

Network Framework of IMS

YUAN ZHANG China Telecom Beijing Research Institute

Course Objectives:

To learn the IMS basic concept and basic technologies, including the service, functional architecture, function entities, interface, protocol and information flows.

Agenda

- IMS brief introduction
 - IMS functional architecture & function entity
 - IMS Interface & Signaling flows

What's IMS?

IMS is:

Home control service infrastructure

A VoIP Telephony and Multimedia Services Architecture

Defined with Open Standard Interfaces -> 3GPP and 3GPP2

Based on IETF Protocols (SIP, Diameter, RTP...)

Applicable for Both Wireless and Wireline Networks

A Solution for Service Transparency

Capable of Interworking with PSTN and Legacy IN Based Services

The IMS Model

Increasingly, customers are telling Lucent this is the direction of choice in evolving their network

- Focus is on building a new overlay network with the goal of providing new services and applications to grow revenue
- Infrastructure is designed for voice, data, multimedia and other applications
- Optimized for new endpoints (next generation VoIP clients) and new access technologies (VoDSL, VoBB, 802.11, 802.16, etc)
- Legacy endpoints can be adapted to provide ubiquitous serves across all endpoints
- Overlay approach consistent with vendors need to modernize network infrastructure
- Separation of functions is optimized for next generation services: session, data, applications, PSTN interfaces
- Well defined application interfaces makes it easy to deploy third-party services
- Converged architecture is applicable to wireline and wireless

Operator's Attention Point On IMS

- Video conference/video telephony
- Multimedia ringing tone/ring back tone

ICT application

• Use IMS for enterprises ICT application and unified communication

Network evolution

- SIP IAD、SIP AG access to IMS
- IMS support for PSTN/ISDN Emulation/Simulation service
- AGCF and mAGCF access to IMS

Service engine open to 3rd party and Internet

• IMS service ability open to 3rd party and internet for more flexible service and application

Agenda

- IMS brief introduction
- IMS functional architecture & function entity
 - IMS Interface & Signaling flows

IMS Standard Bodies

- * For 3GPP, the PDF is within the P-CSCF. For 3GPP2, the PDF is a network entity of it's own.
- * For 3GPP the HSS also contains HLR functionality which is not shown here. For 3GPP2 the AAA function shown in the HSS is a stand-alone entity.
- * Additional interfaces exist in both the 3GPP and 3GPP2 reference models but are not included in this proposal for harmonization.

IMS Entity Definitions

Signaling Entities

- HSS Home Subscriber Server or "HSS Collective"
 - Consists of AAA and Databases
- **CSCF** Call Session Control Function 3 flavors
 - S-CSCF Serving: Session control entity for endpoint devices
 - I-CSCF Interrogating: Entry point to IMS from other networks
 - P-CSCF Proxy: Entry point to IMS for devices
- BGCF Breakout Gateway Control Function
 - Selects network to use for PSTN/PLMN interworking
- MGCF Media Gateway Control Function

Controls MGW

- MRFC Multimedia Resource Function Controller
 Controls MRFP
- PDF Policy Decision Function

Authorizes QoS requests

AS - Application Servers – provides services and applications

- Session Initiation Protocol (SIP) AS
- Open Service Access (OSA) Service Capability Server (SCS) & OSA AS
- AIN Interworking Server

Bearer Entities

- MGW Media Gateway
 Inter-works RTP/IP and PCM bearers
- MRFP Multimedia Resource Function Processor Provides conferencing, transcoding and announcements

Support Systems

- HSS Home Subscriber Server or "HSS Collective" Consists of AAA and Databases
- SLF Subscriber Locator Function
 Provides location of associated HSS
- Charging Entities
 - **ECF** Event Collection Function (On Line)
 - **SCF** Session Collection Function (On line)
 - **CCF** Charging Collection Function (Off-Line)
- DNS and ENUM

3GPP Network Elements

Call Session Control Function (CSCF)

• SIP Proxies used to manages SIP sessions

- Coordinates with other network elements
- Session control, feature control, resource allocation, ...

• Three flavors of CSCFs

- Serving CSCF (S-CSCF) Session control entity for endpoint devices
- Interrogating CSCF (I-CSCF) Entry point to IMS from other networks
- Proxy CSCF (P-CSCF) Entry point to IMS for devices
- Functionally CSCFs follows Internet paradigms
 - P-CSCF \rightarrow I-CSCF \rightarrow S-CSCF
 - Stateless entities at network edge, state entities in core
 - Simple processing at edge, complex processing in core
 - Security and authentication requirements increase towards core

Proxy CSCF (P-CSCF)

