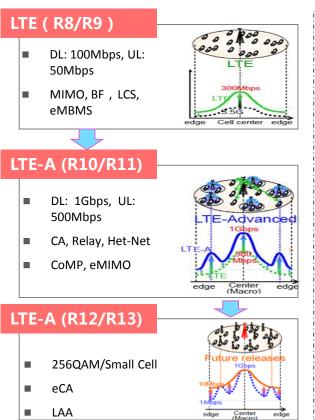
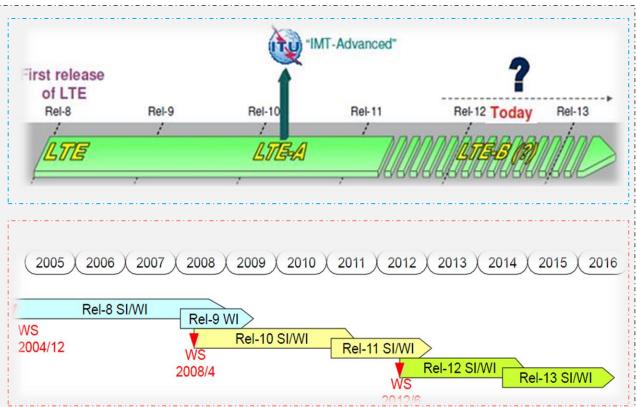


4G Radio Access Key Technologies

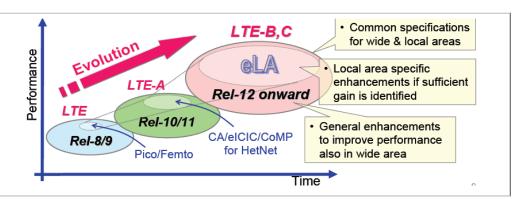
ZHU LONGMING

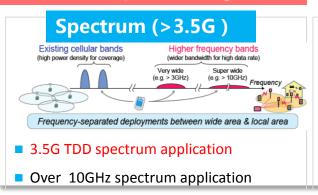

Chongqing, China 20, October 2016

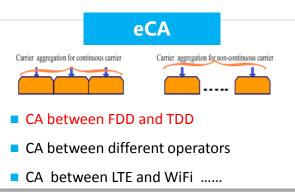


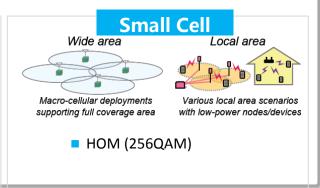
Part I
Evolution

4G Standard Evolution, LTE-A in 3GPP

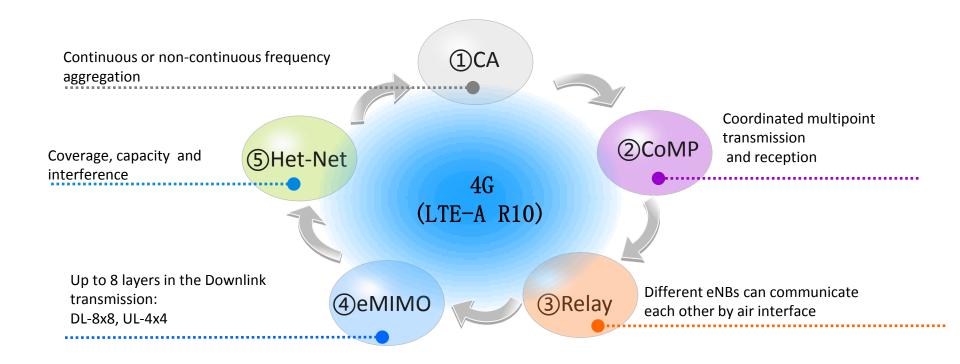



Update Version of LTE-A, R12


LTE-A Evolution Progress


- LTE-A(R12) was initiated in June, 2012. The 1st Version was released in December of 2014.
- LTE-A(R12) includes eCA, Small Cell and LAA

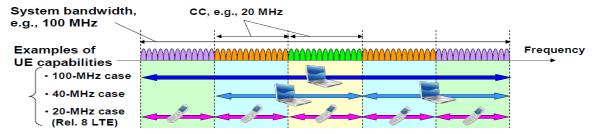
LTE-A(R12) key technologies



ZTE

Part II
Technologies
(R10)

4G Key Technologies in R10 (LTE-A)



