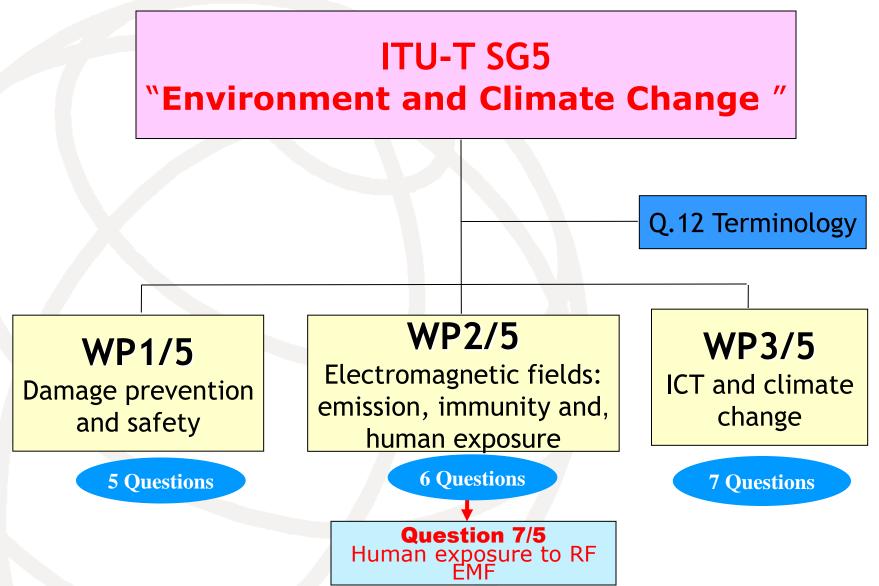
ADDRESSING EMF ISSUES TO ACHIEVE SMART SUSTAINABLE CITIES

Dr. Fryderyk Lewicki ITU-T SG5, Vice-chairman of WP2 Rapporteur for Q 7/5 Orange Polska, Poland



Bangkok, Thailand, 30 September 2014

Outline

- Introduction
- ITU-T activity in EMF
- EMF overview
- Exposure limits
- ITU-T Recommendations
- EMF-estimator
- Exposure assessment
 - Measurements
 - Calculations
- Multisource environment
- Conclusions

ITU-T SG5, WP2/5, Q7/5 Human exposure to electromagnetic fields (EMFs) due to radio systems and mobile equipment

- Best practice and mitigation techniques in the protection against non-ionizing radiation
- Implementation and guidance on radiocommunication installations
- Consideration of the areas near transmitting and base stations with many radiating sources representing various radiocommunication and broadcasting systems
- Support to developing countries ITU-T Resolution 72 (WTSA-12, Dubai, 20-29 November 2012)
 - http://www.itu.int/en/ITU-T/studygroups/2013-2016/05/Pages/default.aspx

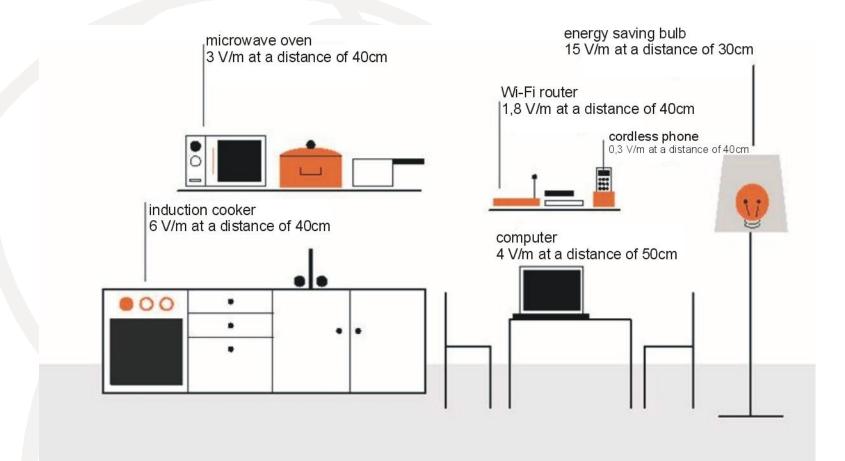
ITU-T SG5

Focus Group on Smart Sustainable Cities (FG-SSC)

- FG-SSC includes "EMF Considerations in Smart Sustainable Cities,
- The design and deployment of wireless networks must ensure electromagnetic field (EMF) compliance and minimize human exposure to radio frequency (RF) radiation
- EMF considerations in Smart Sustainable Cities have to ensure the networks and connected devices operate safely and most efficiently
- http://www.itu.int/en/ITU-T/focusgroups/ssc/Pages/default.aspx

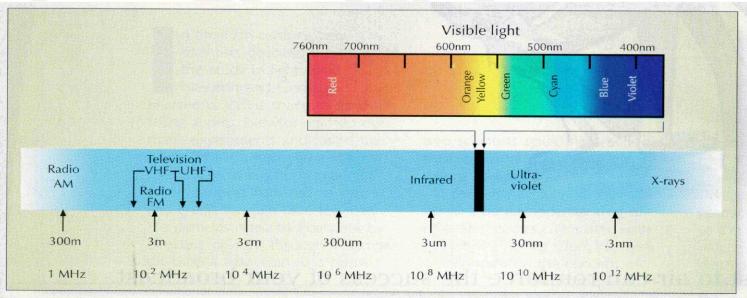
- There is significant community opposition to the deployment of mobile network antenna sites and other wireless infrastructure
- Fears about possible health risks from exposure to EMF, concerns about aesthetics or impacts on property values
- EMF fields are imperceptible and unknown for the general public
- Fears about EMF can result in social conflicts and lead to delays in the deployment wireless networks

Constant development of the radio communication systems and networks 6,3 billions of mobile phones were in use around the world (2013) Constant growth of the number of base stations In general there is a bigger concern related to base stations then to mobile phones



The range of devices that are connected to the internet is rapidly growing

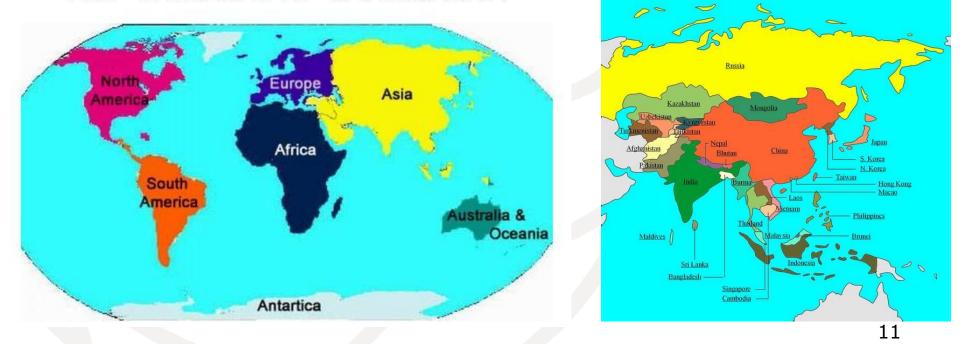
In the most cases the connection is wireless – it means that the devices have to radiate electromagnetic fields (EMF)


EMF in home environment

Exposure levels around typical electronic and electric equipment in home environment

