IPSec and SSL Virtual Private Networks

ITU/APNIC/MICT IPv6 Security Workshop 23rd – 27th May 2016 Bangkok

Acknowledgment

Content sourced from

- Merike Kaeo of Double Shot Security
- Contact: merike@doubleshotsecurity.com

Virtual Private Networks

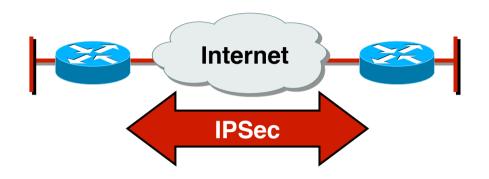
- Creates a secure tunnel over a public network
- Any VPN is not automagically secure
 - You need to add security functionality to create secure VPNs
 - That means using firewalls for access control
 - And probably IPsec or SSL/TLS for confidentiality and data origin authentication

VPN Protocols

IPsec (Internet Protocol Security)

- Open standard for VPN implementation
- Operates on the network layer

Other VPN Implementations

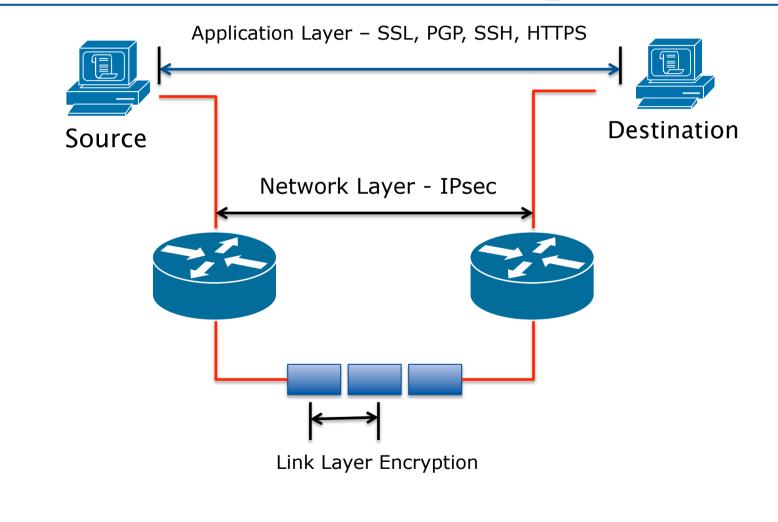

MPLS VPN

- Used for large and small enterprises
- Pseudowire, VPLS, VPRN
- GRE Tunnel
 - Packet encapsulation protocol developed by Cisco
 - Not encrypted
 - Implemented with IPsec

L2TP IPsec

- Uses L2TP protocol
- Usually implemented along with IPsec
- IPsec provides the secure channel, while L2TP provides the tunnel

What is IPSec?



- IETF standard that enables encrypted communication between peers:
 - Consists of open standards for securing private communications
 - Network layer encryption ensuring data confidentiality, integrity, and authentication
 - Scales from small to very large networks

What Does IPsec Provide?

- Confidentiality....many algorithms to choose from
- Data integrity and source authentication
 - Data "signed" by sender and "signature" verified by the recipient
 - Modification of data can be detected by signature "verification"
 - Because "signature" based on a shared secret, it gives source authentication
- Anti-replay protection
 - Optional: the sender must provide it but the recipient may ignore
- Key Management
 - IKE session negotiation and establishment
 - Sessions are rekeyed or deleted automatically
 - Secret keys are securely established and authenticated
 - Remote peer is authenticated through varying options

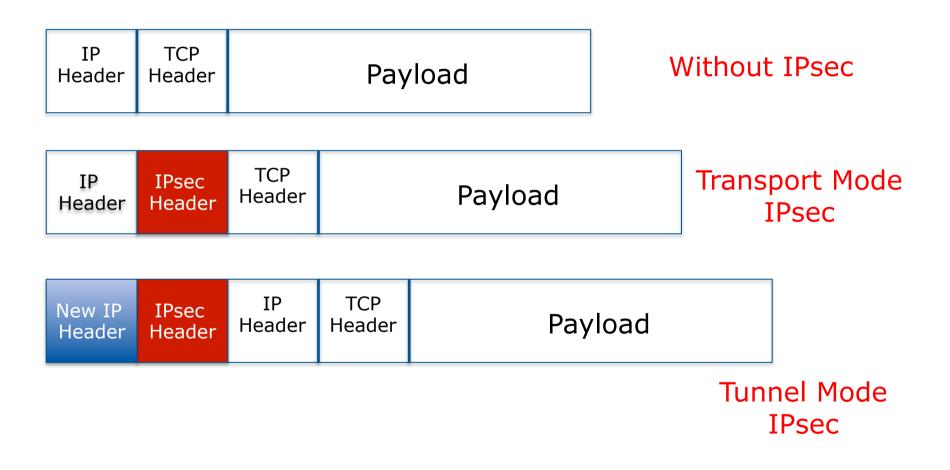
Different Layers of Encryption

Relevant Standard(s)

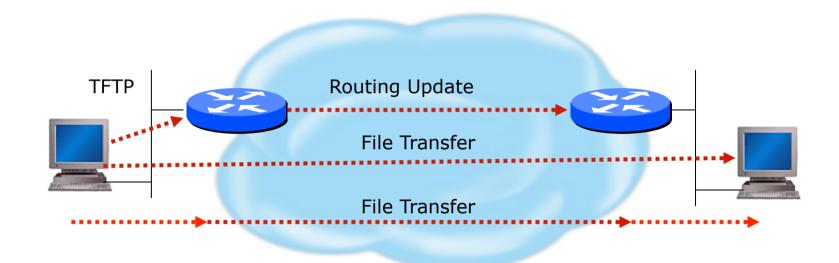
IETF specific

- rfc2409: IKEv1
- rfc4301: IPsec Architecture (updated)
- rfc4303: IPsec ESP (updated)
- rfc4306: IKEv2
- rfc4718: IKEv2 Clarifications
- rfc4945: IPsec PKI Profile
- IPv6 and IPsec
 - rfc4294: IPv6 Node Requirements
 - rfc4552: Authentication/Confidentiality for OSPFv3
 - rfc4877: Mobile IPv6 Using IPsec (updated)
 - rfc4891: Using IPsec to secure IPv6-in-IPv4 Tunnels

IPsec Modes


Tunnel Mode

Entire IP packet is encrypted and becomes the data component of a new (and larger) IP packet.