1CA - Carrier Aggregation

Wider bandwidth transmission using carrier aggregation

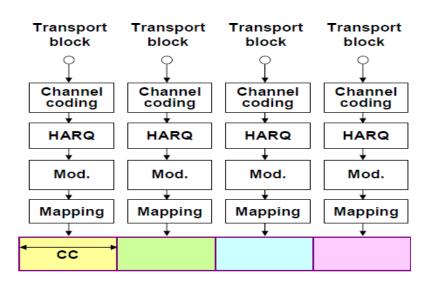
- Entire system bandwidth up to e.g., 100MHz, is comprised of multiple basic frequency blocks called component carrier (CC)
 - → Satisfying the requirements for peak data rate
- Each CC can be configured in a backward compatibility with LTE(R8)
 - → Maintaining backward compatibility with LTE(R8)
- Carrier aggregation supports both contiguous and non-contiguous spectrum, and asymmetric bandwidth for FDD
 - → Achieving flexible spectrum usage

In R12, the Carrier Aggregation between FDD and FDD was further introduced.

CA - Downlink

Downlink: base on the structure of CC

→ Priority given to reusing R8 specification for low-cost and fast deployment

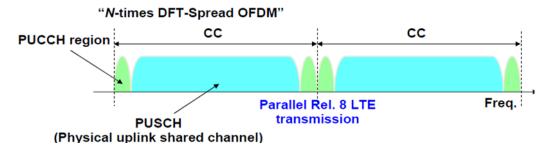

One transport block is mapped within one CC

Parallel-type transmission for multi-CC transmission

Good affinity to Rel. 8 LTE specifications

Cross-carrier scheduling is possible:

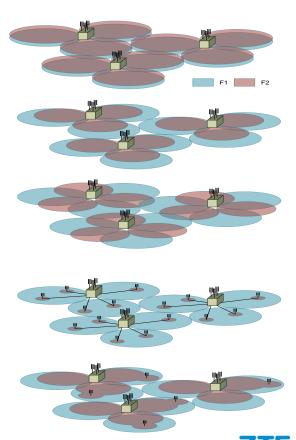
 PDCCH on one carrier can relate to data on another carrier



CA - Uplink

Uplink: N x DFT-Spread OFDM

- Realize wider bandwidth by adopting parallel multi-CC transmission
 - → Satisfy requirements for peak data rate while maintaining backward compatibility
 - → Low-cost and fast deployment by reusing LTE R8 specification
- Support non-contiguous resource allocation
 - → Enhanced flexibility and efficiency of resource allocation
- Support PUCCH and PUSCH transmission simultaneously
- Provide independent power control per CC


Non SC-FDMA, Higher PAPR → Not suitable for cell edge users!

CA - Deployment Scenarios

10

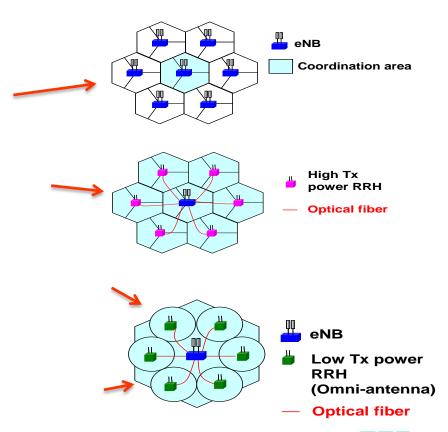
- F1 and F2 cells are co-located and overlaid, providing nearly the same coverage. and mobility can be supported on both layers.
- F1 and F2 cells are co-located and overlaid, but F2 has smaller coverage due to larger path loss. Only F1 provides sufficient coverage. Mobility is performed based on F1 coverage
- F1 and F2 cells are co-located but F2 antennas are directed to the cell boundaries of F1 so that cell edge throughput is increased. F1 provides sufficient coverage but F2 potentially has holes, e.g., due to larger path loss. Mobility is based on F1 coverage.
- F1 provides macro coverage and on F2 Remote Radio Heads (RRHs) are used to provide throughput at hot spots. Mobility is performed based on F1 coverage (DL only for R10)
- Similar to scenario #2, but frequency selective repeaters are deployed so that coverage is extended for one of the carrier frequencies. It is expected that F1 and F2 cells of the same eNB can be aggregated where coverage overlap. (DL only for R10)