The electromagnetic spectrum

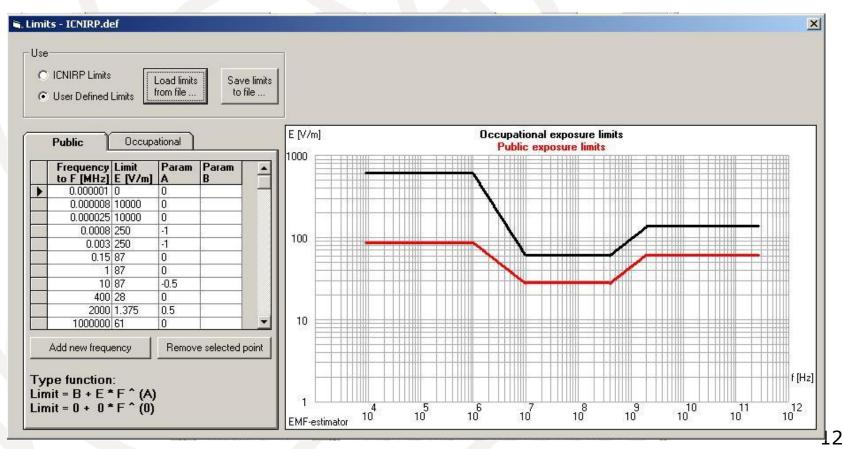
This is unique resource with limited capacity
 The property of the electromagnetic fields strongly depends on the frequency



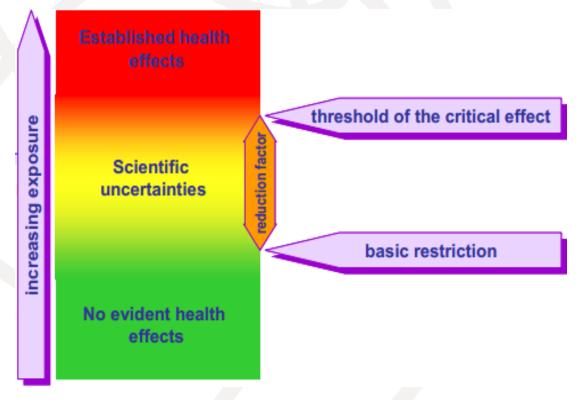
Source: World Broadcast Engineering 10/2000

 RF EMF – frequencies lower then visible light
 Ionising radiation – frequencies higher then visible light ¹⁰

The exposure limits


 Data concerning exposure limits in different countries can be found on the WHO website: http://www.who.int/docstore/peh-emf/EMFStandards/who-0102/Worldmap5.htm
 There is no data in WHO with Thailand limits
 WHO and ITU recommends the use of the ICNIRP exposure limits
 EMF WORLD WIDE STANDARDS

The ICNIRP exposure limits


It is visible that the limits are also frequency dependent (chart from EMF-estimator)

General public and occupational exposure

Exposure limits and reduction factor

A reduction factor is applied to establish a safe exposure level for occupational exposure (workers, factor of 10) and the general public (factor of 50)

Source: ICNIRP presentation: EMF Safety Guidelines

Classification - International Agency for Research on Cancer (IARC) Agents Classified by IARC (950)

IARC Classification	Examples of Agents
Carcinogenic to humans (107) (usually based on strong evidence of carcinogenicity in humans)	Asbestos Alcoholic beverages Benzene Mustard gas Radon gas Solar radiation Tobacco (smoked and smokeless) X-rays and Gamma
Probably carcinogenic to humans (59) (usually based on strong evidence of carcinogenicity in animals)	Creosotes Diesel engine exhaust Formaldehyde Polychlorinated biphenyls (PCBs)
Possibly carcinogenic to humans (267) (usually based on evidence in humans which is considered credible, but for which other explanations could not be ruled out)	RF fields Coffee Gasoline engine exhaust Pickled vegetables ELF magnetic fields Styrene

17

The International EMF Project investigates health effects of

advises national authorities on <u>EMF radiation protection</u>

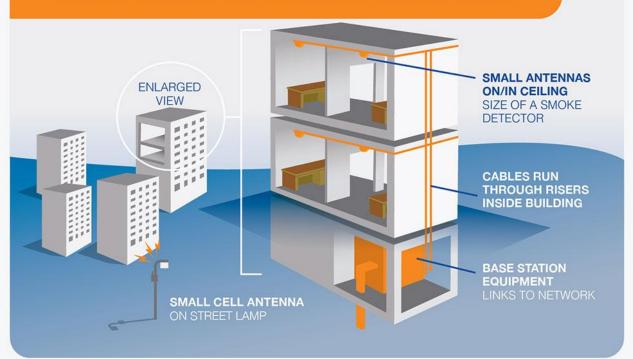
electromagnetic fields

Source: WHO presentation during ITU-D Q23/1 meeting, April 2012

EMF in SSC, F. Lewicki, Bangkok, Thailand, 30 September 2014

World Health Organization

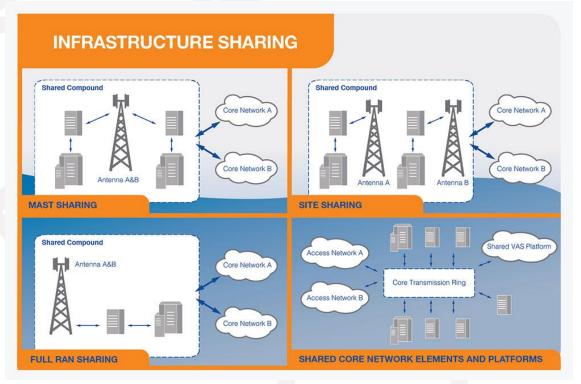
How mobile system works


Cellular system is establishing a connection via base station
 It is so even if mobile phones are very close one to another
 Increasing the capacity of the mobile network is realized by higher density of base stations networks

Each mobile phone is equipped in Automatic Power Control system which adjusts the output power level to the minimum required value necessary to establish connection with a base station
 Power radiated by the mobile phone is lower if the user is close to a base station and higher if the distance is longer. The power is also increased if a user is inside a building or car, because of attenuation of the signal by the building walls or car body.