Frequently used in an IPsec site-to-site VPN

- Transport Mode
 - IPsec header is inserted into the IP packet
 - No new packet is created
 - Works well in networks where increasing a packet's size could cause an issue
 - Frequently used for remote-access VPNs

Tunnel vs. Transport Mode IPsec

Transport vs Tunnel Mode

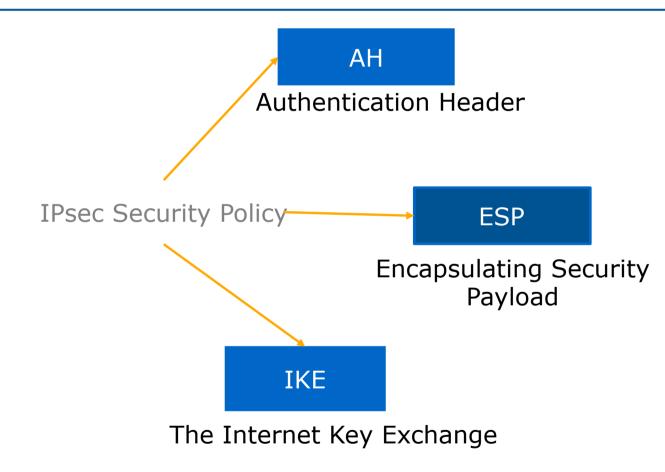
Transport Mode:End systems are the initiator and recipient of protected trafficTunnel Mode:Gateways act on behalf of hosts to protect traffic

IPsec Components

■ AH (Authentication Header)

- Authentication is applied to the entire packet, with the mutable fields in the IP header zeroed out
- If both ESP and AH are applied to a packet, AH follows ESP
- Standard requires HMAC-MD5-96 and HMAC-SHA1-96....older implementations also support keyed MD5

IPsec Components


ESP (Encapsulating Security Payload)

- Must encrypt and/or authenticate in each packet
- Encryption occurs before authentication
- Authentication is applied to data in the IPsec header as well as the data contained as payload
- Standard requires DES 56-bit CBC and Triple DES. Can also use RC5, IDEA, Blowfish, CAST, RC4, NULL

IKE (Internet Key Exchange)

 Automated SA (Security Association) creation and key management

IPsec Architecture

Security Associations (SA)

- A collection of parameters required to establish a secure session
- Uniquely identified by three parameters consisting of
 - Security Parameter Index (SPI)
 - IP destination address
 - Security protocol (AH or ESP) identifier
- An SA is unidirectional
 - Two SAs required for a bidirectional communication
- A single SA can be used for AH or ESP, but not both
 - must create two (or more) SAs for each direction if using both AH and ESP

Authentication Header (AH)

- Provides source authentication and data integrity
 - Protection against source spoofing and replay attacks
- Authentication is applied to the entire packet, with the mutable fields in the IP header zeroed out
- If both AH and ESP are applied to a packet, AH follows ESP
- Operates on top of IP using protocol 51
- In IPv4, AH protects the payload and all header fields except mutable fields and IP options (such as IPsec option)

Encapsulating Security Payload (ESP)

Uses IP protocol 50

- Provides all that is offered by AH, plus data confidentiality
 - It uses symmetric key encryption
- Must encrypt and/or authenticate in each packet
 - Encryption occurs before authentication
- Authentication is applied to data in the IPsec header as well as the data contained as payload

Internet Key Exchange (IKE)

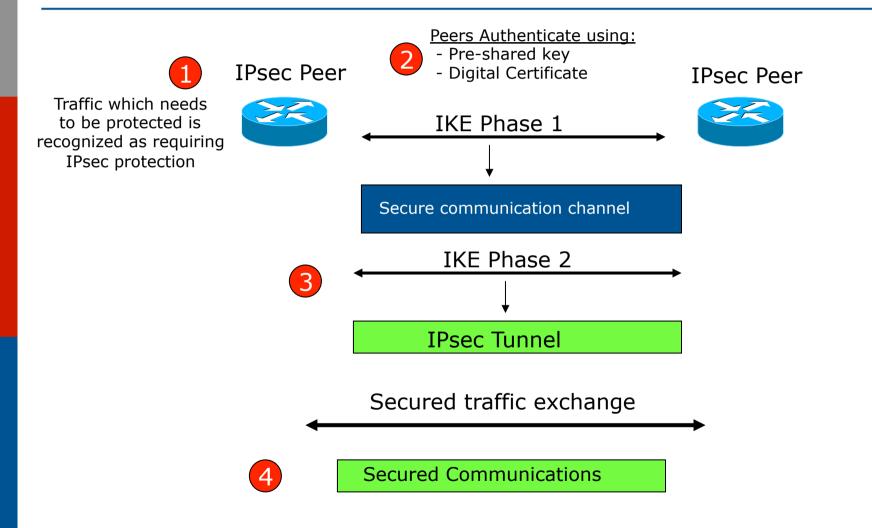
- An IPsec component used for performing mutual authentication and establishing and maintaining Security Associations." (RFC 5996)
- Typically used for establishing IPsec sessions
- A key exchange mechanism
- Five variations of an IKE negotiation:
 - Two modes (aggressive and main modes)
 - Three authentication methods (pre-shared, public key encryption, and public key signature)

Uses UDP port 500

IKE Modes

Mode	Description
Main Mode	 Three exchanges of information between IPsec peers. Initiator sends one or more proposals to the other peer (responder), responder selects a proposal Diffie-Hellman (DH) key exchange Establish ISAKMP session
Aggressive Mode	 Achieves same result as main mode using only 3 packets First packet sent by initiator containing all info to establish SA Second packet by responder with all security parameters selected Third packet finalizes authentication of the ISAKMP session
Quick Mode	 Negotiates the parameters for the IPsec session. Entire negotiation occurs within the protection of ISAKMP session

Internet Key Exchange (IKE)

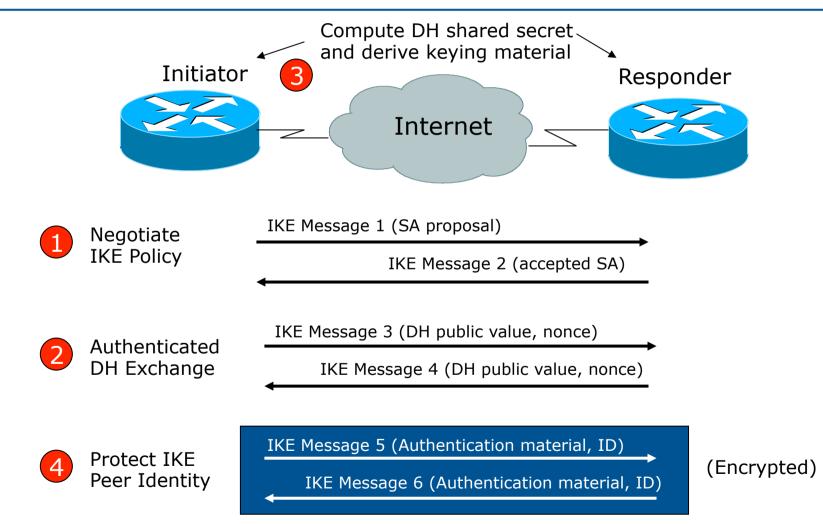

Phase I

- Establish a secure channel (ISAKMP SA)
- Using either main mode or aggressive mode
- Authenticate computer identity using certificates or pre-shared secret

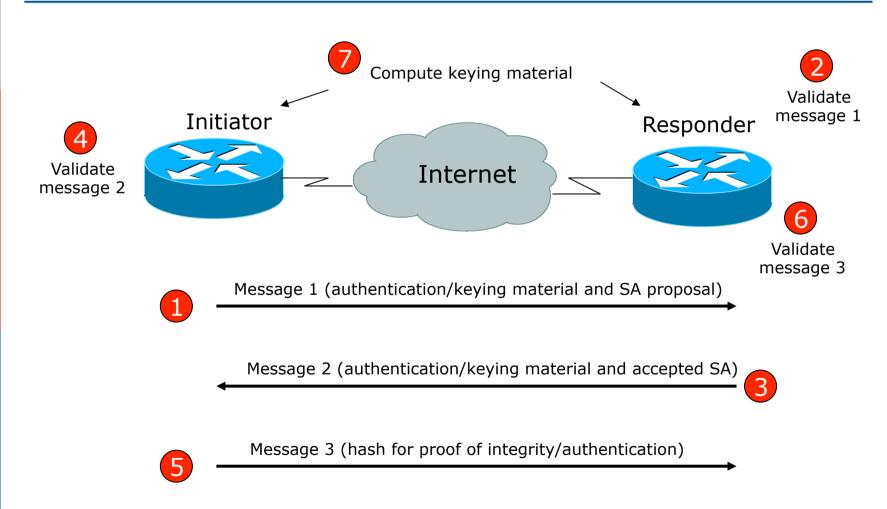
Phase II

- Establishes a secure channel between computers intended for the transmission of data (IPsec SA)
- Using quick mode

IPsec with IKE


IPsec IKE Phase 1 Uses DH Exchange

■ First public key algorithm (1976)


Diffie-Hellman is a key establishment algorithm

- Two parties in a DF exchange can generate a shared secret
- There can even be N-party DF changes where N peers can all establish the same secret key
- Diffie-Hellman can be done over an insecure channel
- IKE authenticates a Diffie-Hellman exchange
 - Pre-shared secret
 - Nonce (RSA signature)
 - Digital signature

IKE Phase 1 Main Mode

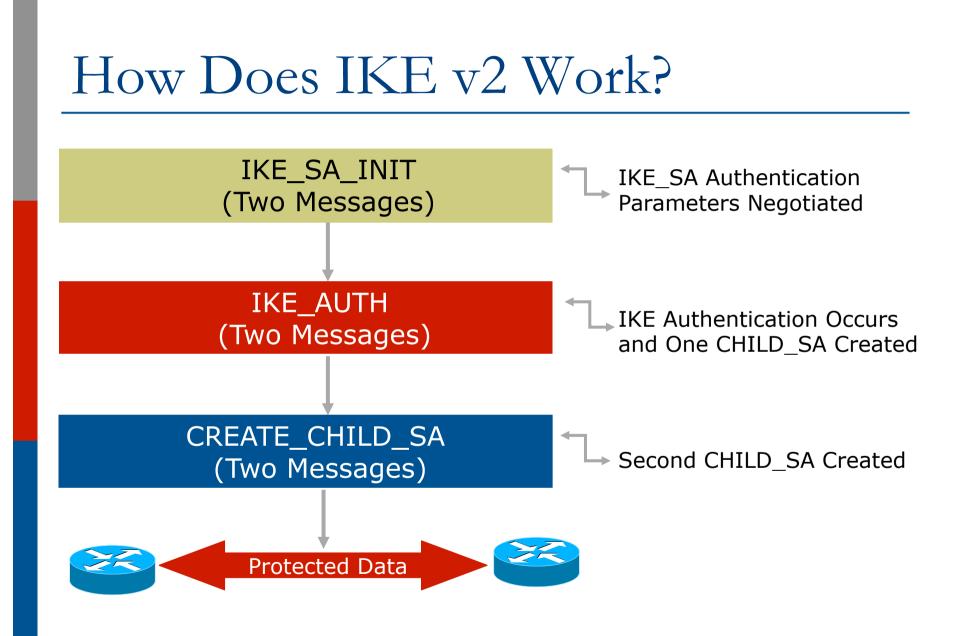
IKE Phase 2 Quick Mode

IKE v2: Replacement for Current IKE Specification

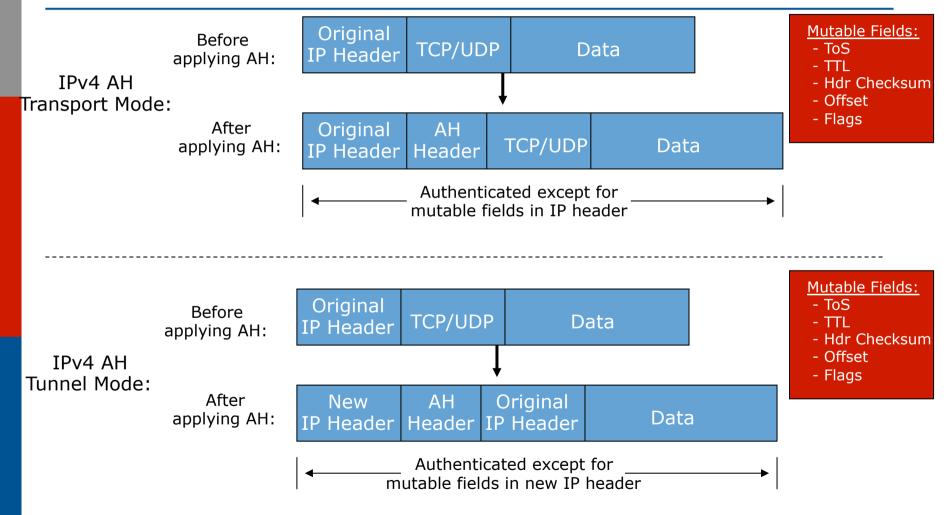
Feature Preservation

Most features and characteristics of baseline IKE v1 protocol are being preserved in v2

