From QoS to QoE: Integration to E2E Service Delivery

Prepared for TOT Academy

October, 2015

Speaker Profile

Monsinee Keeratikrainon, Ph.D.

Email: monsinee.kee@icloud.com

Executive summary

- 16 years of experiences in telecom/ICT and management consulting
- Have worked with Thai policy makers and regulators in charge of technology and ICT
- Speaker and thought leader in ICT/telecom since 2008. Have been quoted in various print and broadcast media
- Member of International Association of Innovation Professionals (IAOIP)

Education

• Ph.D., Telecommunications major, Temple University, Philadelphia, PA. USA.

Publications

- "Development of Telecommunications Infrastructure and Policy in Thailand" (English). Author: Monsinee Keeratikrainon, Ph.D., Lambert Publishing House, released in 2010 Available in Amazon, Barns & Noble, and most international bookstores.
- "Cutting-edge Strategy Cook Book" (Thai). Author: Monsinee Keeratikrainon, Ph.D., published by McKansys (Thailand), 2013.

Work Experiences

Sofrecom (Part of Orange Group)

Regional Commercial Director

• Leading commercial activities by initiating solutions and bestpractices to help regulators and telecom operators in this region achieve their goals

Deloitte

Partner, Commercial Advisory and Diligence

• Led Commercial and Technology Due Diligence advisory service unit, in supporting clients' new investment and M&A initiatives as well as go-to-market and technology deployment strategies.

Frost and Sullivan

Country Director, Thailand and Myanmar

• Led market research and growth strategy consulting service in Thailand and Myanmar while being the firm's spokesperson and thought leaders in ICT, and also leading key events of the firm, such as, Global Innovation and Leadership (GIL), MegaTrend and Techvision 2020.

Wipro Technologies

Delivery Head

Key Projects :

- dTAC BSCS transformation program, working on site with dTAC commercial and operation team for
- K-bank transformation (KT) project , reported to Kbank's CIO.

TRUE Corporation

Senior Manager – Broadband & Data Service

• Supervised and managed strategic initiatives related to new products and services for B2B and datacom users

QoS Class-of-Service Model Evolution

Evolving business needs are causing complex QoS model. Therefore, network administrators need to well plan ahead to deploy QoS in a phased approach, in order to address all the needs.

RFC 4594 (Source: "End-to-End QoS Network Design: Quality of Service for Rich-Media & Cloud Networks", Cisco 2013)

Applying E2E QoS in multi-play environment

3rd generation UMA: end-to-end QoS by MPEG-21-enabled cross-layer Digital Item Adaptation (Source: UNI Klagenfurt) The *Content Provider* prepares the actual multimedia content as Digital Items

The *Service Provider* enriches the multimedia content with additional metadata SLAs taking into account constraints imposed by access networks for service provisioning towards the customer

The Network Provider offers QoS-based connectivity services providing reachability between network hosts: Management of the core and access networks

The *Customer* is having a worthwhile, informative experience anytime and anywhere while interacting with the services provided by the Service Provider, with smooth rendering of scalable content while enforcing digital rights imposed by individual participants in the delivery chain

Emerging of QoE in E2E Service Delivery

- > The term quality of experience (QoE) has been used interchangeably with CEM.
- ➢ Both QoE and CEM are linked to the similarly striking quality of service (QoS) label.
- ➤ Implementing QoS policies can enhance QoE.
- CEM is a broader concept of QoE, which covers all enhancements to service, customer journey, touch points, online accessibility and much more.

Challenges and Options in Reconciling QoS and QoE

Steps in
enhancing
QoS and QoEQoS from tool and
deviceQoE from filed test
(survey)Balance QoE and
QoSEnabling network
dimensioning

QoE Measurement through Simulating

Case Study of Mobile Broadband

Test Protocol

- Differ from technical speed test that requires many technical testing devices and resulted in technical and jargon data, the test protocol in simulation test is assumed to run as an end-user dummy (subscriber /user-side) who is using mobile data services from selective mobile operator in the market.
- The service mimics "regular usage behavior" like it is a "real user". It is going to access to that mobile network to utilize its bandwidth for browsing the Internet, watching clips, downloading photos, or wanted to experience actual speed at specific sites.
- Objective is to adopt feedbacks from end-users to cross-check technical test and to assume performance of service providers based on the real use cases.

Proprietary and Confidential

Copyright © 2014, Mckansys (Thailand) Co., Ltd. All rights reserved.