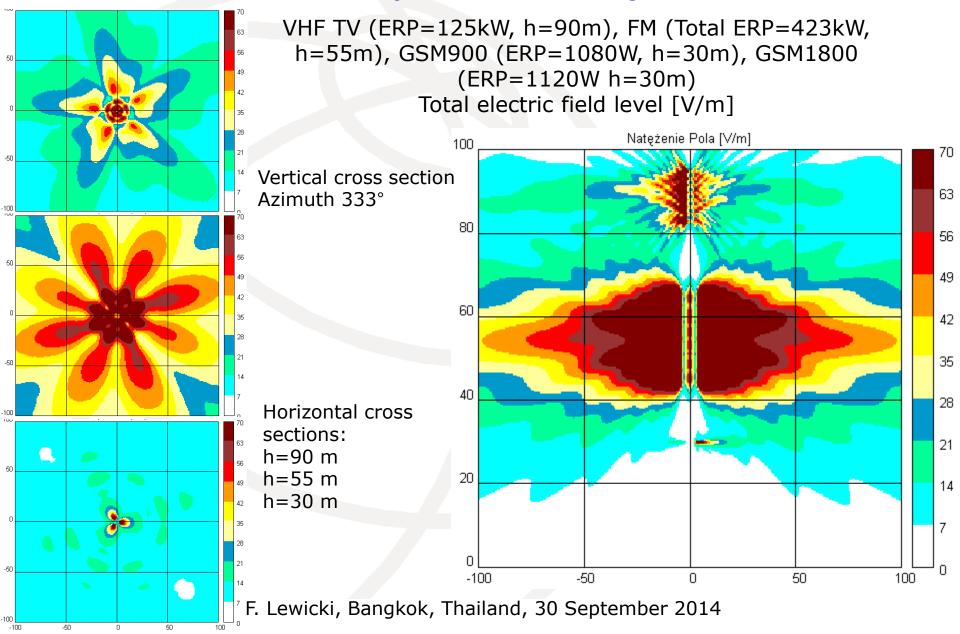
Small cells

IN BUILDING BASE STATION AND SMALL CELLS

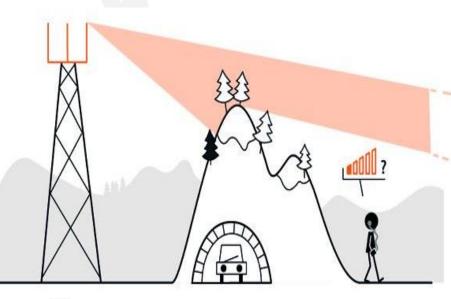

Small cells are required to extend coverage The emitted power of RF EMF is substantially lower than from typical BS's

Radiation from the mobile phone

- Mobile phone is a semi-duplex device. It means that the mobile phone can not transmit and receive at the same time
- During the voice connection the mobile phone is switching from receiving to transmitting mode many times in the way which is not noticeable by for the user
- If during the voice call the user is listening then the mobile phone is not radiating


Sharing and Co-Location

Source, GSMA, Mobile Infrastructure Sharing, (2008).


Co-location increases exposure level from one site but decreases the number of sites There is no simple dependence for exposure level

Example of the evaluation of the electric field distribution in the vicinity of the transmitting station

Location of antennas

- Coverage of the wireless service depends strongly on antenna height – coverage radius increases with the antenna height
- Macro BS are usually located on the highest buildings or towers
- Any obstacles (for example buildings, walls, hills etc.) between transmitter and receiver reduce the coverage
- Cell coverage can not be too big – it may interfere with neighboring cells
- In result, the power delivered to the antenna, antenna location and height have to be properly adjusted

EMF and SSC

- The wireless communication indispensable and very widely used in SSC – require that EMF are under control
- The government is responsible for the establishment of the clear and proper regulations concerning EMF
- The service providers are responsible for the good practices in implementation of the wireless services
- ITU is preparing Recommendations and guides that should support such activities

ITU Recommendations concerning EMF

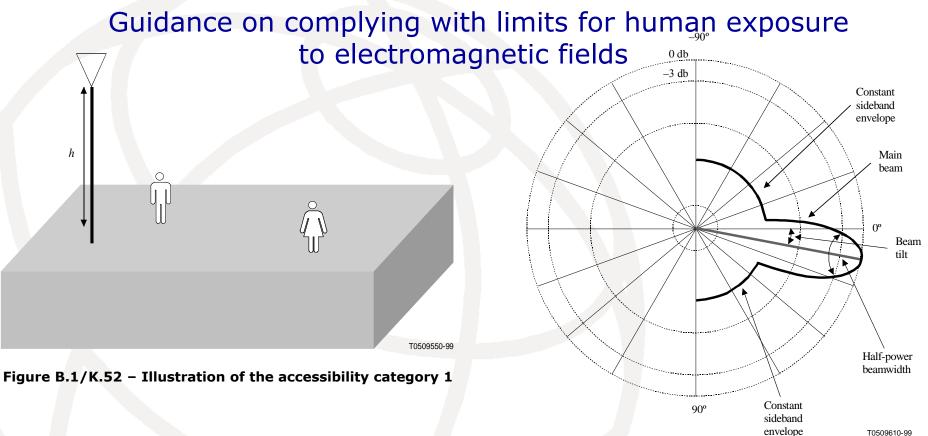
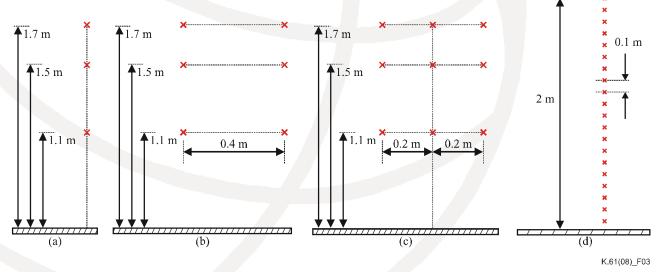



Figure B.7/K.52 – Illustration of terms relating to antenna patterns

Compliance testing in an easy way: Accessibility category + directivity category = maximum EIRP Compliance with ICNIRP limits EMF in SSC, F. Lewicki, Bangkok, Thailand, 30 September 2014

T0509610-99


Software K.52 Calculator

Guidance on measurement and numerical prediction of electromagnetic fields for compliance with human exposure limits, for telecommunication installations

Measurement instrumentation, measurement uncertainties, Probe selection, Procedures, Safety precautions, Field regions, Multiple sources, Time and spatial variability

List and short description of numerical methods

Guidance to measurement and numerical prediction of electromagnetic fields for compliance with human exposure limits for telecommunication installations

General information concerning measurement and calculation

	Reactive near-field	Reactive-radiating near field	Radiating near-field	Radiating far-field	
Inner boundary	0	λ	3 λ	$Max(3\lambda;2D^2/\lambda)$	
Outer boundary	λ	3λ	$Max(3\lambda;2D^2/\lambda)$	×	
Power density S [W/m ²]	$S \leq E H $	$S \le E H $	$S = E H $ $= \frac{ E ^2}{Z_0} = Z_0 H ^2$	$S = E H $ $= \frac{ E ^2}{Z_0} = Z_0 H ^2$	
$E \perp H$	no	no	Locally	yes	
Z=E/H	$\neq Z_0$	$\neq Z_0$	$\approx Z_0$	$= Z_0$	

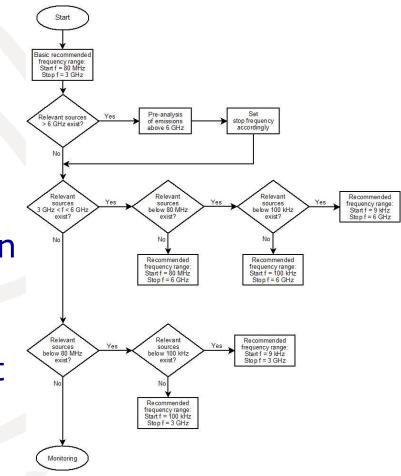
Table 1/K.61 – Main properties of electromagnetic field in different field regions

ITU-T Rec. K.70, EMF-estimator

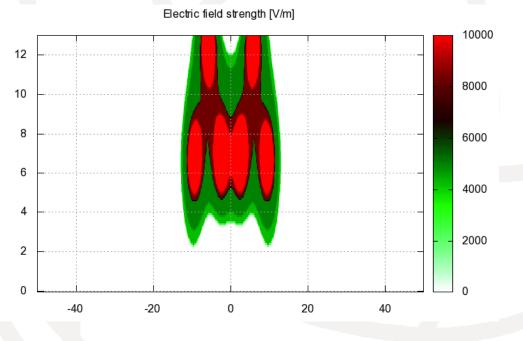
Mitigation techniques to limit human exposure to EMFs in the vicinity of radiocommunication stations