- First contact point within the IMS for the subscriber
 - Well known address(es) within network
 - P-CSCF discovery can either be statically configured or via DHCP
- Authentication and Authorization
 - Routes incoming requests based on registration status
 - Sends the SIP REGISTER request received from the UE to an I-CSCF determined using the home domain name, as provided by the UE
 - Sends SIP messages received from the UE to the SIP server S-CSCF, whose name the P-CSCF has received as a result of the registration procedure
 - Rejects non-authorized requests
 - Authorize the bearer resources for the appropriate QoS level
 - PDF functionality integrated in release 5, separate entity in release 6
- SIP compression and decompression
- Acts as a B2BUA
 - Generates CDR events
 - Can act as User Agent and terminate calls in abnormal situations
 - Detects and handles emergency session establishments

Security element at edge of IMS network providing initial entry point for user equipment

Interrogating CSCF (I-CSCF)

- Initial contact point for incoming network connections
 - Well known address within network
 - Selects S-CSCF for a user performing SIP registration
 - Provides S-CSCF fan-out to support scalability
 - Selection can be static or dynamic based on current conditions and user location
 - Routes request to proper S-CSCF or external network element
 - Query HSS for the address of S-CSCF to handle call
 - If no S-CSCF is currently assigned, (e.g. unregistered termination), then assign S-CSCF to handle the SIP request
- Acts as a stateless SIP proxy
 - Generates CDR events
- Provides Topology Hiding Inter-network Gateway (THIG)
 - Not required but provides valuable capabilities
 - Hides configuration, capacity, and topology of network from outside

IMS network routing proxy and S-CSCF scalability support

Serving CSCF (S-CSCF)

Registrar and Notification Server

- Acts like an IETF RFC 3261 compliant Registrar
- IETF RFC 3265 compliant event notifications, e.g., registration
- Generally 1-1 binding between registered endpoint and S-CSCF

Locally Stores Subscriber Data

- The Serving CSCF retrieves the subscriber data from the HSS
- Includes filter criteria information,

Which Application Servers to contact for specified events

Session Control and Routing

- Provides session control for the registered endpoint's sessions
- Behaves as both SIP Proxy and User Agent
- Generates session level CDRs

Bearer Authorization

 Ensures that media types and quantities indicated by SDP for a session are within boundaries of subscriber's profile.

Multimedia Resources (MRFC & MRFP)

Multimedia Resource Function Controller (MRFC)

- Controls the media streams resources in the MRFP via H.248
- Requests received from IMS elements
 - Standard ISC SIP requests utilizing SIP RFC 3264 Offer/Answer model
- Generates CDRs

• Multimedia Resource Function Processor (MRFP)

- Provides resources to be controlled by the MRFC (H.248)
 - Mixes incoming media streams (e.g. for multiple parties)
 - Sources media streams (for multimedia announcements)
 - Processes media streams (e.g. audio transcoding, media analysis)
 - Tones and announcements Applied on receipt of ACK, self-timed with BYE or stopped on BYE
 - Support DTMF within the bearer path
- Notify the MRFC when an event has occurred
 - For example: AS/CSCF may have directed it to collect DTMF digits

Central management of a pool of media resource servers

17 | Presenta

Breakout Gateway Control Function (BGCF)

- Selects the network in which PSTN breakout is to occur
 - MGCE selected if breakout is to occur in the same network
 - BGCF of a peer network can be selected to hand-off routing
- No standards for criteria BGCF uses for selection, some possible factors:
 - Current location of the calling UE
 - Location of the PSTN address
 - Local policies and business agreements between the peer network
 - Minimize path distance
 - Least cost path

Media Gateway Control Function (MGCF)

Media Gateway Control Function (MGCF)

 Controls the parts of the call state that pertain to connection control for media channels in a MGW

May include sophisticated TDM routing capabilities

- Communicates with the I-CSCF using SIP Mg interface
- Communicates with the I-CSCF and BGCF (SIP)
- Performs protocol conversion between ISUP and SIP (accordance with ITU-T Q.1912.5)
- Out of band information assumed to be received in MGCF and may be forwarded to the CSCF/MGW

Media Gateway (MGW)

Media Gateway (MGW) performs the following functions:

- May support both the multimedia and TDM domains
- Interacts with the MGCF for resource control (H.248 protocol)
- May terminate bearer channels from a switched circuit network and media streams from a packet network (e.g. RTP streams)
- May support media conversion, bearer control, and payload processing (e.g. codec, echo canceller, conference bridge)

May support tones and announcements

- Will be able to detect event (i.e. bearer loss, DTMF digits, etc.) and notify the MGCF
- May be connected via the Mb/36/38/34/33 to various network entities, such as MRFP
- Will perform DiffServ Code Point (DSCP) markings on the IP packets
- Will support conversion between RFC 2833 DTMF packets & G.711

ENUM Server

Agenda

- IMS brief introduction
- IMS functional architecture & function entity
- IMS Interface & Signaling flows