CoMP Scenarios

Scenario 1

Homogeneous network with intra-site CoMP

Scenario 2


Homogeneous network with high Tx power RRHs

Scenario 3

Heterogeneous network with low power RRHs within the macrocell coverage where the Tx/Rx points created by the RRHs have different cell IDs as the macro cell

Scenario 4

Heterogeneous network with low power RRHs within the macrocell coverage where the Tx/Rx points created by the RRHs have the same cell IDs as the macro cell

CoMP - Downlink

Downlink CoMP Categories

Joint Processing (JP)

Data for a UE is available at more than one point in the CoMP cooperating set (definition below) for a time-frequency resource.

- Joint Processing (JP) includes Joint Transmission (JT) and Dynamic point selection (DPS)
- Joint Transmission (JT): Simultaneous data transmission from multiple points (part of or entire CoMP cooperating set) to a single UE or multiple UEs in a time-frequency resource.

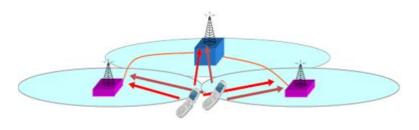
Coordinated Scheduling/Coordinated Beam-forming (CS/CB)

Data for an UE is only available at and transmitted from one point in the CoMP cooperating set but user scheduling/beam-forming decisions are made with coordination among points corresponding to the CoMP cooperating set.

Coherent combining or dynamic cell selection

Joint transmission/dynamic cell selection

Coordinated scheduling/beamforming



CoMP - Uplink

Uplink CoMP Categories

Joint Reception (JR)

PUSCH transmitted by the UE is received jointly at multiple points (part of or entire CoMP cooperating set) at a time, e.g., to improve the received signal quality

Multipoint reception

Coordinated Scheduling/Beamforming (CS/CB)

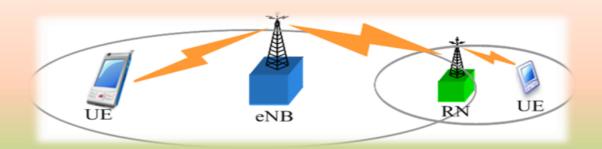
The user scheduling and pre-coding selection decisions are made with coordination among points corresponding to the CoMP cooperating set. The data is intended for one point only.

Uplink CoMP has no changes to air interface.

3Relay

Concept

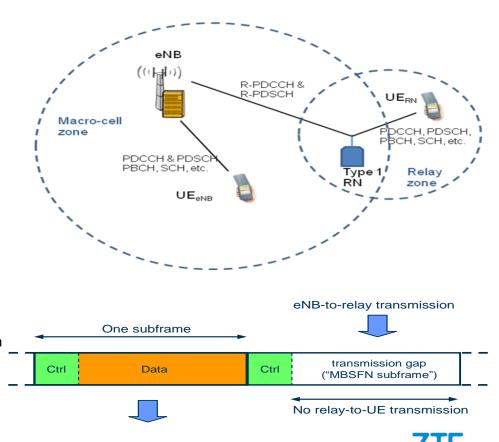
- A new node between eNB and UE
- Wireless backhaul between eNB and RN

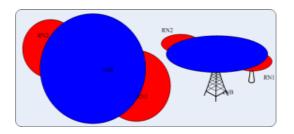

Benefit

- Coverage of high data rates
- Group mobility
- Temporary network deployment
- Cell-edge throughput

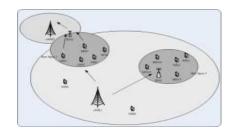
Category

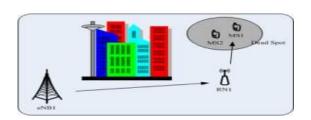
- In-band and out-band
- Type1(1a and 1b)

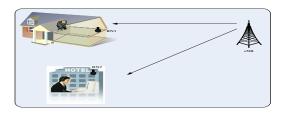


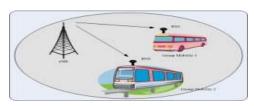


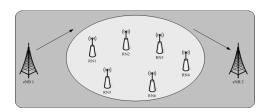
Relay - Type 1

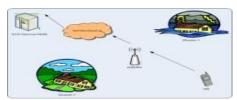

- Type 1 Relay Zone is a different cell from the Donor cell
 - e.g., with different cell ID, RS, Sync signal etc.
- UE receives/transmits control signals for scheduling and HARQ from/to RN
- FAKE MBSFN Sub-frames for backhaul partitioning
 - SF #0, #4, #5 and #9 in FDD and #0, #1, #5 and #6 in TDD cannot be configured for downlink backhaul, since system information, paging channels are located
 - R-PDCCH has to be defined in LTE R8 PDSCH region