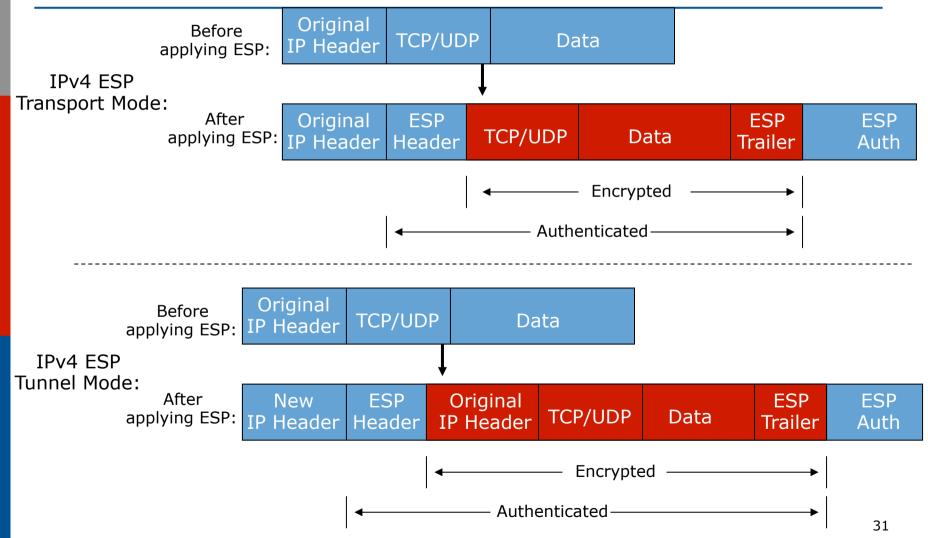
Compilation of Features and Extensions


- Quite a few features that were added on top of the baseline IKE protocol functionality in v1 are being reconciled into the mainline v2 framework
- Some New Features

IKE v2: What Is Not Changing


- Features in v1 that have been debated but are ultimately being preserved in v2
 - Most payloads reused
 - Use of nonces to ensure uniqueness of keys
- v1 extensions and enhancements being merged into mainline v2 specification
 - Use of a `configuration payload' similar to MODECFG for address assignment
 - `X-auth' type functionality retained through EAP
 - Use of NAT Discovery and NAT Traversal techniques

IKE v2: What Is Changing


- Significant Changes Being to the Baseline Functionality of IKE
 - EAP adopted as the method to provide legacy authentication integration with IKE
 - Public signature keys and pre-shared keys, the only methods of IKE authentication
 - Use of 'stateless cookie' to avoid certain types of DOS attacks on IKE
 - Continuous phase of negotiation

IPv4 IPsec AH

ESP Header Format

-	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2	28 29 30 31	
ENCRYPTED	Security Parameter Index (SPI)		
	Sequence Number		
	Initialization Vector (IV)		
	Payload Data (Variable)		
	Padding (0-255 bytes)		
	Padding Length Next Hea	ider	
	Authentication Data (ICV)		

SPI:	Arbitrary 32-bit number that specifies SA to the receiving device
Seq #:	Start at 1 and must never repeat; receiver may choose to ignore
IV:	Used to initialize CBC mode of an encryption algorithm
Payload Data:	Encrypted IP header, TCP or UDP header and data
Padding:	Used for encryption algorithms which operate in CBC mode
Padding Length:	Number of bytes added to the data stream (may be 0)
Next Header:	The type of protocol from the original header which appears in the encrypted part of the packet
Auth Data:	ICV is a digital signature over the packet and it varies in length depending on the algorithm used (SHA-1, MD5)

Considerations For Using IPsec

Security Services

- Data origin authentication
- Data integrity
- Replay protection
- Confidentiality
- Size of network
- How trusted are end hosts can a-priori communication policies be created?
- Vendor support
- What other mechanisms can accomplish similar attack risk mitigation

Non-Vendor Specific Deployment Issues

Historical Perception

- Configuration nightmare
- Not interoperable
- Performance Perception
 - Need empirical data
 - Where is the real performance hit?

Standards Need Cohesion

Vendor Specific Deployment Issues

Lack of interoperable defaults

- A default does NOT mandate a specific security policy
- Defaults can be modified by end users
- Configuration complexity
 - Too many knobs
 - Vendor-specific terminology
- Good News: IPv6 support in most current implementations

IPsec Concerns

- Are enough people aware that IKEv2 is not backwards compatible with IKEv1?
 - IKEv1 is used in most IPsec implementations
 - Will IKEv2 implementations first try IKEv2 and then revert to IKEv1?
- Is IPsec implemented for IPv6?
 - Some implementations ship IPv6 capable devices without IPsec capability and host requirements is changed from MUST to SHOULD implement

OSPFv3

- All vendors 'IF' they implement IPsec used AH
- Latest standard to describe how to use IPsec says MUST use ESP w/Null encryption and MAY use AH

IPsec Concerns (cont)

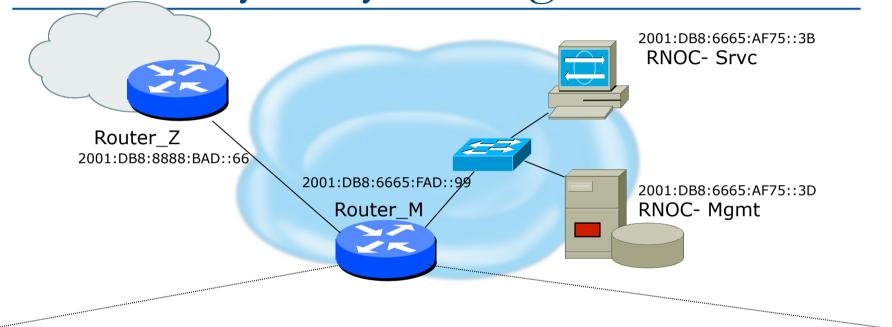
What is transport mode interoperability status?