EMF-estimator - D:\EMF-estim							_ 🗆 ×
Project Radiating source Print ICI	~				γ 	·	
Radiation sources	L		- GSM900_sourc	e_1	Ante	enna orientation a	nd calculations
System name FM	Type of serv nominal/mean t	rice coefficient - G	SM 💌			Electric field strength	194,70 [mV/m]
TV_ch_31		ransmitter power 50				Power density	0,101 [mW/m ²]
TV_ch_36 GSM900_source_1	Fe	eder attenuation 4	[dB/100m]	Acc		agnetic field strength	0,516 [mA/m]
GSM900 source 2	1.0	Feeder length 3		4 11 116	,	region, plane wave)	
🐹 Cumulative exposure - D:\Cun	nulative exposure	e\Examples\Figu					
Simultaneous exposure - Public [%]			Hi	ide sources	Сору		
2,00							Cumulative exposure W
1,80	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	· · · · : · · · · :	•••••	FM
1,60							
1,000				: :			TV_ch_31
1,40	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	• • • • : • • • : • • • : • • • :	•••••	· · · ·	•••••	TV_ch_36
1,20							CCM000
- I - E - E - E - E - E - E - E - E - E	÷ ÷ ÷	: : :		: :	- i _		GSM900_source_1
1,00	\						GSM900_source_2
_{0,80} i / iV / i)	} :						
	N E E	: : :					
0,60	$1 \wedge$		/				
0,40	. :Y : 🔪			, second			
0,20				1.1.1			
					: :	: : :	
0 20 40	60	80 100) 120	140	160	180 20 Distance	u [m]
ground (factor 2,56) GSMS	900\GSM900_4_par	nels.emf	EMFFile				
Additio	onal comments :		Set EM3 file				
International Telecommunication							
Union							

Modeling of the transmitting antennas Importance of the Vertical Radiation Pattern (VRP) Identification of the main source of radiation Mitigation techniques employed to reduce radiation level - if required EMF-estimator – software including the library of examples of


transmitting antennas

Monitoring of EMF levels


EMF fields are unknown to the general public

The confidence may be achieved thanks to the control of the EMF by taking continuous measurements and having a proper communication (for example websites)

 The balance between costs and accuracy is very important (broadband and frequency selective measurement)

Evaluation techniques and working procedures for compliance with limits to power-frequency (DC, 50 Hz, and 60 Hz), electromagnetic field exposure of network operator personnel

Guidelines for the compliance with safety limits for the personnel EMF in the vicinity of medium-voltage (MV) and high-voltage (HV) power lines at power frequencies (DC, 50 Hz, and 60 Hz) Software: EMFACDC

Guidance for assessment, evaluation and monitoring of human exposure to radio frequency electromagnetic fields

- There are plenty of standards concerning human exposure assessment
- Most of the standards are very general or product oriented
- In real environment there are many sources of radiation operating simultaneously
- Guidance on the assessment of human exposure is required

Supplement 1 to ITU Rec. K91

Guide on Electromagnetic Fields and Health

- Developed to answer the common questions on EMF asked by the public
- Promote EMF information and education resources
- provides information most useful in helping clarify uncertainties concerning EMF

	1TU EMF Guide	(1)
		SHARE 🚹 💟 🛅 🖂
+ Introduction	to EMF	
+ EMF and He	alth Overview	
+ Mobile Phor	es and Base Stations	
+ Mobile Phor	es and SAR	
+ EMF Guideli	nes and Standards	
+ Frequently A	Asked Questions (FAQ)	
ITU EMF Res	sources	
+ Additional R	esources	
> About		
Bibliography		
TH EME Quide Version 1		

Measurement of radio frequency electromagnetic fields to determine compliance with human exposure limits when a base station is put into service

This Recommendation is under AAP procedure (it was approved in July 2014) The measurement procedure to assess compliance with general public EMF exposure limits Simplified assessment procedures to identify those installations which are known to be compliant with EMF exposure limits without measurements

ITU-R Recommendation ITU-R BS.1698

Evaluating fields from terrestrial broadcasting transmitting systems operating in any frequency band for assessing exposure to non ionizing radiation

 Many practical information concerning exposure assessment around AM antennas (LW, MW and SW)

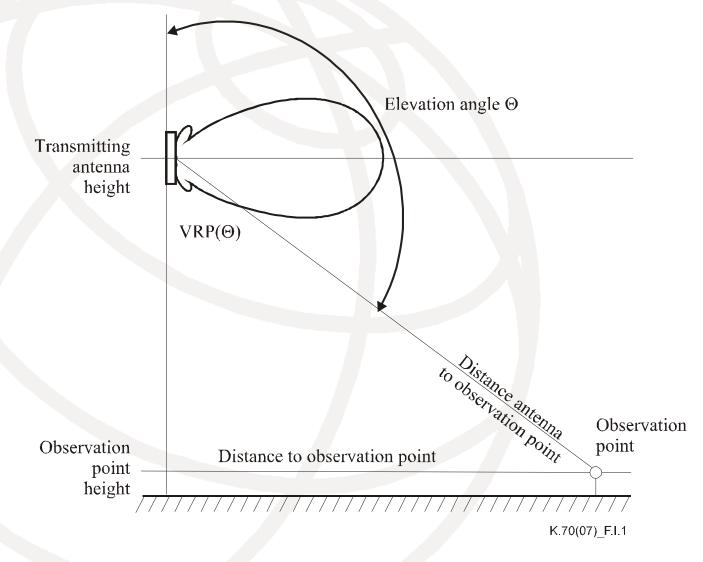
 Guidelines for the exposure assessment in the vicinity of the Fixed Point-to-point antennas Relationship between carrier, average, peak and maximum instantaneous power, for different classes of emission (worst-case figures)

Class of emission (basic characteristics) (1), (2)	Known power type								
	Carrier power, P _c			Mean power, P_m Factor for the determination of:			Peak power, P _p Factor for the determination of:		
	Factor for the determination of:								
	P_{c}	P_m	P_p	P _c	P_m	P_p	P_c	P_m	P_p
A1A									
A1B	1	1	1	1	1	1	1	1	1
A*C									
A*E	1	1.5	4	0.67	1	2.67	0.25	0.38	1
B*B ⁽³⁾									
B*E ⁽³⁾	-	/	- 1	-	1	1	-	1	1
B*W ⁽³⁾									

EMF-estimator

- EMF-estimator is the Annex I to the ITU-T Recommendation K.70
- The last version of the software (04.2011) may be loaded from the:

http://www.itu.int/rec/T-REC-K.70-201105-I!Amd2
http://www.itu.int/ITU-T/recommendations/index_sg.aspx?sg=5


- EMF-estimator is offered by ITU-T since 06.2007
- It is periodically updated / expanded according to the needs (in 2009, 2011 and 2013)