Relay-Application Scenarios


Rural area


Urban hot spot

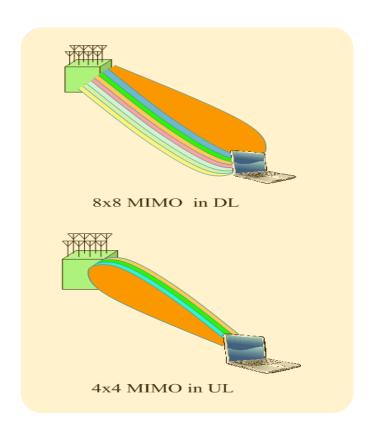

Dead spot


Indoor hot spot

Group mobility

Wireless backhaul only

Emergency or temporary network deployment


4 Enhanced MIMO

DL MIMO

- Up to 8Tx in new TM 9
- SU-MU dynamic switch
- 8 Tx Codebook
 - Implicit feedback
 - Double codebook design
- CSI-RS: measurement RS for Rel 10
- DMRS: pre-coding demodulation RS

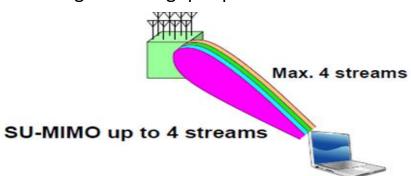
UL MIMO

- PUCCH TxD: SORTD
- PUSCH SM up to 4Tx/4 layers

Enhanced MIMO - Uplink

UL transmit diversity for PUCCH

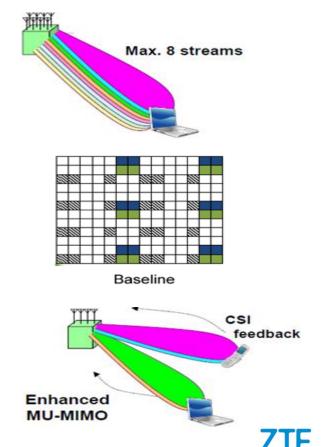
→ Improving signal robustness and cell-edge performance


SU-MIMO up to 4-stream transmission

→ Satisfying the peak spectrum efficiency (e.g. 15bps/Hz)

Signal detection scheme with affinity to DFT-S-OFDM for SU-MIMO

Turbo-SIC is applied in eNB receiver to achieve higher throughput performance

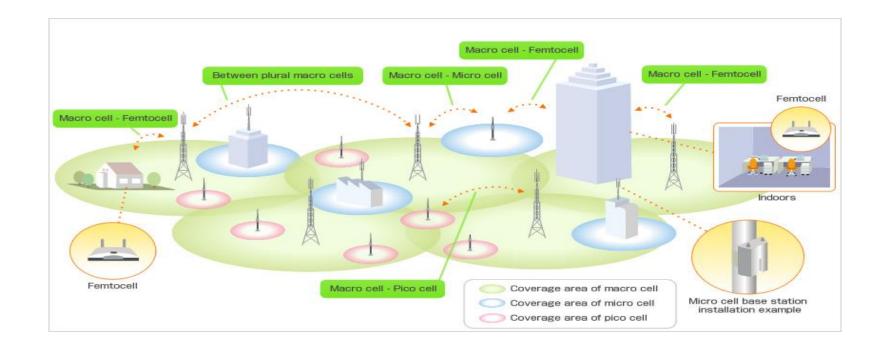

→ Improving user throughput, while maintaining low cubic-metric signal transmission

Enhanced MIMO - Downlink

- Extension up to 8-layer transmission
 - → Satisfying the requirement for peak spectrum efficiency (e.g., 30bps/Hz)
- Additional reference signal (RS) specified
 - Channel state information RS (CSI-RS)
 - For downlink channel sounding
 - Sparse, low overhead (configurable)
 - UE-specific demodulation RS (DM-RS)
 - UE-specific DM-RS can be pre-coded, supporting non-codebook-based pre-coding
 - DM-RS is only used for the demodulation of PDSCH
 - DM-RS pattern for higher numbers of layers is extended from 2-layer format for TM8 in Rel-9

