Cívil UAV monitoring techniques

State Radíc Beíjíı

JI weí lín Monítoríng Center of Chína .g monítoríng statíon

01 INTRODUCTION TO UAV

03 DRONE COUNTERMEASURE

()4 LOCATING

SUMMAY

TECHNICAL OZ CHARACTERISTICS

OPERATOR

01 INTRODUCTION TO UAV

O1 INTRODUCTION TO UAV

- UAV , commonly known as a **drone**.
- An aircraft without a human pilot aboard.
- The plane which utilizes remote radio control equipment and program control • device to fly.

O1 INTRODUCTION TO UAV

5

Energy device

<u>Interim Regulations on the management of unmanned aerial vehicles</u> The National Space Administration Committee

(1)Micro-UAVs

empty weight<0.25kg altitude<50m speed<40km/h

(2)Light-UAVs

empty weight<4kg takeoff weight<7kg altitude<120m speed<100km/h

(3)Small-size UAVs

empty weight<15kg takeoff weight<25kg

(4)Medium-sized UAVs

empty weight>15kg takeoff weight<150kg (5)Large-sized UAVs

takeoff weight>150kg

01 INTRODUCTION TO UAV

Characteristics of drone

Low altitude
About 2km in theory, less than 120m in general;
Low speed
Nearly 15-100km/h for consumer use;
Small size
Generally belong to Light UAV (<7kg);

Simple to operate; Easy to purchase; Hard to discover; Difficult to administrate;

- Wingspan ranges between 0.2m-1.3m
- Frequency bands
 2.4GHz/5.8GHz/GPS
- FHSS/WIFI/Bluetooth/ Automatic Navigation / Remote Control etc.

Remote Control etc.

O1 INTRODUCTION TO UAV

Threaten national security

Engage in criminal acts

Threaten flight safety

Modes of operation

✓ First person view (FPV)

Technical Parameter

Signal	Frequency band	
Command & control	27MHz、35MHz、40MHz、72MHz、328 ~ 352MHz、400MHz、433MHz、560~ 760MHz、915MHz、933MHz、1.2GHz、 2.4GHz、5.8GHz (more than 90% use 2.4GHz and 5.8GHz)	FHSS、 D
Downlink data (altitude, autonomy)	Same with Command & control signal	Same wi
Downlink Video433MHz、328 ~ 334MHz、1.2GHz、 2.4GHz、5.8GHz(more than 90% use 2.4GHz and 5.8GHz)		WiFi、 ar

Modulation

DSSS、WiFi、Bluetooth

ith Command & control signal

analog PAL/NTSC、PSK、OFDM

Technical Parameter

Satellite navigation	Band	
GPS	L1	157
GPS	L2	122
GPS	L5	117
GLONASS	L1	1602
GLONASS	L2	1246
BeiDou-2	L1	1561.
BeiDou-2	L2	1207
BeiDou-2	L3	1268

12

Frequency

- 75.42MHz±12MHz
- 27.60MHz±12MHz
- 76.45MHz±12MHz
- 2MHz+k*0.5625MHz
- 6MHz+k*0.4375MHz
- .098MHz±2.046MHz
- 7.14MHz±10.23MHz
- 8.52MHz±10.23MHz

Signal analysis

(1) DJI MAVIC

Frequency Band:2.4GHz ISM (Industrial, Scientific and Medical) Band Command & control : FHSS/DSSS systems (1.4MHz, 2400MHz-2470MHz) Downlink video: 20MHz, unfixed, QPSK/16QAM/64QAM

Signal analysis

(2) DJI Phantom 3SE

When building a link between remote control and UAV

Frequency Band: 2.4GHz/5.8GHz Band

Command & control : FHSS/DSSS systems (5MHz)

14

Signal analysis

(2) DJI Phantom 3SE

Flight phase

Frequency Band: 2.4GHz/5.8GHz Band

Command & control : Wifi systems (20MHz)

Signal analysis

(3) Futaba 433MHz

Center Frequency: 434.5MHz Bandwidth: 3MHz Modulation type: FSK (50KHz) Number of carrier frequency: 15 Duration of one "hop": 20ms

Test of flight distance

Test of flight distance

实验场景 北京市丰台区世界公园

实验场景1 北京市大兴区生物医药基地

Urban

实验场景1 北京市大兴区北京监测站

实验场景2

Open area

18

实验场景2 深圳市南山区大沙河道旁

Suburbs

Test of flight distance

	Model	Power(mW)	Frequency band
1	DJI MAVIC	100	2.4G
2	Mi 1080P	100	2.4G
3	Mi 4K	200	5.8G
4	DJI P4P	100	2.4G& 5.8G
5	DJI SPARK	100	2.4G & 5.8G
6	DJI P3S	100	2.4G
7	DJI P3SE	100	2.4G& 5.8G
8	XIRO Dobby	100	2.4G

Modulation type

FHSS&DSSS

FHSS&DSSS

FHSS&DSSS

FHSS&DSSS

Wi-Fi

Wi-Fi

Wi-Fi

Bluetooth

19

Test of flight distance

- The greater power of the UAV, the farther the UAVs fly.
- L_{FHSS/DSSS}>L_{WIFI}
- The maximum flight distance will be
- double under ideal circumstance, if
- the power increase 6dB.
- The maximum flight distance in
- different scenarios is largely different.