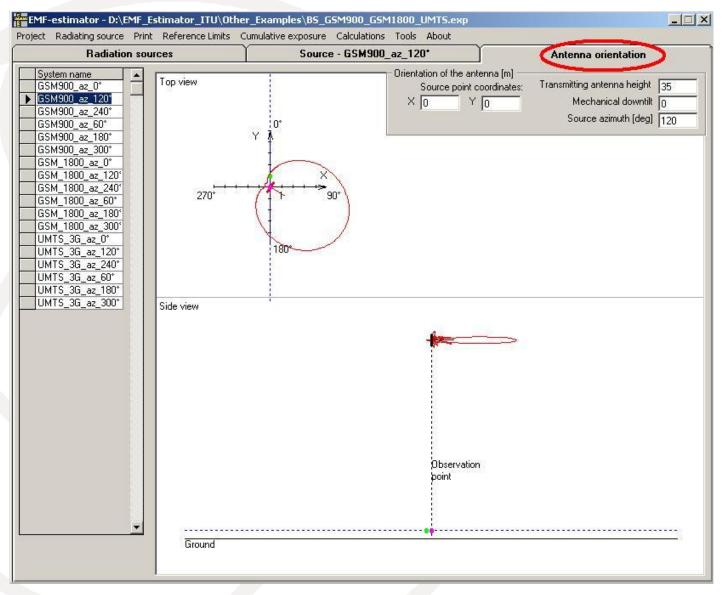
EMF-estimator

- EMF-estimator applies the point source model so it is fully valid for the far field region
- It can be used in the region of the radiating near-field but with lower accuracy
- It allows for the evaluation of the exposure to the EMF and the comparison with the exposure limits

EMF-estimator Explanation of some terms used in

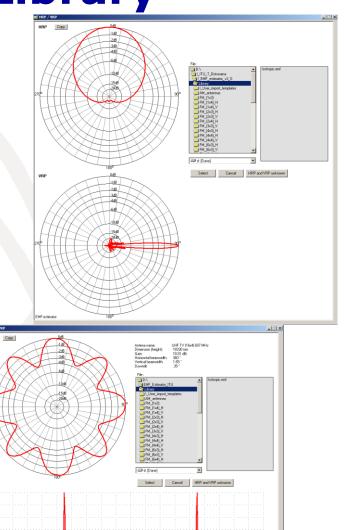
EMF-estimator – validity area

Project Radiating source Pri								
Radiation se	ADOUL		Antenna orier	ntation				
System name System name Reflection from the ground (factor 2,56)	nominal/mean Add Gain referred to Gain referred to ERP [399.9 EIRP [655.8 of service correction] Distance from the s Distance from the anter	[W] VRP (θ) [W] F (θ, ϕ) Mechanical dow Iransmitting antenna he tart to the observation p ana to the observation p the observation p ana to the observation p ana to the observation p 12	[W] [dB/100m] [m] [dB] [0.0100 [V/V] [db] [db] <td>Exposure lim Ele Powe Compliance Simultaneou Mainly therm All sources Mainly electri All sources</td> <td>propanied magn (far-field re- its ctric field limit ance distance distance(s) magn s exposure to r al effect: 100 k This source simultaneously ical stimulation This source simultaneously is : field: $(0, \lambda)$ $(\lambda, 2D^2/\lambda)$</td> <td>y be overestimated nultiple sources Hz - 300 GHz Public 0.00 [%] 0.00 [%] effect: 1 Hz - 10 MH Public [%]</td> <td>0.005 0.111 0ccupatio 137.00 50.00 1.01 0ccupatio 0.00</td> <td>[V/m] [W/m²] [m] nal [%]</td>	Exposure lim Ele Powe Compliance Simultaneou Mainly therm All sources Mainly electri All sources	propanied magn (far-field re- its ctric field limit ance distance distance(s) magn s exposure to r al effect: 100 k This source simultaneously ical stimulation This source simultaneously is : field: $(0, \lambda)$ $(\lambda, 2D^2/\lambda)$	y be overestimated nultiple sources Hz - 300 GHz Public 0.00 [%] 0.00 [%] effect: 1 Hz - 10 MH Public [%]	0.005 0.111 0ccupatio 137.00 50.00 1.01 0ccupatio 0.00	[V/m] [W/m ²] [m] nal [%]


EMF-estimator - Radiation sources

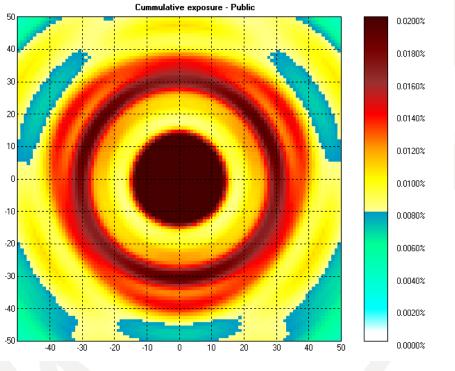
EMF-estimator - D:\EMF	_Estimator_ITU\0ther_Examples\85_G	5M900_G5M1800_	UMTS.exp			_ 🗆 🗙
Project Radiating source P	rint Reference Limits Cumulative exposure		~~~~			
Radiation s	sources Source	- GSM900_az_12	0*	Antenna orie	ntation	
System name GSM900_az_0° GSM900_az_120° GSM900_az_40° GSM900_az_60° GSM900_az_180° GSM900_az_0° GSM1800_az_0° GSM_1800_az_120° GSM_1800_az_120° GSM_1800_az_240° GSM_1800_az_240° GSM_1800_az_240° GSM_1800_az_20° UMTS_3G_az_0° UMTS_3G_az_0° UMTS_3G_az_0° UMTS_3G_az_120° UMTS_3G_az_0° UMTS_3G_az_0°	Type of service coefficient - nominal/mean transmitter power 50 Feeder attenuation 4 Feeder length 30 Additional attenuation 0. Total attenuation 1. Gain referred to isotropic antenna 17 Gain referred to λ/2 dipole 14 ERP 1083.9 [W] HRP(¢ EIRP 1777.5 [W] VRP(6)	SM (W) (dB/100m) 5 (m) 1 (dB) 50 (dB) 50 (dB) 7.00 (dBi) 4.86 (dBd) 9) -15.4938 (dB) 9) 0.0371 (V/V) 9) 0.006 (V/V) 9) 0.006 (V/V) 9) 0.006 (M) 1 (m) point 35 (m) point 33.51 (m) mato 178.3 (deg) point 178.3 (deg)	E Accompanied mag	gion, plane wave) Public [42.32 [V/m] [4.74 [W/m ² [5.48 [m] y be overestimated multiple sources Hz - 300 GHz Public [0.00 [%] [0.02 [%] effect: 1 Hz - 10 M Public [%] [%]	0.005 0.114 0ccupatic 92.34 1 23.69 2.51 0ccupatic 0.00	[W/m] [W/m ²] [m] [m] [%]
Reflection from the ground (factor 2,56)	Frequency [MHz] 947.5 Maximum size of 2.574 the antenna [m] 2.574 Limits file File with HRP and VRP D:\EMF-estimator\EMF_estimator_v1_2_0\D Additional comments :	Radiating near-fie Far-field: EMF-estimator	Field Regions : Reactive near-field: (0, λ) Id: (λ ; max(3λ, 2D ² /λ)) (max(3λ, 2D ² /λ); οο) validity: (0,62D ² /λ ; οο) Receiving point located field calculation does i size (point-source mode may overestimate)	not take into acc el is used). Resu	count the Its of calc	antenna ulations