5Het Net - Heterogeneous Networks

Het-Net

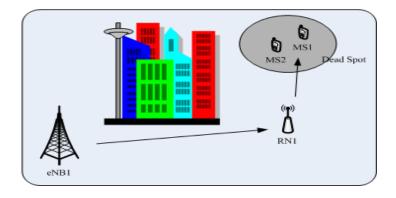

- Multiple tiers of network of a single RAT
- Low power nodes (LPN) are placed throughout a macro-cell layout (overlaid)

LPN

- RRH
 - Low latency (µs) backhaul to macro, open, planned deployment
- Pico eNB (Hotzone)
 - X2 backhaul, open, planned deployment
- HeNB/Femto
 - No X2; CSG, consumer deployed, indoors
- Relay
 - in-/out-band RN, open, planned deployment

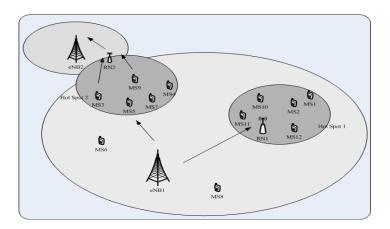
Het Net - Architecture

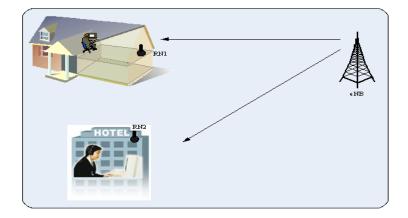
Het Net - Application Scenario 1


Scenarios 1: coverage

- Seamless coverage for rural area or cell edge, lower CAPEX
- e.g., fixed RN/pico

- Blind spot
- e.g., RN or micro/pico

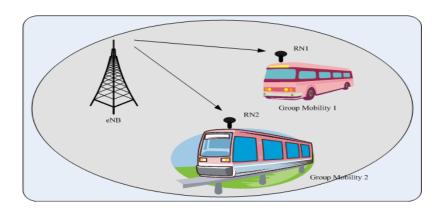


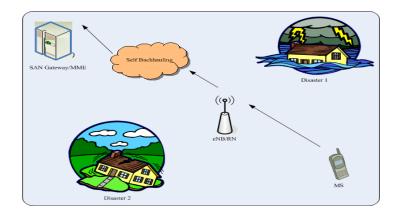

Het Net - Application Scenario 2

Scenarios 2: capacity

- Hot spot/zone
- e.g. high density UEs in a small area

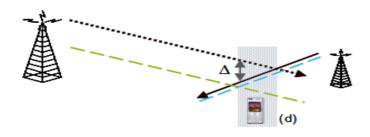
- Indoor: improving capacity and providing coverage
- e.g., femto

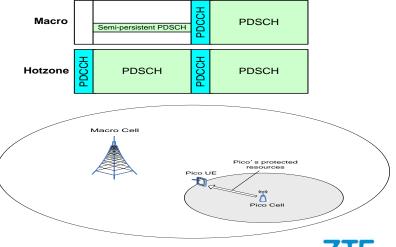



Het Net - Application Scenario 3

Scenarios 3: others

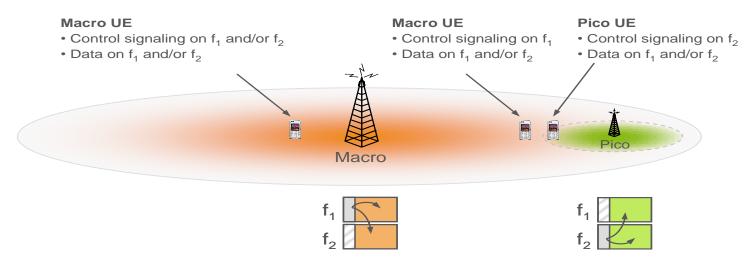
- Group mobility
- e.g., mobile RN


- Emergency or Temporary Network Deployment
- e.g., RN



Het Net - elCIC based on ABS

- Het-Net co-deployment problem: interference!
- eICIC solutions ABS
 - Time domain: Almost Blank Subframes (ABS)
 - ABS Contains no data but may have essential signals for legacy support (PSS/SSS, PBCH, CRS, Paging, SIB1 etc.)
 - In ABS, very low interference to UEs of neighbor cells
 - Macro cell(s) utilizing ABS to protect the corresponding pico cell's subframes
 - Pico cell schedules serving UEs correspondingly considering received ABS pattern(s) from other cell(s)