Protocol used in IMS

1. SIP

- Dominant call control protocols in IMS
- Used between UE/AS and session control, or within session control layer elements.
- 2. Diameter
 - Used to exchange user info between HSS and session control/AS. (Cx, Sh, Si interfaces, etc.)
 - Used to exchange charging information between charging collection function and session control/AS (Ro, Rf interfaces)
 - Used to exchange QoS related info between P-CSCF and PDF (Gq interface)
- 3. H.248
 - Used by MGC to control MGW
 - Used by MRFC to control MRFP

Major SIP IETF RFC Used In IMS

- RFC 3261 (base) SIP protocol
- RFC 2976 SIP INFO method
- RFC 3262 Reliability of provisional responses in SIP
- RFC 3265 SIP specific event notification
- RFC 3311 SIP UPDATE method
- RFC 3312 Integration of resource management and SIP
- RFC 3313 Private SIP extensions for media authorization
- RFC 3323 Privacy mechanism for SIP
- RFC 3325 Private SIP extensions for network asserted identity
- RFC 3326 Reason Header for SIP
- RFC 3327 SIP extension header field for registering contacts
- RFC 3428 SIP extension for instant messaging
- RFC 3455 Private header extensions to SIP for 3GPP
- RFC 3515 SIP REFER method
- RFC 3608 SIP extension header field for service route discovery
- RFC 3680 SIP event package for registrations

SIP Registration / Re-Registration

1 Initiate SIP Registration

- **(2)** Query DNS to obtain routing information for I-CSCF
- **3** Forward SIP REGISTER to Home Network
- 4 Retrieve information needed for S-CSCF Selection
- 5 Forward SIP REGISTER to S-CSCF
- 6 Retrieve and select Authentication Vector
- **7** Reject with Authentication Data

- 8 Re-initiate SIP Registration (steps 1 5)
- **9** Store S-CSCF Name
- (10 Retrieve Subscriber Profile and Filter Criteria
- (1) Register with AS(s) based on Filter Criteria
- (12) AS(s) retrieve Subscriber profile (if needed)
- **13 P-CSCF SUBSCRIBE**, for de-registration
- **14** UE SUBSCRIBE, for de-registration

IMS Subscriber to IMS Subscriber (Single Network)

- 1 Initiate SIP Invitation
- 2 Retrieve Subscriber Profile (if needed)
- 3 Apply Service Logic
- (4) Retrieve Address of CLD Party Home Network and Forward INVITE.
- **(5)** Identify Registrar of CLD Party and Forward INVITE.

- 6 Retrieve Subscriber Profile (if needed)
- **7** Apply Service Logic
- 8 Forward INVITE to CLD Party
- **9** SDP Negotiation / Resource Reservation Control
- (10) Ringing / Alerting
- (11) Answer / Connect

IMS Subscriber to IMS Subscriber (Multiple Networks)

- 1 Initiate SIP Invitation
- 2 Retrieve Subscriber Profile (if needed)
- 3 Apply Service Logic
- (4) Retrieve Address of CLD Party Home Network and Forward INVITE.
- **(5)** Identify Registrar of CLD Party and Forward INVITE.

- 6 Retrieve Subscriber Profile (if needed)
- 7 Apply Service Logic
- 8 Forward INVITE to CLD Party
- **9** SDP Negotiation / Resource Reservation Control
- (10) Ringing / Alerting
- (1) Answer / Connect

IMS Subscriber to PSTN(Single BGCF)

1 Initiate SIP Invitation

- 2 Retrieve Subscriber Profile (if needed)
- **3** Apply Service Logic
- **4** Select network to access PSTN, and select MGCF
- 5 Seize trunk / determine media capabilities of MGW
- **(6)** SDP Negotiation / Resource Reservation Control

- **7** ISUP IAM
- 8 Ringing / Alerting
- **9** Answer / Connect

PSTN to IMS Subscriber

1 Incoming Call (ISUP IAM)

2 Seize Trunk and IP Port

- **3** Initiate SIP Invitation
- **4** Determine where the Subscriber is Registered
- **5** Forward SIP INVITE to S-CSCF
- 6 Retrieve Subscriber Profile (optional)
- **7** Service Logic (if needed)

- 8 Forward SIP INVITE to Called Party UE
- **9** SDP Negotiation / Resource Reservation Control
- **10** Alerting / Ringing
- (1) Connect / Answer

Trainer: YUAN ZHANG

E-mail: zhangyuan@ctbri.com.cn

Department: Chinatelecom Beijing Research Institute

Address: China Telecom Beijing Information Science & Technology Innovation Park, Southern Zone of Future Science & Technology City, Beiqijia Town, Changping District, Beijing

中国信息通信研究院 http://www.caict.ac.cn