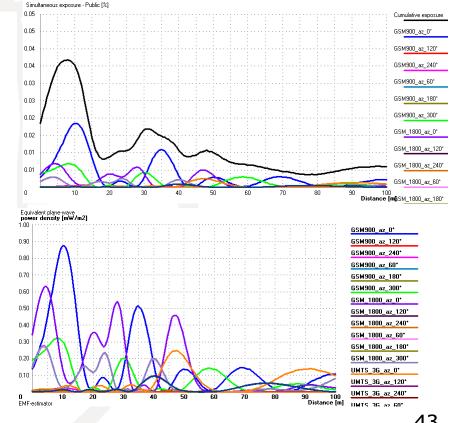
EMF-estimator - Source description


-	EMF-estima	tor - D:\EMF_	Esti	mator_ITU\Other_Examples\B5_G	5M900_G5M1800_L	UMTS.exp			
Pro	ject Radiat	ing source Prir	nt P	Reference Limits Cumulative exposure	Calculations Tools	About			
		Radiation so	urce	s Source	- GSM900_az_120		Antenna orier	ntation	
	Horizontal distance	Power density		Type of service coefficient - G nominal/mean transmitter power	SM 💌	EI	ectric field strength	25.74	[mV/m]
	[m]	[mW/m2]		Transmitter power 50	100		- Power density		[mW/m ²]
	32.00	0.0095			[dB/100m]			10.002	fum.un 1
-	32.50 33.00	0.0110		Feeder attenuation 4		Accompanied mag	netic field strength gion, plane wave)	0.068	[mA/m]
1	33.50	0.0121		Feeder length 35		•	gion, plane wavej		
1	34.00	0.0138		Additional attenuation 0.	1 [dB]	Exposure limits	Public	Occupation	nal
	34.50	0.0144		Total attenuation 1.	50 [dB]	Electric field limit	42.32 [V/m]	92.34	[V/m]
	35.00	0.0145		Gain referred to isotropic antenna	A REAL PROPERTY AND A REAL	Power density limit	4.74 [W/m ²]		[W/m ²]
	35.50	0.0143		Gain referred to $\lambda/2$ dipole 14		-		California de la califo	Alexandre 1
	36.00	0.0140		Gain referred to X72 dipole [12	4.86 [dBd]	Compliance distance	5.48 [m]	2.51	[m]
	36.50	0.0131	_	ERP 1083.9 [W] HRP(¢) -15 4938 [dB]	Compliance distance(s) may	be overestimated		
	37.00	0.0122		EIRP 1777.5 [W] VRP (θ) 0.0379 [V/V]	- Simultaneous exposure to r	nultiple sources		
	37.50	0.0111				Mainly thermal effect: 100 k			
1	38.00 38.50	0.0099		EIRP (after type 1777.5 [W] F (θ, ϕ) of service) 0.006 [V/V]		Public	Occupation	nal
1	39.00	0.0000		correction) Mechanical do	wntilt [deg]	This source	0.00 [%]	0.00	[%]
	39.50	0.0058							
	40.00	0.0046		Transmitting antenna h	ang				
	40.50	0.0033		Distance from the start to the observ.	point 46.5 [m]	Mainly electrical stimulation	effect: 1 Hz - 10 Mł	Ηz	
	41.00	0.0023		Distan. from the antenna to the observ.	point 57.31 [m]		Public	Occupation	nal
1	41.50	0.0014				This source	[%]		[%]
	42.00	0.0008		Elevation angle from transmitting anten the observation	point [125.8 [deg]				
	42.50	0.0004		Azimuth from the antenna to the observ.					
	43.00	0.0002				- Cield Displayer			
	43.50	0.0002		F		Field Regions :	from [m]	to [m]	2
	44.00	0.0002		Frequency [MHz] 947.5	R	Reactive near-field: (0, λ)	0	0.32	
	44.00	0.0002		Maximum size of [2.574 the antenna [m]	Radiating near-field	d: $(\lambda; max(3\lambda, 2D^2/\lambda))$	0.32	41.88	
	45.50	0.0009		the antenna [m] 12.014	Far-field: ((max(3), 2D ² /λ); 00-)	41.88	00	
1	46.00	0.0013				validity: (0,62D ² /λ, ;00)	12.98	00	8
	46.50	0.0018			EMP-estimator v	ailaity. (0,020-777-,00)	12.30	100	
	47.00	0.0022		Chart					
	47.50	0.0027							
	48.00	0.0031		Export					
	48.50	0.0034	-						
-	F Reflection ground (in from the factor 2,56)							

EMF-estimator - Antenna orientation

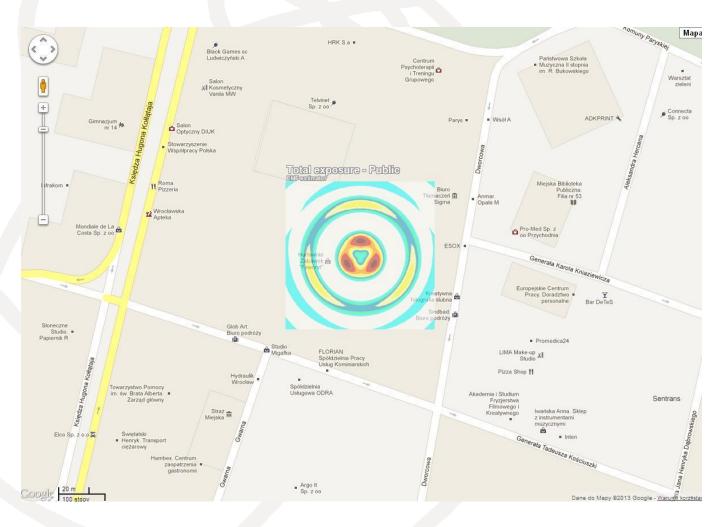
EMF-estimator Library

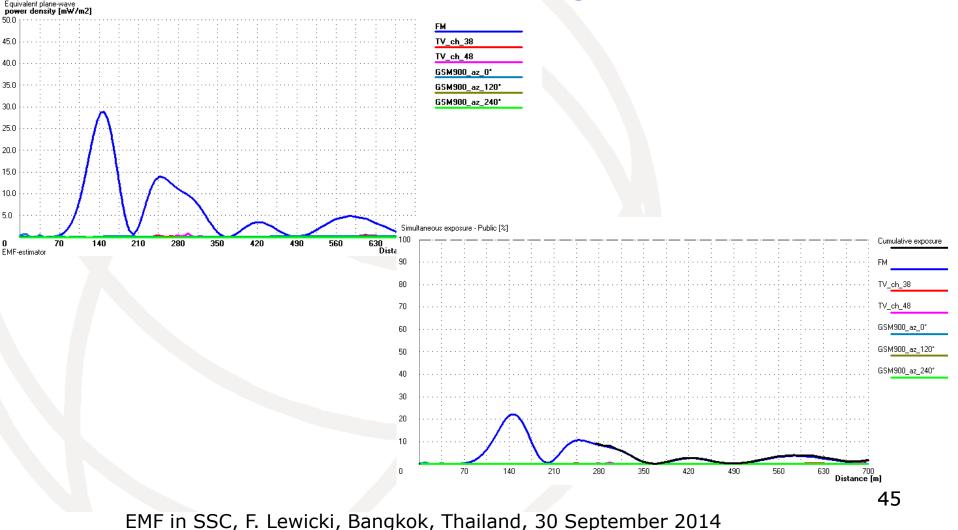

- Current library contains information concerning 124 antennas (56 mobile antennas)
- Examples on the right: Kathrein 739 418 and UHF TV (16x4) EAT402 = 64 panels
- Antenna data depend on frequency and downtilt