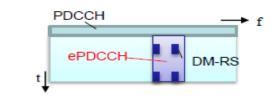

Rx power (solid, dotted->macro), 1/pathloss (dashed)

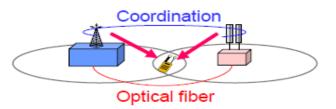
Het Net – elCIC based on CA

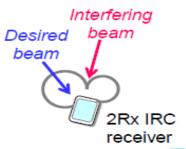
CA applies to heterogeneous deployments

Cross-carrier scheduling →

Downlink control channel interference avoidance!






Part III
Technologies
(R12)

4G Enhanced Features in R11(LTE-A)

- Carrier aggregation (CA) enhancements
 - · Different TDD UL/DL configuration on different band
 - Multiple timing advances for UL CA
- Enhanced downlink control channel (E-PDCCH)
 - Enhanced DL control channel to support increased
 - control channel capacity, freq. domain ICIC, beamforming and/or diversity
- CoMP transmission and reception
 - CoMP for Homogeneous/Heterogeneous NW
 - Enhancement on DL/UL reference signal, control signal
 - · Channel state information feedback and measurement
- Further enhanced inter-cell interference coordination (FeICIC)
 - Interference cancelation technique for UE (e.g., CRS canceller from Macro-cell)
- Improved minimum performance requirements for E-UTRA: Interference rejection
 - Interference rejection combining (IRC) UE receiver

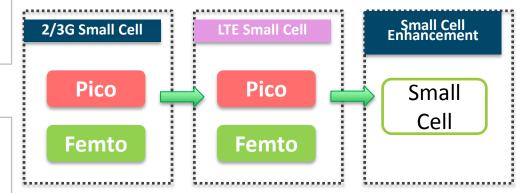
4G New Features in R12 (LTE-A)

🔊 Study Item

- Small Cell Enhancement
- 3D-channel model for Elevation Beamforming and Full Dimension-MIMO
- Network-Assisted Interference Cancellation and Suppression
- Device to Device (D2D) Proximity Services
 - Discovery/Communication
- Enhanced Coordination Multi-Point (CoMP) Transmission/Reception

Work Item

- New Carrier Type (NCT)
 - Stand alone NCT/Non-stand alone NCT
- Further enhancements to TDD for DL/UL Interference Management and Traffic Adaptation (eIMTA)
- Further DL MIMO Enhancement
- Low cost & enhanced coverage MTC UE
 - Low cost MTC
 - · Coverage enhancement
- TDD-FDD Carrier Aggregation
- Coverage Enhancements

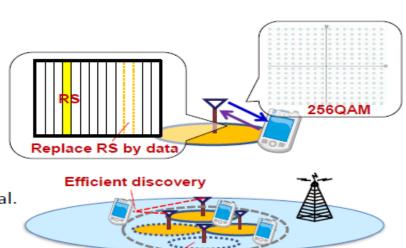

1 Small Cell

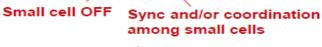
Application Scenarios

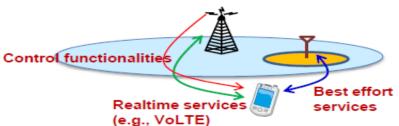
- The evolution of LTE technology
- In order to meet the demand of hot spot and indoor coverage scenario

Advantages

- Ultra high speed
- Can management and control
- The current version of LTE terminal can access to the new system

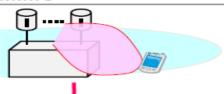





Small Cell - Enhancement

Objective

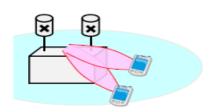
- Spectrum efficiency improvements
 - Higher order modulation (e.g., 256QAM)
 - Overhead reduction, control signaling enhancement
- Efficient small cell operation
 - Interference avoidance and coordination
 - Small cell ON/OFF, load balancing/shifting, et al.
 - Efficient small cell discovery
 - · Radio Interface-based sync.
- Physical layer study for higher-layer aspects
 - Dual connectivity to macro and small cell layers
 - Mobility enhancements
- Study will be closed and specification works for identified technologies will start in Sep. 2013