Will end user authentication be interoperable?

PKI Issues

- Which certificates do you trust?
- How does IKEv1 and/or IKEv2 handle proposals with certificates?
- Should common trusted roots be shipped by default?
- Who is following and implementing pki4ipsec-ikecertprofile (rfc4945)
- Have mobility scenarios been tested?
 - Mobility standards rely heavily on IKEv2
- ESP how to determine if ESP-Null vs Encrypted

Default Issues


Vendor A	Vendor B	Vendor C
IKE Phase 1	IKE Phase 1	IKE Phase 1
SHA1	MD5	SHA1
RSA-SIG	Pre-Share Key	Pre-Share Key
Group 1	Group 5	Group 2
Lifetime 86400 Sec	Lifetime 86400 Sec	Lifetime 86400 Sec
Main Mode	Main Mode	Aggressive Mode
IKE Phase 2	IKE Phase 2	IKE Phase 2
PFS	PFS	PFS
Group 1	Group 5	Group 2

Terminology Issues

IKE Phase 1	DH Key Length	IKE Phase 2
IKE Phase 1 SA	DH Group	IKE Phase 2 SA
IKE SA	Modp #	IPsec SA
ISAKMP SA	Group #	Quick Mode
Main Mode		

Configuration complexity increased with vendor specific configuration terms

Potentially Easy Configuration

Syslog server 2001:DB8:6665:AF75::3D authenticate esp-null sha1 pre-share 'secret4syslog' TFTP server 2001:DB8:6665:AF75::3D authenticate esp-null aes128 pre-share 'secret4tftp' BGP peer 2001:DB8:8888:BAD::66 authenticate esp-null aes128 pre-share 'secret4AS#XXX'

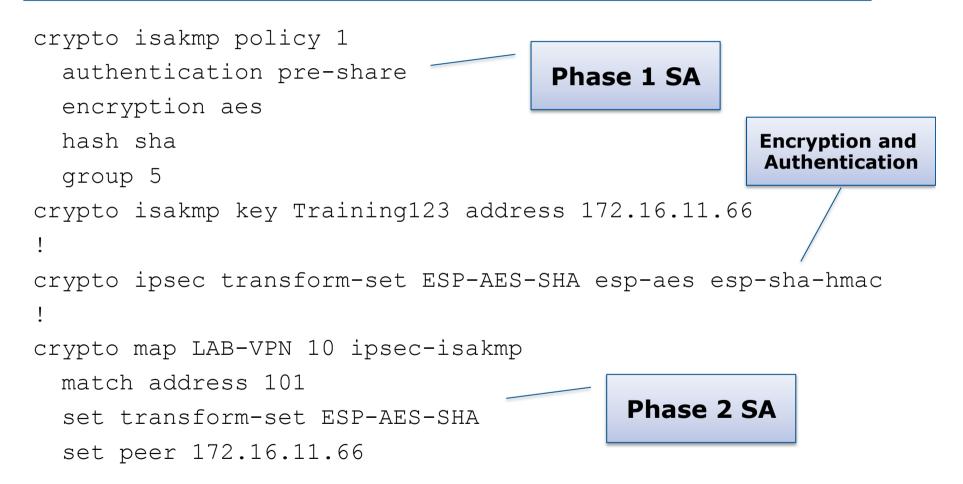
Interoperable Defaults For SAs

 Security Association groups elements of a conversation together

How Do We Communicate Securely ?

- ESP encryption algorithm and key(s)
- Cryptographic synchronization
- SA lifetime
- SA source address
- Mode (transport or tunnel)

Do we want integrity protection of data ? Do we want to keep data confidential ? Which algorithms do we use ? What are the key lengths ? When do we want to create new keys ? Are we providing security end-to-end ?


Pretty Good IPsec Policy

- IKE Phase 1 (aka ISAKMP SA or IKE SA or Main Mode)
 - 3DES (AES-192 if both ends support it)
 - Lifetime (8 hours = 480 min = 28800 sec)
 - SHA-2 (256 bit keys)
 - DH Group 14 (aka MODP# 14)

IKE Phase 2 (aka IPsec SA or Quick Mode)

- 3DES (AES-192 if both ends support it)
- Lifetime (1 hour = 60 min = 3600 sec)
- SHA-2 (256 bit keys)
- PFS 2
- DH Group 14 (aka MODP# 14)

Sample Router Configuration

Sample Router Configuration

interface FastE crypto map LAB		1	Apply on ou interfa	itbound ace	
exit !					
access-list 101	permit ip	172.16.16.0	0.0.0.255	172.16.20.0	0.0.0.

255

Help With Configuring IPsec

Documentation Profiles for IPsec Interoperability

- http://www.vpnc.org/InteropProfiles/
- Documents for Cisco IPsec configuration:
 - http://www.cisco.com/en/US/tech/tk583/tk372/ technologies_configuration_example09186a0080093f73. shtml
 - http://www.cisco.com/en/US/tech/tk583/tk372/ technologies_configuration_example09186a0080093f86. shtml
- Document for Juniper IPsec configuration:
 - http://kb.juniper.net/InfoCenter/index? page=content&id=KB10128