Common Test Categories

Download speed – raw&avg (Mbps)		Upload speed- raw&avg (Mbps)	Hotspot radius (BTS/Node-B), Sq.KM		Location (District / GPS Loc)	Period (Time span -24hrs)		
Density of population		Type of network (G/E/H/H+/4G)	Latency (ms)		Access time to www (sec)	Mobile apps speed validation		
1 Ave sele	erage mobile r ective site	network bandwidth per		 An average of site (unit test: I Area of testing (Landmark: Dis Testing site is a Latitude : Long 	mobile network bandwidth s Mbps) site would be around distric strict / Amphor / or Municipa about r=1KM of landmark gitude	peed at testing at area lity		
2 Duration of the day (min =3 / max = 5 spans)				 In this category, MAX 5 spans of the day are collected to mimic real usage activities and behaviors. 7-8am / 9-10am / 12-1pm / 5-7pm / and after 9pm 				
3 Access time of the most favorite websites				 At least 3 –most favorite websites will be selected for testing Use a browser to access those websites(unit test: sec) Determine the acceptable threshold –approx. 12sec 				
4 Type of network services and network latency		су	 GPRS / G / EDGE 3G / H / H+ / 4G Average latency (ms) 					
5 Life	estyle activity: active applicat	Streaming quality on tions (For example: Youtub	be)	 The network m Must be aligned For example: S at 480p 	ust support streaming servic d with mobile network bandy peed at 1.5 Mbps should su	es at 480p vidth speed upport streaming		

_

Needs for E2E Network SLAs

SLAs in multi-domain context cover

- Maintenance
- Monitoring
- Troubleshooting

ALO (Administrative-Level Object) Administrative parameters

- **Contracts**
- Duration ٠
- Availability
- **Response times**
- Fault handling procedures

SLO (Service-Level Object) **Technical parameters**

- Service instance
- Performance guarantee
- Flow description ٠
- Monitoring infrastructure
- Availability/Reliability (Max Downtime, MTTR)

Merging Rules for E2E SLA

- As we are moving towards multi-domain context where QoS provisioning is each domain's responsibility, the E2E SLA will be achieved by merging of each domain's SLA.
- The merging rules applied to each SLS parameter of the per-domain SLAs in order to provide E2E SLA

E2E Service Level Specifications (SLS)

Source: Theoretical and Analytical Service-Focused Systems Design and Development, edited by Chiu. Dickson K. W. 2012

Parameters	Description
Service Instance Scope	A list with technical information of the ingress interface and the egress interface of the domains involved in the path
Flow Description	A list of DSCP values , the IP source-destination address pair along with the protocol and the application's targeted ports
End-to-End Performance Guarantee	 Service duration: intersection of per-domain service duration values Service availability: min{ServiceAvailabilityi } Capacitye2e <= min{Ci} • MTUe2e ≤ min{MTUi} • OWDe2e ≥ ∑{OWDi} IPDVe2e : we treat IPDV as an RMS value and use its square as an additive parameter Packet losse2e ≥ ∑{PLi} The rest fields in the e2e SLA are the union of the per-domain fields.
Monitoring Infrastructure	Information on the monitoring capabilities of each domain in the path in terms of which parameters are monitored, the points where measurements are possible, the availability of measurements
Reliability	Allowed mean downtime per unit of time for the service provision and maximum allowed time-to-repair (TTR) incase of breakdown for the provision of the service.

SLAs Aggregation

Source: sla-at-soi.eu

- The Service Aggregation use case is demonstrating the aggregation of SLA-aware telecommunication services, including third party web-based services.
- A common model is being used to define and manage all SLAs, and customer relationship management systems are being enhanced to personalise the business aspects of the SLA lifecycle.
- SLA customisation is allowed whereas Customer Negotiation of Quality of Service is also implemented.

Case: Telefonica

- Telefonica is moving towards "Telecom Platform as a Service"
- The structure focuses on how multiparty, multi-domain SLAs for aggregated services can best be managed.
- The scope includes Telecoms Platform as a Service, Compute Platform as a Service and Software as a Service.
- The end goal is a dynamic new 'Telecoms as a Service' capability that offers customers personalised and dependable service.

Case: Telecom as a Service (Prototype)

- Due to the aggregation of telco services with digital web services from external third parties, the result is a Service Delivery Platform considered to be Telecom as a Service.
- First step to facilitate this aggregation to SLAs of existing telco services. Once SLAenabled, automated negotiation of customised service instances will be possible.
- If a provider cannot satisfy an entire service request, they may automatically subcontract to third parties that can help them meet the request.

CATEGORY	SERVICE	DESCRIPTION		
Voice	VoIP	Voice communications over internet protocol		
	Fixed-line	Voice communications over traditional analog fixed line connections		
	Mobile	Voice communication over radio based networks such as GSM or UTMS		
Messaging	SMS	Short messaging text messages originally intended for GSM based networks		
	MMS	Multi-media messages incorporating text, images, movies, and possibly sound originally intended for GSM networks		
	Email	A standard for messaging layered on internet protocol networks		
Applications	Multi-party voice calls	The aggregation of voice calls with more than two endpoints (i.e. conference bridge)		
	Voice mail	A service that answers a voice call, recording an audio message for subsequent playback		
	Interactive Voice Response	The use of DTMF message tones to guide a voice call through a series of messages or possible conference calls		

Source: sla-at-soi.eu

Use Cases Evaluation:

Key value dials and metrics being evaluated in this use case.

VALUE DIAL	METRIC	VALUE DIAL	METRIC		
Customer satisfaction	Rate of claims per customer % reduction (elimination to zero) of undetected SLA violations	Reliability of Aggregate Service	Availability expressed a percentage of time service is available Average time for service		
Dependability	Availability (% of the time the service is available, ej. 99,99%) Mean time to recover from an SLA breach (in seconds)	Service Efficiency	Percentage utilization of compute infrastructure		
End2End manageability	rate of monitored atomic services per total number of atomic services	Infrastructure Utilization	Volume of phone calls made per wholesale		
Fast decision making	% of automatic penalties adjusted				
Agility	average time to provision a service average time to modify a service	Multi-party Monitoring	Person months (PHs) it takes to establish a multi-party monitoring solution		
Operational Efficiency	Opex associated to platform management	Agility	Average time to provision a service Average time to modify a service		
Energy Efficiency	Energy Consumption kW/hr Energy Savings				
			Source: sla-at-soi.eu		

Consulting **DETECON**

Service Quality Management is a central lever of effectively implementing marketing strategies. The key is to deliver the quality promised to the customer.

Service Quality Management should support the provider to operate its services making conscious decisions. Therefore precise and transparent information about customer perceived service quality is needed.

Excellent Product Quality

 Find levers to technically improve service delivery

 Detect deviation from target as early as possible

Premium Customer Experience

 Think customer service perception

 Customer satisfaction is a key lever for low churn

Quality Management Economics

 Efficient and precise problem detection

 Lever for operational efficiency, e.g. due to swift problem rectification

Consulting **DETECON**

Detecon's customer-centric SQM approach fulfills Marketing and Service Management requirements while enabling detailed problem analysis.

End-to-end Service Performance Framework

The Service Quality Management implementation is used for managing, tracking, monitoring, analyzing, improving and reporting on distinct Key Quality Indicators which reflect the service quality from a customer viewpoint.

Quality Indicators

Media quality

- Metadata service components
- Device related indicators

Stakeholders

Service Manager

- Measurement Manager
- Change Manager
- Problem Manager

Drill Down Views

- Geographic distribution
- Trend analysis

- Affected number of customers
- Quality and business target correlation

Consulting **DETECON**

Service Quality Management is based on a system supporting fact based planning, improvement, evaluation and communication of service quality.

Consulting **DETECON**

18

Service Quality Management is based on a system supporting fact based planning, improvement, evaluation and communication of service quality.

Consulting **DETECON**

A premium quality service meets or exceeds expectations in all relevant areas of customer experience.

For the end-to-end Service Performance Framework, distinct service use cases need to be analyzed and their implementation broken down into performance indicators.

Service Performance Framework Hierarchy applied to Entertain to Go services

20

With the Service Performance Framework Detecon aims to correlate network performance and customer experience measurably and transparently.

Consulting **DETECON**

A Top-Down SQM Approach requires to identify, correlate and map Kxls for key services. The correlation mechanism must be jointly agreed with the customer.

Kxl Identification	Kxl Correlation and Mapping Kxl framework "logic"					
	- 16-17 a.	Category	KQI name	Mapping KQI value Q	oE score	Weight
Customer QoEn = f(KQI1, KQI2,)	 QoE to KQI Mapping Modeling of KQI to related KPIs KQI to KPI Mapping 	Accessibility	first page loading success ratio	≥ 00% 95%~99% 80% ~ 05% 70% ~ 80% < 70%	5 4 3 2 1	40%
Services KOIn = f(KPI1 KPI2_KPIn)			average first page loading speed	≥ 512kbps 250~512kbps 128~256kbps 64~128kbps ≤ 64kbps	5 4 3 2	10%
		Retainability	web browsing data transfer cut-off ratio	≤ 0.1% 0.1% ~ 0.5% 0.5% ~ 1% 1% ~ 2% > 2%	5 4 3 2 1	10%
Network / Resources KPIn = f(IS1,IS2,,IS n)		Integrity	web page refreshing success ratio	≥ 90% 95%~99% 80% ~ 95% 70% ~ 80%	5 4 3 2	25%
			average page refreshing speed	< 70% ≥ 512kbps	1	15%
Information Sources				256~512kbps 128~256kbps 64~128kbps < 64kbps	4 3 2 1	

QoE to KQI mapping will be done based on Customer's "lessons learned" and Detecon assessment. KPI to KQI mapping will be done according to the particular service architecture.

SQM from concept to realization: Key activities per phase with indicative duration. Exemplary work packages geared to SQM requirements of a DTAG IPTV service.

Thank you

Question? Contact: monsinee.kee@icloud.com