(2)Enhance MIMO – Evolove to 3D MIMO

Rel-10 MIMO

- Max. 8-Tx (Max. 4-Tx for FDD)
- Achieves beamforming in azimuth angle


Optimization for realistic environment

Beamforming in azimuth/elevation angle

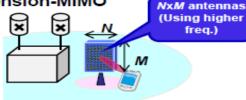
Enhancement of the number of antennas

Rel-12 MIMO

2D MIMO enhancement

- 4-Tx codebook enhancement
- Feedback enhancement for MU-MIMO

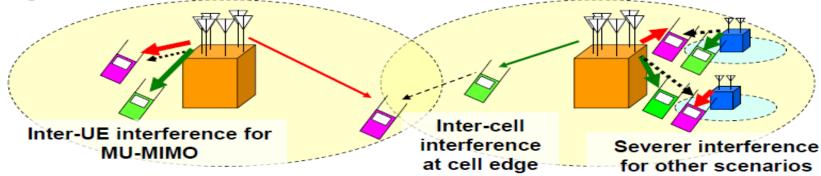
3D MIMO using active antenna system


Study of 3D channel model (3D UE distribution, 3D pathloss, fast fading, etc

Elevation beam forming

- Max. 8-Tx
- Beam gain and interference reduction using 3D beam

Full dimension-MIMO


- More than 8-Tx (e.g., 16, 32, ...)
- · Higher freq. (e.g., 3.5 GHz-)
- →Progressive capacity enhancement in hotspot area

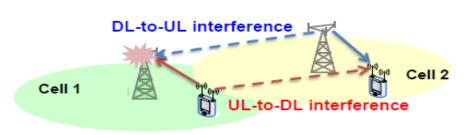
3NW-Assisted Interference Cancellation and Suppression

	Rel. 11 Advanced receiver	Rel. 12 Advanced receiver
Target for receiver	Interference limited areas, i.e., cell edge	All areas including cell edge

■Target for Advanced receiver

- Study on a variety of receiver types and need of interference information (NW-assisted receiver)
 - Interference suppression: Enhancement of Rel-11 receiver
 - Interference cancellation: Subtraction of interference replica from received signal, e.g., SIC

4elMTA (Dynamic TDD)


Further enhancements to LTE TDD for DL-UL Interference Management and Traffic Adaptation

₷Objective

- TDD UL-DL reconfiguration for traffic adaptation
- Interference mitigation with TDD UL-DL reconfiguration

Topics under discussion

- Reconfiguration mechanism
- Interference mitigation scheme

✓ Interference mitigation schemes

Scheme 1

Cell clustering

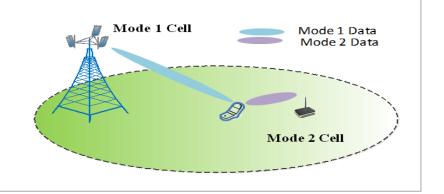
Scheme 3

Interference mitigation based on (F)elCIC

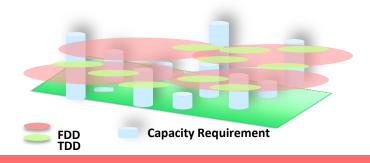
Scheme 2

Scheduling enhancement

Scheme 4


Interference suppressing and mitigation

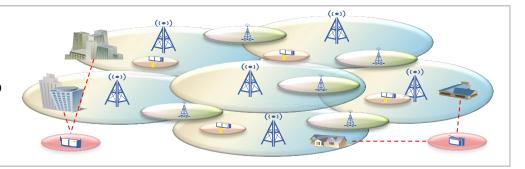
⑤TDD+FDD Dual connectivity


Application Scenarios

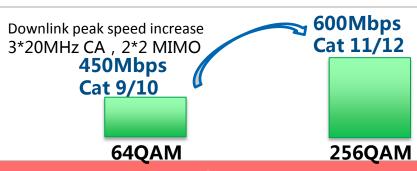
- Implement the aggregation of resources between different network system
- Suitable for FDD and TDD joint deployment
- None ideal backhaul transmission scenario
- Deployed in between two different base station, Interface standard open, Different vendors base station can be realized

Advantages

- ■Improve the peak rate of users
- ■For TDD + FDD operators, FDD macro covering and TDD micro covering can achieve high capacity covering in hot point


Implement the aggregation of resources between different network system, improve user peak velocity

6256QAM

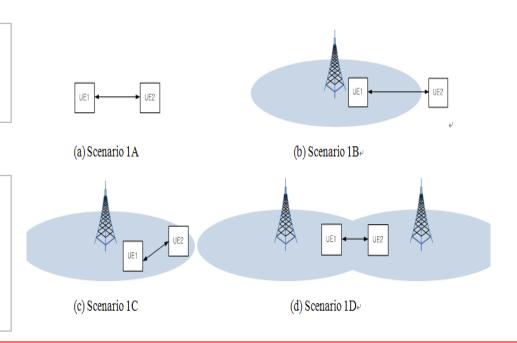

Application Scenarios

- Outdoor Small cell network scenarios
- Indoor higher user rate demand scenario
- Cat11~12 to support

Advantages

- **■** Improve throughput
- Improve the single user peak rate

256QAM can promote downlink peak rate, suitable for small cell scenario


7D2D(Device to Device)

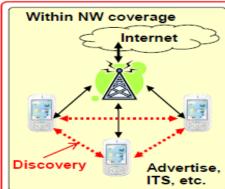
Scenarios

- Close communication between the social network
- Public security areas: lack of infrastructure network support

Advantages

- Hop gain
- Reuse gain
- Extremely high data rate
- low delay
- low power consumption due to the proximity of UEs

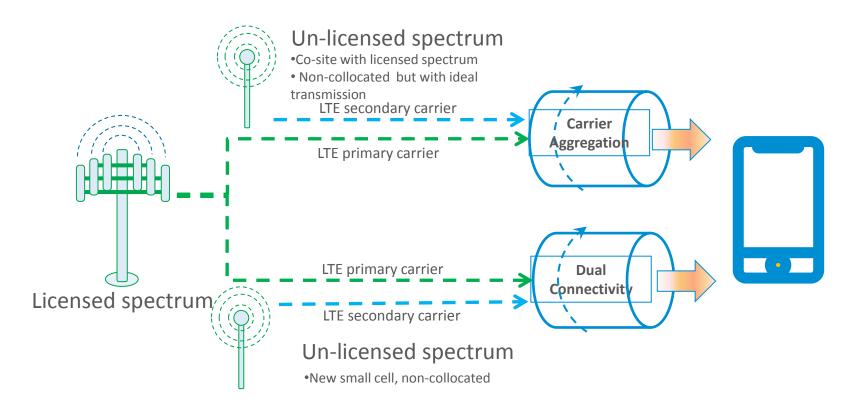
Indispensable to the future communications technology

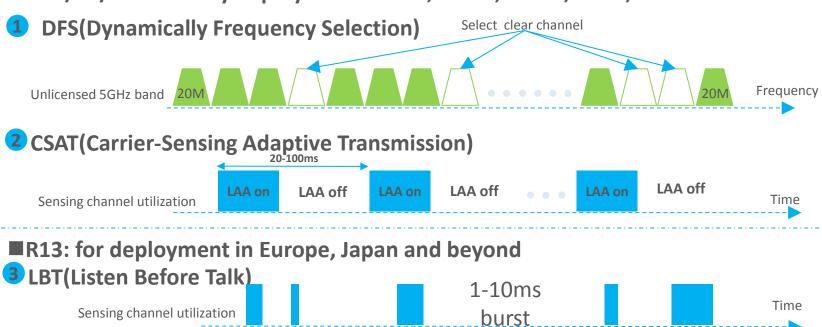


D2D: Proximity Service

- Two kinds of objective
 - Commercial use with NW coverage
 - Public safety/critical communication with/without NW coverage
- Two kinds of technical topics
 - D2D discovery
 - D2D communication

	With NW coverage	Without NW coverage
Discovery	Required both for public safety & non- public safety	Public safety only
Commu- nication	Required at least for public safety	Public safety only





8LAA - LTE Solution in Unlicensed Band

LAA - Key Regulations & Technologies

■R10/11/12: for early deployment in USA, China, Korea, India, etc.

Trainer: ZHU LONGMING

E-mail: zhu.longming@zte.com.cn

Department: Wireless Product @ZTE CORPORATION

Address: Shenzhen, China

Thank you