Cap	oture:	Telnet		
8 3.113043	Cisco_de:76:91	Spanning-tree-(for-bri	.dges)STP	60 Conf. Root = 32768/1/00:13:80:de:76:80
9 3.125855	192.168.1.1	172.16.2.1	TELNET	60 Telnet Data
10 3.127649	172.16.2.1	192.168.1.1	TELNET	60 Telnet Data
11 3.127651	172.16.2.1	192.168.1.1	TCP	60 [TCP Keep-Alive] telnet > 56784 [PSH, ACK] Seq=1 Ack=2 Wi
12 3.279317	2001:df0:aa::5	ff02::1:ff00:1	ICMPv6	86 Neighbor Solicitation for 2001:df0:aa::1 from 00:0d:28:49
13 3.328358	192.168.1.1	172.16.2.1	TCP	60 56784 > telnet [ACK] Seq=2 Ack=2 Win=3987 Len=0
14 3.470005	192.168.1.1	172.16.2.1	TELNET	60 Telnet Data
15 3.471802	172.16.2.1	192.168.1.1	TELNET	60 Telnet Data
16 3.471804	172.16.2.1	192.168.1.1	TCP	60 [TCP Keep-Alive] telnet > 56784 [PSH, ACK] Seq=2 Ack=3 Wi
17 3.672949	192.168.1.1	172.16.2.1	TCP	60 56784 > telnet [ACK] Seq=3 Ack=3 Win=3986 Len=0
18 3.854380	192.168.1.1	172.16.2.1	TELNET	60 Telnet Data
19 3.856188	172.16.2.1	192.168.1.1	TELNET	60 Telnet Data
20 3.856190	172.16.2.1	192.168.1.1	TELNET	60 [TCP Retransmission] Telnet Data
21 3.978556	192.168.1.1	172.16.2.1	TELNET	60 Telnet Data
22 3.980454	172.16.2.1	192.168.1.1	TELNET	60 Telnet Data
23 3.980456	172.16.2.1	192.168.1.1	TCP	60 [TCP Keep-Alive] telnet > 56784 [PSH, ACK] Seq=6 Ack=5 Wi
24 4.099046	192.168.1.1	172.16.2.1	TELNET	60 Telnet Data
25 4.100949	172.16.2.1	192.168.1.1	TELNET	60 Telnet Data
26 4.100950	172.16.2.1	192.168.1.1	TCP	60 [TCP Keep-Alive] telnet > 56784 [PSH, ACK] Seq=7 Ack=6 Wi
27 4.243593	192.168.1.1	172.16.2.1	TELNET	60 Telnet Data
28 4.245501	172.16.2.1	192.168.1.1	TELNET	60 Telnet Data
29 4.245503	172.16.2.1	192.168.1.1	TCP	60 [TCP Keep-Alive] telnet > 56784 [PSH, ACK] Seq=8 Ack=7 Wi

00	X Follow TCP Stream	
Stream Content		
	P	
User Access Verification		
Password:!!	apnapnic2	
router2>		
router2>		
router2>		
router2>eenn		
% No password set		
router2>		
router2>sshh iipp ??	a active TD accounting database	

	router2>sshh iipp ?	
	accounting	The active IP accounting database
	admission	Network Admission Control information
	aliases	IP alias table
	arp	IP ARP table
	as-path-access-list	List AS path access lists
	auth-proxy	Authentication Proxy information
	bgp	BGP information
	cache	IP fast-switching route cache
	casa	display casa information
	cef	Cisco Express Forwarding
	ddn s	Dynamic DNS
	dfp	DFP information
	dhcp	Show items in the DHCP database
	dvmrp	DVMRP information
	eigrp	IP-EIGRP show commands
	extcommunity-list	List extended-community list
	flow	NetFlow switching
	helper-address	helper-address table
	host-list	Host list
	http	HTTP information
	igmp	IGMP information
	inspect	CBAC (Context Based Access Control) information
	More	
	router2>sh ip	
	router2>sh ip interfa	
		Async interface
		Bridge-Group Virtual Interface
		CDMA Ix interface
T		CTunnel interface
T	Dialer	Dialer interface
1		

Capture: Telnet + IPsec

1/0 0/.402005	2001.010.dd0	11021.1100.2	T CHE AO	SO NEIGHDOL SULLCITATION FOL 2001.
180 67.601908	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
181 67.601910	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
182 67.605809	192.168.1.1	192.168.1.2	ESP	118 ESP (SPI=0x7ea7f8ed)
183 67.626089	192.168.1.2	192.168.1.1	ESP	134 ESP (SPI=0x742f79b4)
184 67.626091	192.168.1.2	192.168.1.1	ESP	134 ESP (SPI=0x742f79b4)
185 67.627695	192.168.1.2	192.168.1.1	ESP	166 ESP (SPI=0x742f79b4)
186 67.627697	192.168.1.2	192.168.1.1	ESP	166 ESP (SPI=0x742f79b4)
187 67.631728	192.168.1.1	192.168.1.2	ESP	118 ESP (SPI=0x7ea7f8ed)
188 67.632884	192.168.1.1	192.168.1.2	ESP	118 ESP (SPI=0x7ea7f8ed)
189 67.751716	192.168.1.1	192.168.1.2	ESP	150 ESP (SPI=0x7ea7f8ed)
190 67.765217	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
191 67.765219	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
192 67.766634	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
193 67.766636	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
194 67.768056	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
195 67.768058	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
196 67.769385	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
197 67.769387	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
198 67.770803	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
199 67.770804	192.168.1.2	192.168.1.1	ESP	118 ESP (SPI=0x742f79b4)
200 67 770062	100 160 1 1	100 160 1 0	L C D	124 FCD (CDT $-0x7aa7f0ad$)

SSL/TLS

- Most widely-used protocol for security
- Encrypts the segments of network connections above the Transport Layer
- SSL and TLS
 - SSL v3.0 specified in an I-D in 1996 (draft-freier-ssl-version3-02.txt)
 - TLS v1.0 specified in RFC 2246 in 1999
 - TLS v1.0 = SSL v3.1 ≈ SSL v3.0
 - TLS v1.1 in 2006
 - TLS v1.2 in 2008
- Goals of protocol
 - Secure communication between applications
 - Data encryption
 - Server authentication
 - Message integrity
 - Client authentication (optional)

Some Applications Using TLS/SSL

- Securing WWW traffic (HTTPS)
- Browsers Apache
 - Apache_mod_ssl
- DNSSEC requires SSL
- Postfix, Sendmail, SMTP
- sTelnet
- OpenSSH
- SFTP
- SSL VPNs such as OpenVPN and OpenConnect
- VoIP and SIP signaling
- EAP-TLS for WiFi

Benefits of TLS

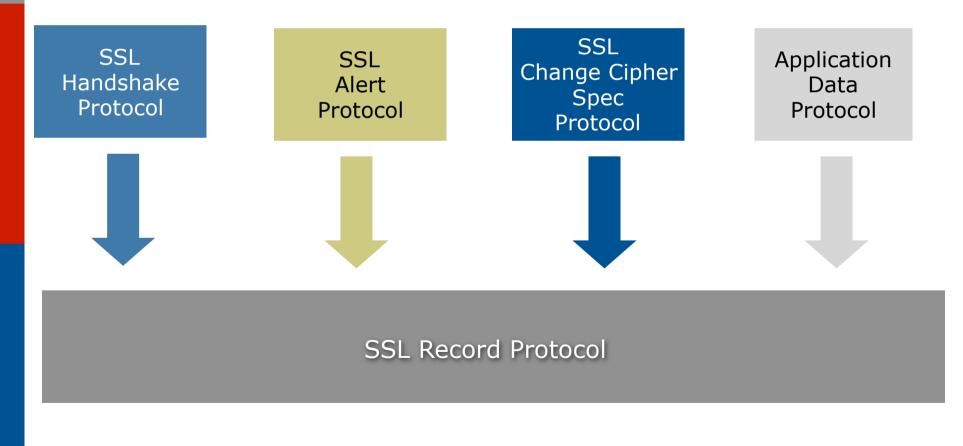
Application-layer independent

- can be implemented with any applications
- a wide range of applications supporting it
- SSL makes use of both asymmetric and symmetric key cryptography.
 - performance reasons.
 - Only the initial "client key exchange message" is encrypted with asymmetric encryption.
 - Symmetric encryption is better in terms of performance/ speed