Radio Controlled via FHSS/DSSS

- Wide spread (>80%)
- Range: 1-3 km
- Wi-Fi is often used for the
- video downlink
- DJI MAVIC/DJI P4P/Mi
- 1080P/Mi 4K

Radio Controlled via Wi-Fi

- Range: 100m 1km
- Some are equipped with a FPV
- DJI P3S/DJI P3SE/DJI SPARK

Radio Controlled via Bluetooth

- •Low cost models
- •Limited range with approx.
- 100 m
- •XIRO Dobby

03 DRONE COUNTERMEASURE

Offline Detection: No perfect method

Methods	Ranges	Advantages	Disadvantages	
Sound detection	≤300m	Simple, Low cost, Certain abilities of identification and location	Short detection range, Sensitive to meteorological condition and environmental noise	
Optical detection	≥3km	Low cost, Widely used, Less clutter impacts, Certain abilities of identification, Able to conduct with optic tracking	Less effective of visible light imaging device in night, Less angle of view, Weather-sensitive	
Low- altitude radar	≥4km	All-weather, Fast identification, Long detection range, Multi-target tracking	Existing blind zone at close range, Hard to discover the target with small RCS, Apply to flat site	
Radio detection	≥3km	All-weather, Capable of direction-finding location, Easy to install and deploy	Complex electromagnetic environment, Mediocre reliability, Unable to find inertial navigation drone	

Offline Control: radio suppression is more popular

Technologies	Advantages	Disadvantages
Radio Suppression	Convenience; Moderate cost; Significantly effective ;	Link suppression subject to usage mode; Navigation suppression and deceit subject to application scenarios;
Laser Gun Attack	War industry use; Directly destroy;	More dangerous ; More secondary disaster
Physics Catch	Less secondary disaster;	Lack of operability;

OB DRONE COUNTERMEASURE

Offline Control: radio suppression is more popular

Mode		Effect	Operating Range
Radio	Command & control	Autonomous Homing	<3km
Suppression	Satellite navigation signal	out of control	3-4km
	Satellite navigation signal	vertical landing	2-3km
Deceptive Suppression		fly to opposite direction	
	Command & control	Take over the UAV	<2km

Advantages / Disadvantage

Long usable distance Can not work under radio silence

Long usable distance application fields are limited

No effect on other frequency band application fields are limited

Control the UAV high technical difficulty

DRONE COUNTERMEASURE 0.3

Online Control

- Adopt the thought of 'internet+' to install communication modules on drone, back haul to the integrated control platform via public mobile network.
- Acquire the integrated flight condition in real time online
- > Support remote control of drone in specific context

Multi-terminal synchronization

Manage and monitor drone via computer and phone whenever and wherever

Report flight data in real time

Automatically warning based on date in nofly zone combined with electronic fence monitoring

04 OPERATOR LOCATING BASED ON AERIAL MONITORING PLATFORM

04 OPERATOR LOCATING

29

Sound/Optical/Low-altitude radar/Radio

Suppression and Deception

Aerial Monitoring Platform

04 OPERATOR LOCATING

• Advantages:

Accurate Location

• Reducing impact of NLOS and Multipath for surficial device, do accurate location in complicated city situation.

- Highly Maneuverability

 Replace direction finding location by multistations to by just a set of monitoring system.

– Low Price

• The cost is far below existing monitoring devices.

Innovation 1

Proposed a Fast Acquisition Algorithm of frequency hopping signals.

Improve the direction finding accuracy of frequency-hopping signal in low SNR and complex interference condition.

Frequency-hopping signal on remote control spectrogram

Innovation 2

Proposed an Nonlinear optimization location algorithm based on particle filter.

Improve the Location precision of frequency-hopping signal because of the DF error.

Diagram of location operator

OPERATOR LOCATING 04

Application Innovation

Developed an UAV operator locating system based on aerial monitoring platform.

Eliminated the influence of ground occlusion on the performance of traditional monitoring and locating system.

structure frame

OPERATOR LOCATING

Key equipment of hardware system in aerial monitoring platform

- Using UAV as the main body of monitoring platform, remote control frequency 433MHz ; 1.
- Customized 2.4GHz high gain directional receiving antenna; 2.
- 3. Using miniaturized, high-performance receiving and computing modules to realize data acquisition and analysis processing functions;
- Customized 3D electronic compass and high precision GPS to achieve high precision 4. measurement of angle and position;
- 5. Using 5.8GHz wireless transmission system to realize remote control.

34

flow diagram of location

O4 OPERATOR LOCATING

physical of UAV

UVA in the sky

O4 OPERATOR LOCATING

Civil UAV Monitoring Technology Seminar and Equipment Exhibition

OPERATOR LOCATING 04

Demonstration : The DF results of a "black flying" operator for a particular UAV

38

Location result

05 SUMMARY

- It's imperative to study the method of drone countermeasure, because UAVs can threaten airspace security, \bullet threaten national security, etc.
- > 90% are operating in the 2.4 GHz & 5.8 GHz ISM band using Bluetooth, FHSS/DSSS or Wi-Fi \bullet
- 433 MHz is a frequency still in use (rarely), helping to overcome longer distances compared to 2.4 GHz
- Video data are normally streamed on 2.4 GHz & 5.8 GHz (ISM)
- Detect the drone: Sound, Optical, Low-altitude radar, Radio
- Control the drone: Radio Suppression, Laser Gun Attack, Physics Catch
- For connected drone, obtain the comprehensive situation and control them remotely via online Platform.
- Operator locating system has three advantages, accurate location, highly maneuverability and low price