42

EMF-estimator - examples

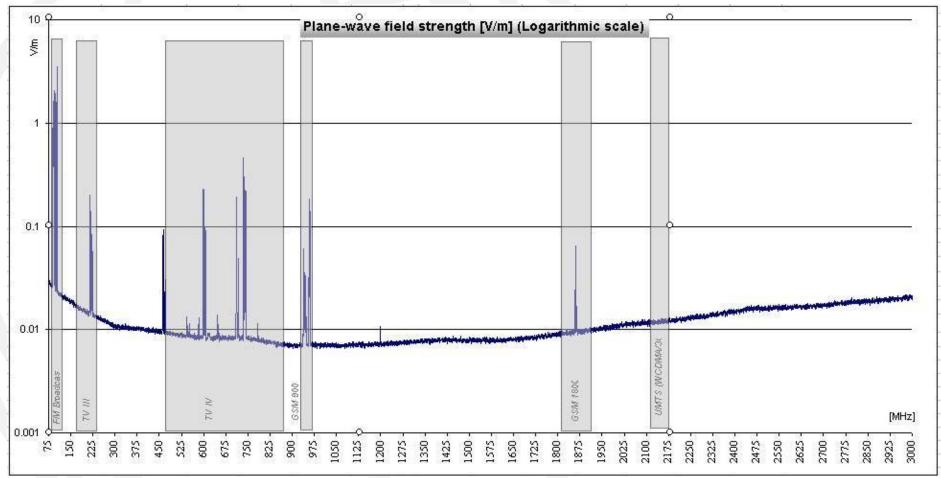

Typical mobile base station (BS) 3-sectors, 3-bands, 2 operators Line calculation and grid calculation


EMF-estimator - examples

Results on the background from the Google Map

EMF-estimator

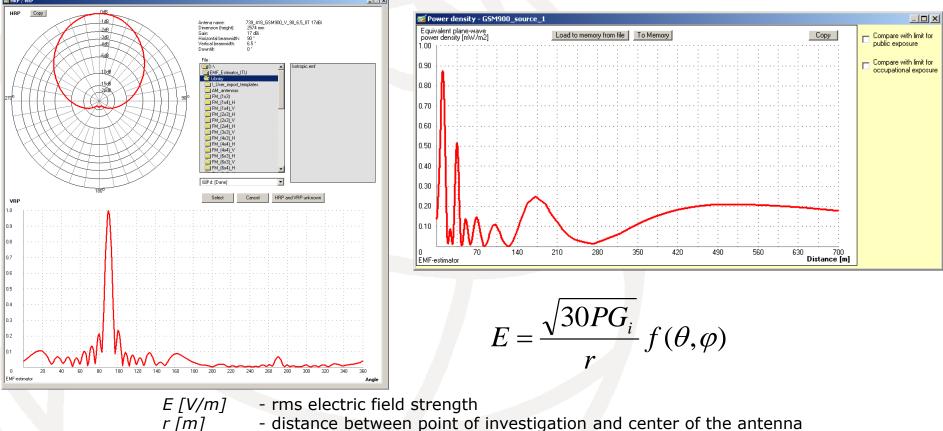
Collocation of the mobile BS and broadcasting TS


General guidance

- There are many methods to show the compliance
- National regulations are most important
- The simplest method is recommended to be applied first, even if other methods are more accurate
- More sophisticated (and accurate) methods should be used if no compliance is observed by less sophisticated (and accurate method)
- The assessment can be performed either by measurements or by calculations (computer simulations).
 - both have advantages and disadvantages
 - comparable accuracy / uncertainty

Measurement

Example of the result of the frequency selective measurement


Measurement

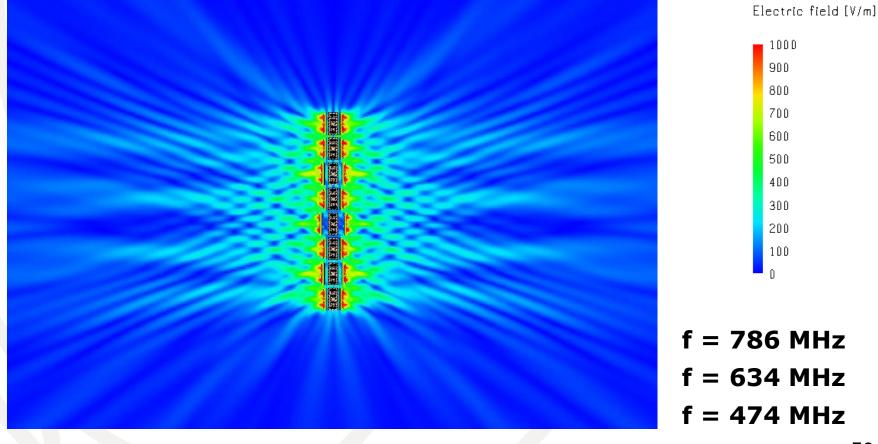
 Example of the results of the frequency selective measurement

Measurement point	Ban d	Frequency MHz	Reference level V/m	Height m	Measured value V/m	Exposure ratio
20	FM broadcast	87,5 - 108	28	1,1 1,5 1,7	28,5100 39,3300 42,7800 Average	1,0367603 1,9730216 2,3343474 1,7813764
	TVIII	174 -230	28	1,1 1,5 1,7	0,4940 0,4970 0,4775 Average	0,0003113 0,0003151 0,0002908 0,0003057
	TV IV∕V	470 - 862	30	1,1 1,5 1,7	0,9781 0,9163 0,9970 Average	0,0010630 0,0009329 0,0011045 0,0010334
<mark>4-1</mark>	GSM 900	925 - 960	42	1,1 1,5 1,7	0,3883 0,4025 0,4409 Average	0,0000855 0,0000918 0,0001102 0,0000958
	G SM 1800	1 805 – 1 910	58	1,1 1,5 1,7	0,4572 0,4349 0,5181 Average	0,0000621 0,0000562 0,0000798 0,0000661
	UMTS (WCDMA/3G)	2 110 – 2 170	61	1,1 1,5 1,7	0,4337 0,4328 0,4343 Average	0,0000505 0,0000503 0,0000507 0,0000505
1		8	c		Sum	1,7829280

Calculations

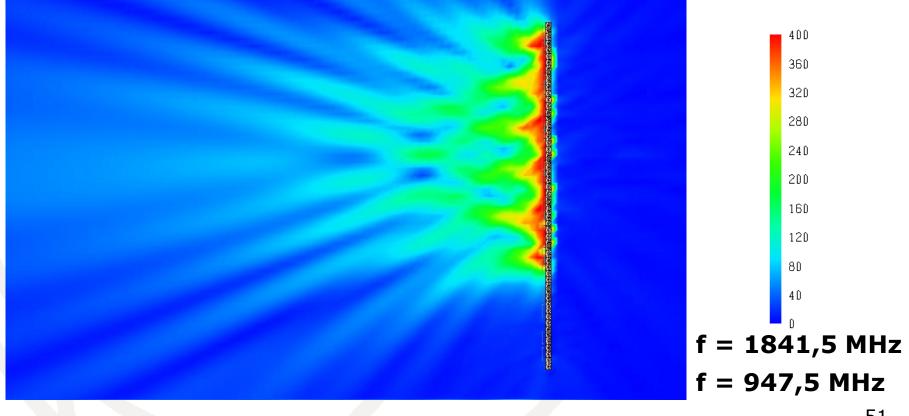
Far field model (point source model) – EMF-estimator (Appendix to ITU-T Rec. K.70): http://www.itu.int/rec/T-REC-K.70-200905-I!Amd1