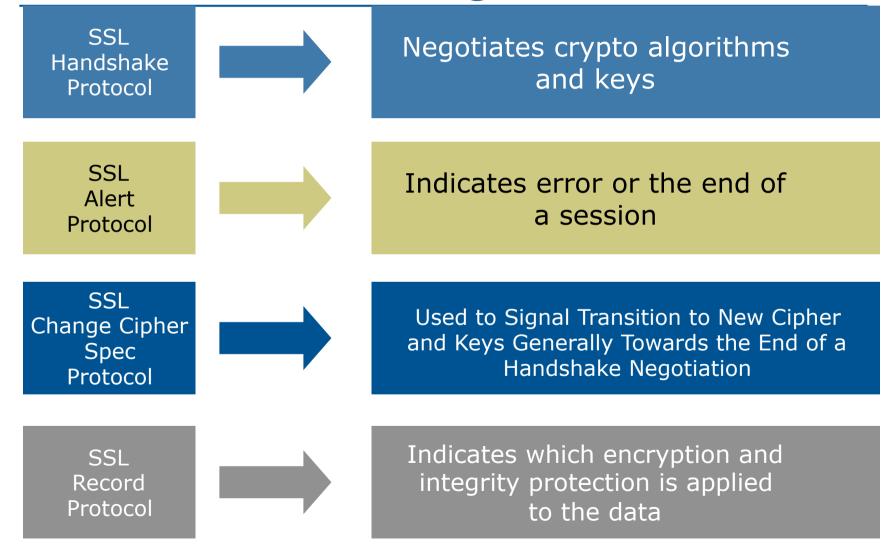
Benefits of TLS (cont)

Uses X.509 certificates

- Certificates and Public Key Infrastructure
- SSL protocol layers comes on top of TCP (transport Layer), and is below application layer.
 - no network infrastructure changes are required to deploy SSL
- Each and every connection that's made, through SSL has got one session information.
 - Session can also be reused or resumed for other connections to the server

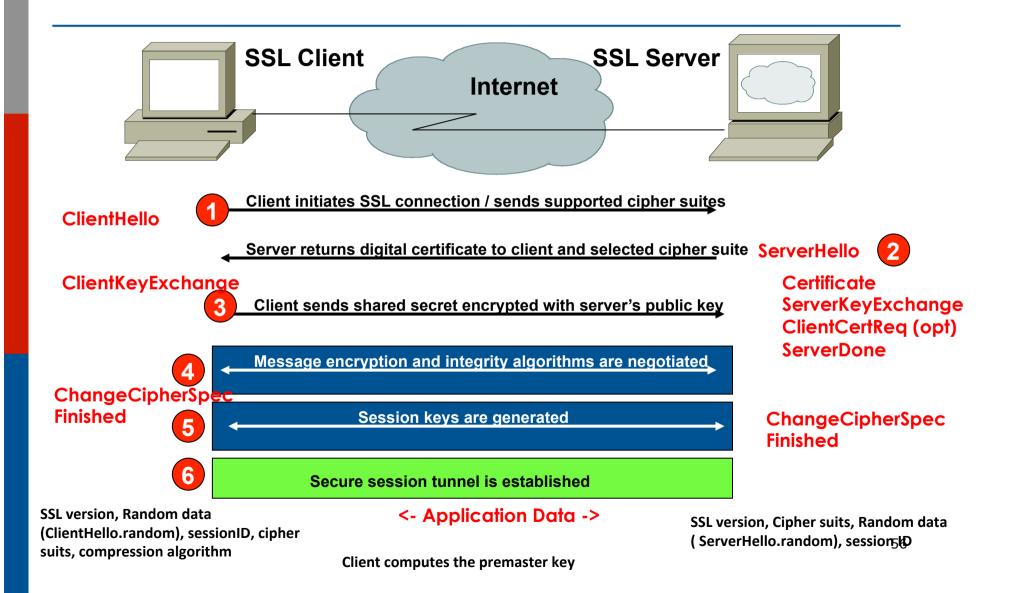

SSL/TLS Properties

Connection is private


- Encryption is used after an initial handshake to define a secret key.
- Symmetric cryptography used for data encryption
- Peer's identity can be authenticated
 - Asymmetric cryptography is used (RSA or DSS)
- Connection is reliable
 - Message transport includes a message integrity check using a keyed MAC.
 - Secure hash functions (such as SHA and MD5) are used for MAC computations.

SSL Protocol Building Blocks

SSL is a Combination of a Primary Record Protocol with Four 'Client' Protocols


SSL Protocol Building Block Functions

SSL Record Layer

- Provides fragmentation, compression, integrity protection, and encryption for data objects exchanged between clients and servers
- Maintains a current and a pending connection state
- □ Upper Layer → TLSPlaintext → TLSCompressed → TLSCiphertext → (send to transport)

The SSL Handshake Process

SSL Client Authentication

- Client authentication (certificate based) is optional and not often used
- Many application protocols incorporate their own client authentication mechanism such as username/password or S/Key
- These authentication mechanisms are more secure when run over SSL

SSL/TLS IANA Assigned Port #s

Protocol	Defined Port Number	SSL/TLS Port Number
HTTP	80	443
NNTP	119	563
POP	110	995
FTP-Data	20	989
FTP-Control	21	990
Telnet	23	992

Capture: SSL Decryption (easy)

