

5G Vison and Research on Massive Mimo

Wu Xiang

Technology and Standards Research Institute, CAICT

2018-09

Evolution of Wireless Access Technologies

Ubiquitous and Profitable Ultra Broadband Network for Future Internet

Outline

1 Scenarios of 5G

2 Research for 5G

3 Solid Step Toward 5G

5G- What Is the Industry Horizon

Amazingly Fast: Virtual Reality Office

Tele-Presence As-if-they-were here

Tele-Immersion As-if-you-were there

Great Service in a Crowd:Stadium, Open Air Festival

Watching, Exchanging Multi-Media Contents

Enjoy Infotainment Applications

Ubiquitous Things Communication: M2M

Best Experience Follows You: Ubiquitous MBB

Super Real -Time and Reliable Connection: Traffic Safety, Traffic Efficiency and Smart-Grid

Traffic Efficiency and Security

Tele-Protection of Smart Grid

PR: Protective Relay

CPE: Customer Premises Equipment

ETH: Ethernet

Failure/Damage info, send to other substations in a few ms to prevent cascading failure or damage.

Outline

1 Scenarios of 5G

2 Research for 5G

- -Improved MBB
- -New Services Extension

3 Solid Step Toward 5G

ITU 5G Standard Timetable

1000X -Spectrum/Efficiency/Sites

- Massive MIMO
- Multi-Site/Multi-Layer Coordination
- Advanced Interference Mitigation
- Co-time Co-Frequency Duplex, Network Coding

More Spectrum

>20X

- Ultra Dense Network
- Multi-Connections
- Virtual Cell, D2D, Multi-hop

Spectrum expansion: from 300~500MHz to 1500MHz

- Spectrum at High Frequency
- Larger Carrier Bandwidths, Enhanced CA
- Cognitive Radio, Authorized/Licensed Shared Access

More Spectrum: New Spectrums Analysis

Existing Spectrum	Available Frequency	Comments
Existing Spectrum	IMT 1000M:700M-1G,1.7-2.4G,WiFi(2.42-2.4835G)	utilization<50%, maximum1.5 times availability
Television Spectrum	400M (470-790M), varies in different countries	200M used , 100M left (TBD)

New Spectrum					
2.6G (2500-2690)	3.5G(3399.5-3431,3499- 3531)	5G(4.9-5,5.03-5.09, 5.15-5.35, 5.47-5.725, 5.725-5.850)	6G-15G, 26-38G, 45G (40.5-47)	60G (57-64.7G)	
190M	31.5M*2	740M	6.5G	7.7G	

On top of the obvious capacity increase, very high frequencies (even at 28 GHz) would allow massive NxN MIMO fit into devices. AGLIE MIMO POLARISATION DIVERSITY 135° ADATA STREAM 1 DATA STREAM 2

White Space

- Accurate geo-location databases would optimize spectrum geographic usage
- DSA (Dynamic Spectrum Access) may enable operator coordination for shared spectrum resource.

Cognitive Radios

- Equipment sensing the radio environment and changing configuration thanks to SDR capability.
- Connected but not strictly required by DSA.

Spectrum Efficiency Improvement

MASSIVE MIMO

◆Capacity Boost

- More antenna, more streams, higher capacity gain
- Precise beam-forming and interference cancelation

Coverage Extension/Energy Saving

- · Power concentrated in desired direction
- User tracing and multipath diversity

Other Technologies

- Different Technology for Different Applications
 - Machine Type Communication: NOMA
 - Cognitive Radio: FBMC
- More Knowledge of Interference
 - instantaneous and interactive
 - More advanced nonlinear receiver
 - Interference alignment
- Advanced coding and modulation
 - Network coding
- ◆Decoupled Control/User Plane
- ◆Co-time Co-frequency Full Duplex

Super Dense Small Cells in Hot Points

Homogeneous network

Heterogeneous network

- Only macro nodes, Independent processing
- Focus on coverage

Coverage and capacity
 Enhancement

inter-cell coordination

Virtual cell network

- Huge capacity
- Cloud processing and in-depth coordination

Outline

1 Scenarios of 5G

2 Research for 5G

- -Improved MBB
- -New Services Extension

3 Solid Step Toward 5G

New Services and Applications of 5G

MTC

- Connection of huge wireless sensors/actuators/devices
- Diversity Requirements
- Typically Low data traffic
- Low cost and low energy consumption

- Direct D2D communication,
 Focus on network-assisted
 proximity-detection first
- Applications: Traffic safety,
 Local data transfer, social
 networking, proximity-enabled
 communication.