- distance between point of investigation and center of the antenna
- input average power (W)


P [W]

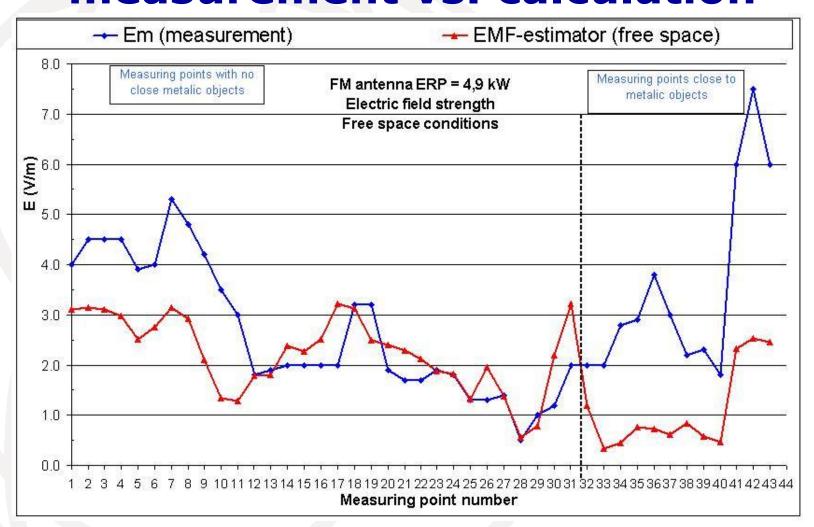
G_{i [dBi]} f(θ, φ)

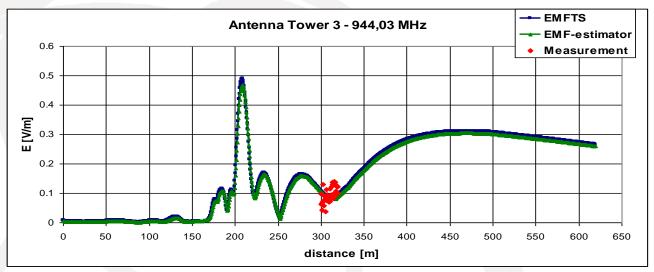
- maximum gain of the transmitting antenna, relative to an isotropic radiator
 - relative antenna amplitude radiation pattern, ϕ , θ azimuth and elevation angle 49

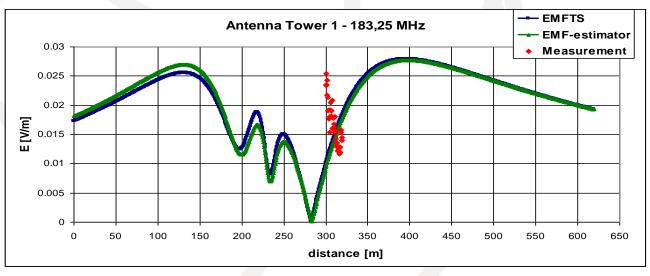

Calculations – Method of Moments (MoM)

- TV UHF transmitting antenna
- Electric field strength distribution, Near-field region, (30 x 20m)
- MoM, ~ 27 000 unknowns, computational time ~12 hours

Calculations – Method of Moments (MoM)


- **GSM 900/1800, Kathrein, polarization X (+45°/-45°)**
- Electric field strength distribution Near-field region, (5 x 3m)
- MoM, ~2 600 unknowns, computational time ~2 minutes


EMF in SSC, F. Lewicki, Bangkok, Thailand, 30 September 2014


Electric field [V/m]

Comparison measurement vs. calculation

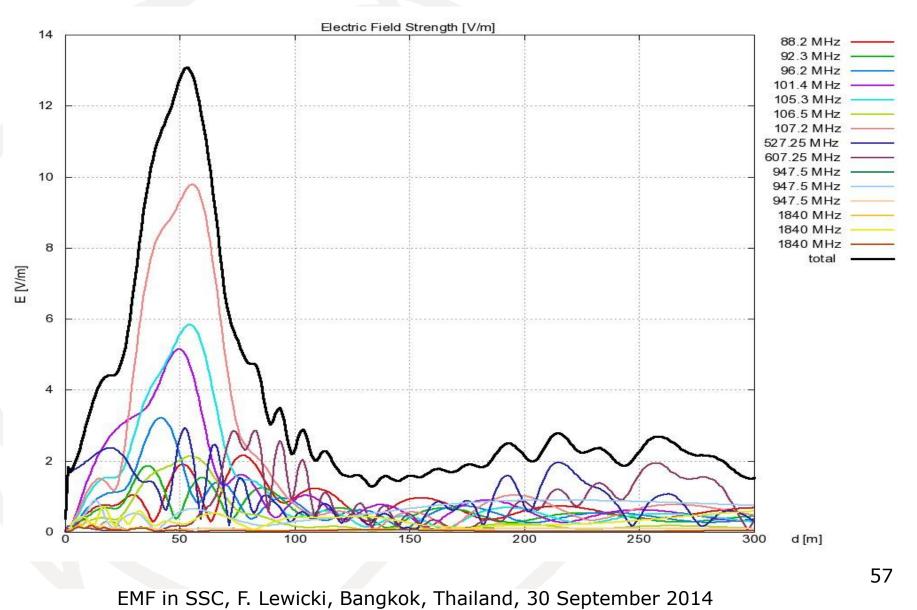
Comparison measurement vs. calculation

Measurement vs. Calculations

- Human exposure assessment may be done by measurement or calculations
- Both methods have advantages and disadvantages
- Both methods have similar level of uncertainty and accuracy depending on the method and equipment or software used

Multi sources environment

Many base stations collocated at the same or neighboring towers Other radiating systems: broadcasting, radiocommunication, point-to-point fixed systems


Multi sources environment

- Contribution to the cumulative exposure is ERP dependent
 - Typical ERP (K.70):
 - Cellular BS: 100-800W
 /per channel
 - FM: 50W 120 kW
 - VHF TV: 0,1 200 kW
 - UHF TV: 0,1 1000 kW
 - UHF DVB-T: 0,1 100 kW
 - AM/DRM: 0,1 4000 kW
 - ♦ WLAN: 0,01 1 W
 - Radiocomm.: 10 W 1 kW

Simultaneous exposure to multiple sources

Total exposure - broadcasting and mobile emissions

Conclusions

Compliance with EMF exposure limits is a substantial factor in SSC development

- Good communication with public is a very important task
- Efficient deployment of wireless infrastructure reduces the RF EMF from networks and devices
- ITU guidance may be helpful in smooth and safe implementation of wireless systems

Thank you

Questions, Comments?