3 0.0	00037	127.0.0.1	127.0.0.1	TCP	66 38713 > https [ACK] Seq=1 Ack=1 Win=32767 Len=0 TSval=525562115 TSecr=525562115
					171 Client Hello
5 0.0	00178	127.0.0.1	127.0.0.1	TCP	66 https > 38713 [ACK] Seq=1 Ack=106 Win=32767 Len=0 TSval=525562115 TSecr=525562115
6 0.0	02160	127.0.0.1	127.0.0.1	SSLv3	995 Server Hello, Certificate, Server Hello Done
7 0.0	02609	127.0.0.1	127.0.0.1	TCP	66 38713 > https [ACK] Seq=106 Ack=930 Win=32767 Len=0 TSval=525562117 TSecr=525562117
8 2.8	08933	127.0.0.1	127.0.0.1	SSLv3	278 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
9 2.8	22770	127.0.0.1	127.0.0.1	SSLv3	141 Change Cipher Spec, Encrypted Handshake Message
10 2.8	22809	127.0.0.1	127.0.0.1	TCP	66 38713 > https [ACK] Seq=318 Ack=1005 Win=32767 Len=0 TSval=525564938 TSecr=525564938
11 2.8	33071	127.0.0.1	127.0.0.1	SSLv3	503 Application Data
12 2.8	73275	127.0.0.1	127.0.0.1	TCP	66 https > 38713 [ACK] Seq=1005 Ack=755 Win=32767 Len=0 TSval=525564989 TSecr=525564948
13 2.9	38485	127.0.0.1	127.0.0.1	SSLv3	103 Encrypted Handshake Message
14 2.9	38750	127.0.0.1	127.0.0.1	SSLv3	183 Encrypted Handshake Message
15 2.9	38761	127.0.0.1	127.0.0.1	TCP	66 https > 38713 [ACK] Seq=1042 Ack=872 Win=32767 Len=0 TSval=525565054 TSecr=525565054
16 2.9	38999	127.0.0.1	127.0.0.1	SSLv3	1073 Encrypted Handshake Message, Encrypted Handshake Message, Encrypted Handshake Message
17 2.9	40026	127.0.0.1	127.0.0.1	SSLv3	337 Encrypted Handshake Message, Change Cipher Spec, Encrypted Handshake Message
18 2.9	43406	127.0.0.1	127.0.0.1	SSLv3	172 Change Cipher Spec, Encrypted Handshake Message
19 2.9	44825	127.0.0.1	127.0.0.1	SSLv3	5756 Application Data, Application Data
20 2.9	44864	127.0.0.1	127.0.0.1	TCP	66 38713 > https [ACK] Seq=1143 Ack=7845 Win=32767 Len=0 TSval=525565060 TSecr=525565059
21 2.9	64424	127.0.0.1	127.0.0.1	SSLv3	471 Application Data
33 3.0	04256	127.0.0.1	127.0.0.1	TCP	66 https > 38713 [ACK] Seq=7845 Ack=1548 Win=32767 Len=0 TSval=525565120 TSecr=525565080

Using stolen key file

26 2.964819	127.0.0.1	127.0.0.1	TCP	66 https > 38714 [ACK] Seq=1 Ack=121 Win=32767 Len=0 TSval=525565080 TSecr=525565080
27 2.992274	127.0.0.1	127.0.0.1	SSLv3	220 Server Hello, Change Cipher Spec, Finished
28 2.992312	127.0.0.1	127.0.0.1	TCP	66 38714 > https [ACK] Seq=121 Ack=155 Win=32767 Len=0 TSval=525565108 TSecr=525565108
29 2.992855	127.0.0.1	127.0.0.1	HTTP	562 GET /icons/debian/openlogo-25.jpg HTTP/1.1
30 2.993501	127.0.0.1	127.0.0.1	HTTP	596 HTTP/1.1 404 Not Found (text/html)
31 2.993840	127.0.0.1	127.0.0.1	HTTP	471 GET /icons/apache_pb.png HTTP/1.1
32 2.994179	127.0.0.1	127.0.0.1	HTTP	1828 HTTP/1.1 200 OK (PNG)
33 3.004256	127.0.0.1	127.0.0.1	TCP	66 https > 38713 [ACK] Seq=7845 Ack=1548 Win=32767 Len=0 TSval=525565120 TSecr=525565080
34 3.033250	127.0.0.1	127.0.0.1	TCP	66 38714 > https [ACK] Seq=1022 Ack=2447 Win=32767 Len=0 TSval=525565149 TSecr=525565109
35 3.501643	127.0.0.1	127.0.0.1	HTTP	588 HTTP/1.1 404 Not Found (text/html)
36 3.507001	127.0.0.1	127.0.0.1	HTTP	439 GET /favicon.ico HTTP/1.1
37 3.507541	127.0.0.1	127.0.0.1	HTTP	580 HTTP/1.1 404 Not Found (text/html)
38 3.507555	127.0.0.1	127.0.0.1	TCP	66 38714 > https [ACK] Seq=1395 Ack=2961 Win=32767 Len=0 TSval=525565623 TSecr=525565623
39 3.541174	127.0.0.1	127.0.0.1	TCP	66 38713 > https [ACK] Seq=1548 Ack=8367 Win=32767 Len=0 TSval=525565657 TSecr=525565617
40 6.037880	127.0.0.1	127.0.0.1	HTTP	511 GET /test HTTP/1.1
41 6.037932	127.0.0.1	127.0.0.1	TCP	66 https > 38713 [ACK] Seq=8367 Ack=1993 Win=32767 Len=0 TSval=525568154 TSecr=525568154
42 6.041185	127.0.0.1	127.0.0.1	HTTP	644 HTTP/1.1 301 Moved Permanently (text/html)

Attacks on SSL (a little harder...)

BEAST Attack (2011)

- Browser Exploit Against SSL/TLS
- CBC vulnerability discovered in 2002
- Fixed in TLS 1.1
- CRIME Attack (2012)
 - Compression Ratio Info-leak Made Easy
 - Exploit against TLS compression
 - 'fixed' by disabling TLS Compression
- BREACH Attack (2013)
 - Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext
 - Presented at BlackHat 2013 (Aug)
 - Attacks HTTP responses using HTTP Compression

Encrypted Communications

- Use encrypted communications whenever you need to keep information confidential
- Verify via network sniffer (e.g. wireshark) that your communication is indeed encrypted
- An important aspect is credential management (creating, distributing, storing, revoking, renewing)
- Understand if/when credentials are lost that you may not be able to recover the data
- Have a plan in place in case you forget your password that protects your private keys

Thank You. Questions?

IPSec and SSL Virtual Private Networks

ITU/APNIC/MICT IPv6 Security Workshop 23rd – 27th May 2016 Bangkok