Moving Network

- Vehicle-to-X communications
- In-vehicle communication and networking
- Moving and Nomadic download or data sharing

- Improve reliability through:
 Redundant topologies, robust transmission schemes, resilient protocols
- Make wireless as reliable as fixed network

New Service - MTC

Machine Type Communication/MMC(Massive Machine Communication)/M2M(Machine to Machine)

Various Scenarios Smart Grid e-Healthy i-Industry i-Agriculture Smart Home Smart Logistic

Diversity Requirements Broad Huge Distribution Quantity Small Data High Low Reliability Mobility Low Low Cost Latency High Energy Efficiency

Optional Architecture

Optimization of Macro Network

M2M Gateway +Macro Network

M2M Gateway +App Layer +Macro Network

> Multi-Hop, Mesh Network

New Service - D2D

Local Service

Social Networking Local Traffic Cellular Offloading

Communication in case of Emergency

relaying Mesh Network

Enhanced IoT

V2V Smart Home Electronic Payment

Others

Indoor positioning

Direct Device Communication

Multi-Hop, Mesh Network

Optimization for Specific application

New Service - Moving Network

From Fixed BS to Mobile BS From Fixed RN to Mobile RN

Amorphous cells

Time 1

Outline

1 Scenarios of 5G

2 Research for 5G

- -Improved MBB
- -New Services Extension

3 Solid Step Toward 5G

5G RAN Architecture

- Mixed Legacy
 Macro cell and
 Massive MIMO
 Cell
- Both Distributed and Centralized deployment
- Mixed macro cell, small cell and Ultra-Dense Cells (UDN)

Smooth Evolution From LTE to 5G

5G 2020

Pre 5G 2015

•Offer 5G-like Experience

Using 5G Technologies

Compatible with 4G UE

Available from 2015

LTE 2010

Pre-5G Brings Great Innovations

Regarding 64T64R Demo

- up to 8X Spectrum

 Efficiency
- Precise Beam-forming
- 4G UE Compatible

- •Multiple User Reuse the Same DOF
- •Over 300% Overload (Scheduler Free)

Pre-5G

Multi-User Shared Access

Software Defined Air Interface

Service wherever You are

From 2X2 MIMO to Massive MIMO

What's Massive MIMO?

Pre-5G Base Station

Include Antenna, RF, and Baseband

Over 100 Antennas

- User-level Beamforming
- Low Interference
- Energy Saving

More Streams

- Higher System Capacity
- Higher User Throughput

Legacy UE Compatible

- Fast Time-to-Market
- Smooth Evolution to 5G

Shannon Limit

$$C = log_2 (1 + P_T / N_0)$$
 bits/Hz/s

$$C = min(n_t, n_r) log_2 (1 + P_T / N_0)$$

Beamforming Made Possible with

Horizontal Pattern of 1/2/4/8 Half Wavelength Dipole

Different Beam Direction with Phase Shift

bles separated by λ / 2 8 dipoles separated by λ / 2 -41° phase shift 0° phase shift

8 dipoles separated by λ / 2 60° phase shift

Massive MIMO Increase Spectrum Efficiency In Several Ways

5G Massive MIMO Enhancement: Control Channels Support BF

LTE Broadcast beam is wide beam

NR Broadcast beam is narrow beam (sweeping)

5G Massive MIMO Narrow Beam Design Enables 3D-Shaping

3D Shaping Improves HV Coverage

All Channels Beamforming in 5G NR

More precise beam & scanned area, more coverage gain Higher user SINR and Better interference control

Massive MIMO Product Overview

- Band:2.6GHz
- · Bandwidth: 20MHz
- Transmission Power: 40W/Carrier
- Weight: 40Kg

Windward Area is Less than 8 Antenna which was used in CMCC network.

Difference Between AAS and Massive MIMO

	AAS	Massive MIMO	
Quantity of Antennas	16-32	128-256	
Independent Channels	8-16	64-128	
Beam Control	RF Part	Baseband	
Beam Pattern	Simple Vertical Beam Splitting at Cell- level	3D Sharp Beam-forming at User-Level	
Spectrum Efficiency	1.3X - 1.5X	8X - 10X	
Coverage and Reliability	Good	Better	
Key Technologies	Highly Integrated RF array	Highly Integrated RF array, Compressive Sensing, MU- MIMO, Adaptive Beam- forming etc.	

(Trainer information)

Trainer: Wu Xiang

E-mail: wuxiang@caict.ac.cn

Department: Institute Of Technology and Standard Research

Address: No.52 Huayuan Bei Road, Haidian District, Beijing

Photo:

