

IoT and IMT – Spectrum Issues

ITU CoE training on Monitoring RF Spectrum in Modern Wireless Era

Kunming, Yunnan Province, China (Peoples Republic of) 16 – 20 April 2018

Aamir Riaz International Telecommunication Union – Regional Office for Asia and the Pacific <u>aamir.riaz@itu.int</u>

IoTs and spectrum indications

IMT and Identified spectrum (post WRC-15)

Going forward towards WRC-19

Internet of Things - IoT

- A network connecting (either wired or wireless) devices, or 'things', that is characterized by autonomous provisioning, management, and monitoring. The IoT is innately analytical and integrated (IDC)
- IoT is the next evolution of the Internet, connecting the unconnected people, processes, data, and things in your business today (Cisco)
- IoT devices as those capable of two-way data transmission (excluding passive sensors and RFID tags). It includes connections using multiple communication methods such as cellular, short range and others.
 (GSMA)
- Sensors & actuators connected by networks to computing systems. These systems can monitor or manage the health and actions of connected objects and machines. Connected sensors can also monitor the natural world, people, and animal" (McKinsey)

Resolution <u>ITU-R 66</u> (recognizing "c")

IoT is a concept encompassing various platforms, applications, and technologies implemented under a number of radio communication services

ITU-T Recommendation [Y.2060 renamed as Y.4000]

A global infrastructure for the information society, enabling advanced services by interconnecting (physical & virtual) things based on existing and evolving interoperable information and communication technologies

Wireless Technologies

Diversity of IoT application requirements:

- Varying bandwidth requirements (how much information is sent)
- Long-range vs short-range
- Long battery life
- Various QoS requirements

IoTs and cloud technologies and are the two unstoppable forces promoting digital capabilities

Spectrum needs to be made available in a range of frequency bands to cater for various cases

Open platforms

 Designed to make building and deploying applications easier, faster, secure and more accessible for everyone.

Allows

 To create the low-power, wide-area sensor and/or actuator network (WASN) systems for Machine Type Communications (MTC), Smart cities and Ubiquitous Sensor Networks (USN) applications.

Contributes

To socio economic development such as in Agriculture, health sector and many more.

Efficient Management

Manage utilities efficiently such as smart power, water grids, and transport management

IoTs and	Industry	4.0

Industry 4.0: IoT Integration Today

Early 1970's

Industry 3.0: Electronics & Control Production is automated further by electronics & IT

Early 20th Century

Industry 2.0: Mass Production Division of labor & electricity lead to mass production facilities

Industry 1.0: Mechanical Assistance Late 18thCentury Basic machines powered by water & steam are part of production facilities

Connectivity Digitize Access to Information

Email

Web Browser

Search

Networked Economy **Digitize Business** Process

- E-commerce
- Digital Supply Chain
- Collaboration

Immersive Experiences **Digitize Interactions** (Business & Social)

- Social
- Mobility Cloud
- Video

Things Digitize the World

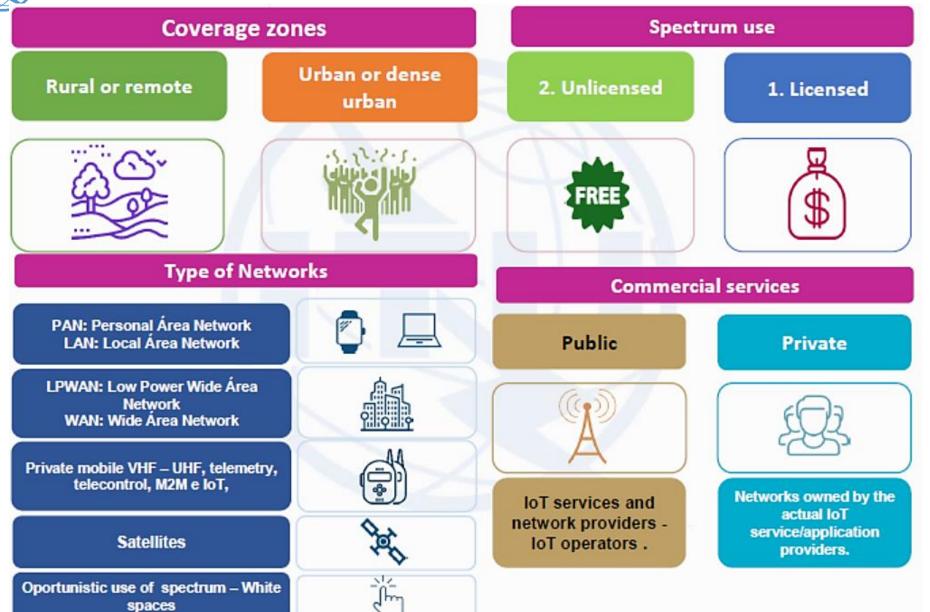
Connecting:

People Process

 Data Things

IoT & Standards-based protocols are helping IT and OT converge and drive new economic value streams

The Convergence of IT and OT


- **Information Technology** (IT) supports connections to the internet along with related data and technology systems and is focused on the secure flow of data across and organization
- **Operational Technology** (OT) monitors and controls devices and processes on physical operational systems (assembly lines, utility distribution networks, production facilities, roadway systems etc.
- Typically, IT does not get involved with the production and logistics of OT environments

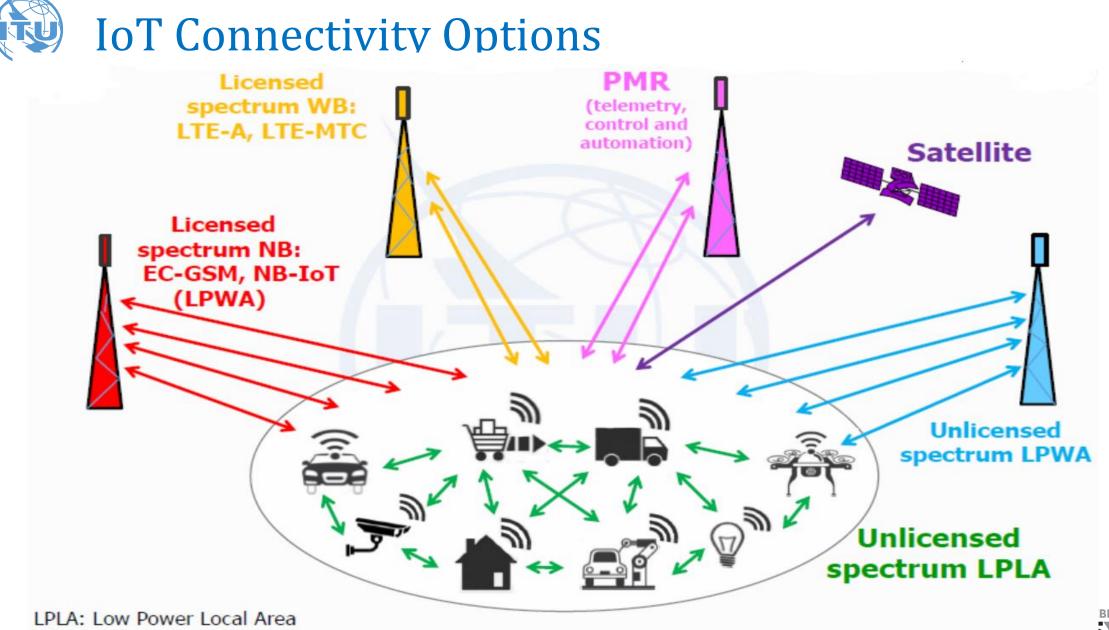
Source: ITU COE training on BB networks planning, Bangkok, Sep 2017

Intelligent Connections

Source: ITU Workshop on Spectrum Management for Internet of Things Deployment, 22 November 2016, Geneva

Iot Usage Categories

Category	Sub-category	
Consumer IoT	Consumer electronics	Smart TVs, home entertainment (games consoles, speakers), personal entertainment (MP3 players, portable gaming devices), set-top boxes
\sim	Smart home	Home appliances (fridges, washing machines), home infrastructure (routers), home security (alarms), energy monitoring (thermostats)
	Wearables	Fitness trackers (including personal health trackers), smart watches
	Smart vehicles	Connected cars, connected bikes, insurance telematics
	Consumer - others	Trackers for children, the elderly and pets, as well as drones and robots
Industrial IoT	Smart city	Public transport, surveillance, electric vehicle charging, street lighting, parking, waste management
	Smart utilities	Energy, water and gas smart metering, smart grid
	Smart retail	PoS, digital signage, vending machines, ATMs
$ $ \tilde{a}	Smart manufacturing	Inventory tracking, monitoring and diagnostics, warehouse management
	Smart buildings	Heating and air con, security, lighting, hot desks, office equipment
1153	Health	Remote monitoring of medical devices, emergency vehicle infrastructure
	Enterprise - others	Fleet management, applications in agriculture, oil, mining, construction



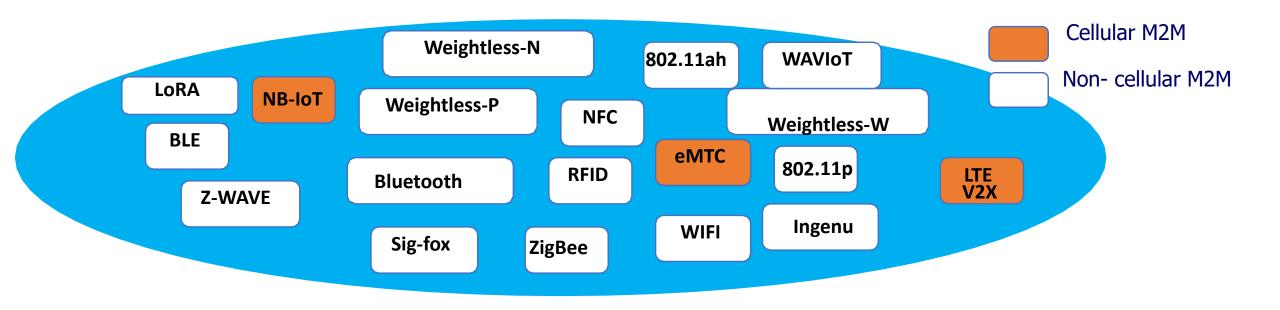
IoT design requirements

IoT Network	Impact on IoT Systems Design
Scale	Tens of thousand sensors in a given site; or millions distributed geographically More pressure on application architectures, network load, traffic types, security, non-standard usage pattern
Heterogeneous end- points	Vast array of sensors, actuators, and smart devices – IP or non-IP Diverse data rate exchange, form factor, computing and communication capabilities, legacy protocols
Accessibility-Visibility of end-points	May be deployed before activation, maybe or cannot-be accessed once deployed Devices deliver services with little or no human control, difficult to correct mistakes, device management is key
Criticality of services	Human life critical (Healthcare), Critical infrastructure (Smart Grid) Stringent latency (10ms for SG) and reliability requirements, may challenge/exceed network capabilities of today
Intrusiveness	Things with explicit intent to better manage end-users (eHealth, Smart Grid) Issues of Privacy become major obstacles

LPLA: Low Power Local Area LPWA: Low Power Wide Area

Source: ITU Workshop on Spectrum Management for Internet of Things Deployment, 22 November 2016, Geneva

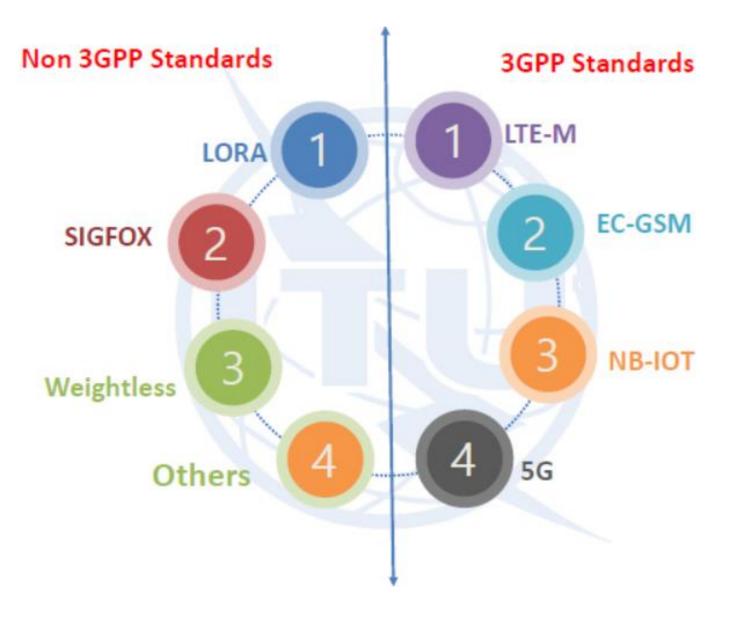
IoT network connectivity requirements


IoT Network	Impact on IoT Systems Design
Resource-constrained endpoints	Severely resource constrained (memory, compute) Cost motivation: compute/memory several orders of magnitude lower, limited remote SW update capability, light protocols, security
Low Power	Some end-point types may be mostly 'sleeping' and awakened when required Sensors cannot be easily connected to a power source, reduced interaction time between devices and applications
Embedded	Smart civil infrastructure, building, devices inside human beings Sensors deployed in secure or hostile operating conditions, difficult to change without impacting system, Security
Longevity	Deployed for life typically, have to build-in device redundancy Very different lifetime expectancy, rate of equipment change in IoT business domains much lower than ICT Industry

Study in ITU under WRC-19 agenda item 9.1, issue 9.1.8 (Machine Type Communication - MTC)

Studies on the technical and operational aspects of radio networks and systems, as well as spectrum needed, including possible harmonized use of spectrum to support the implementation of narrowband and broadband machine-type communication infrastructures

Fixed & Short Range

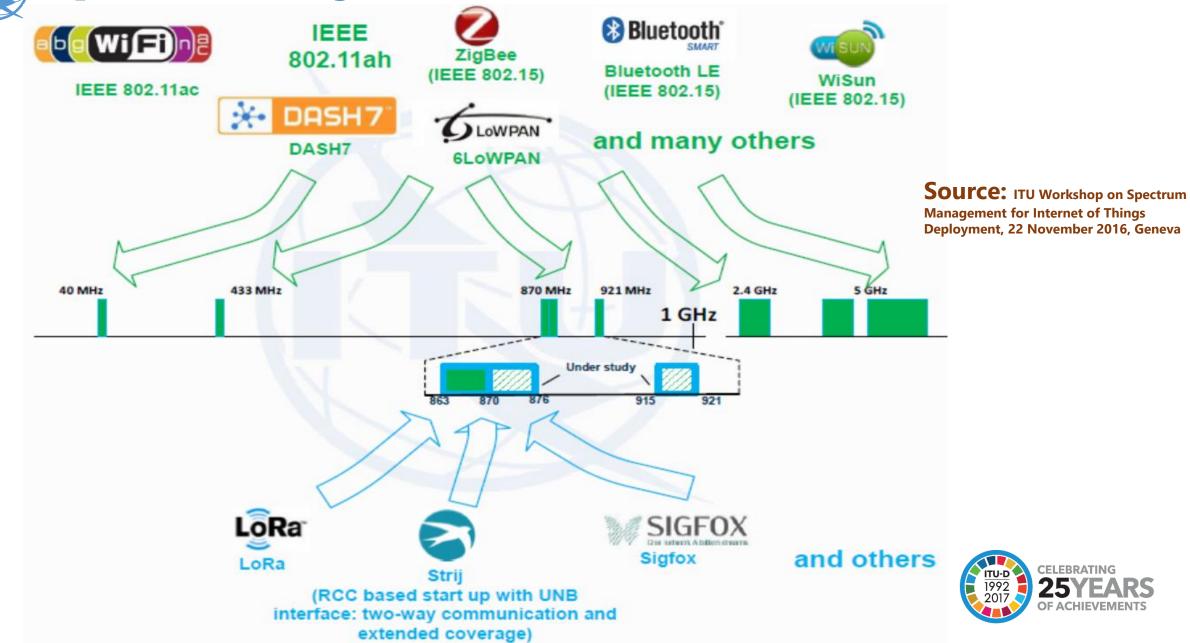

- RFID
- Bluetooth
- Zigbee
- WiFi

Long Range technologies

- Non 3GPP Standards (LPWAN)
- 3GPP Standards

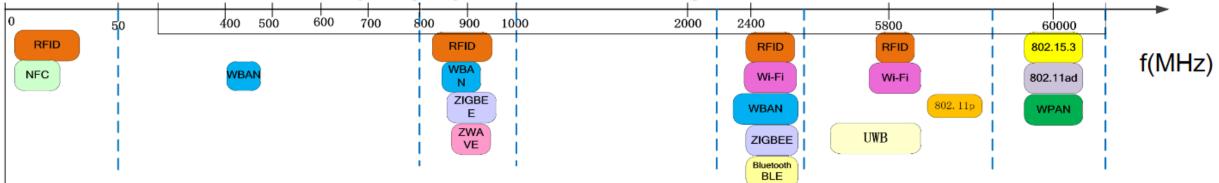
IoT Long Range Technical Solutions

What are the spectrum needs of IoT?

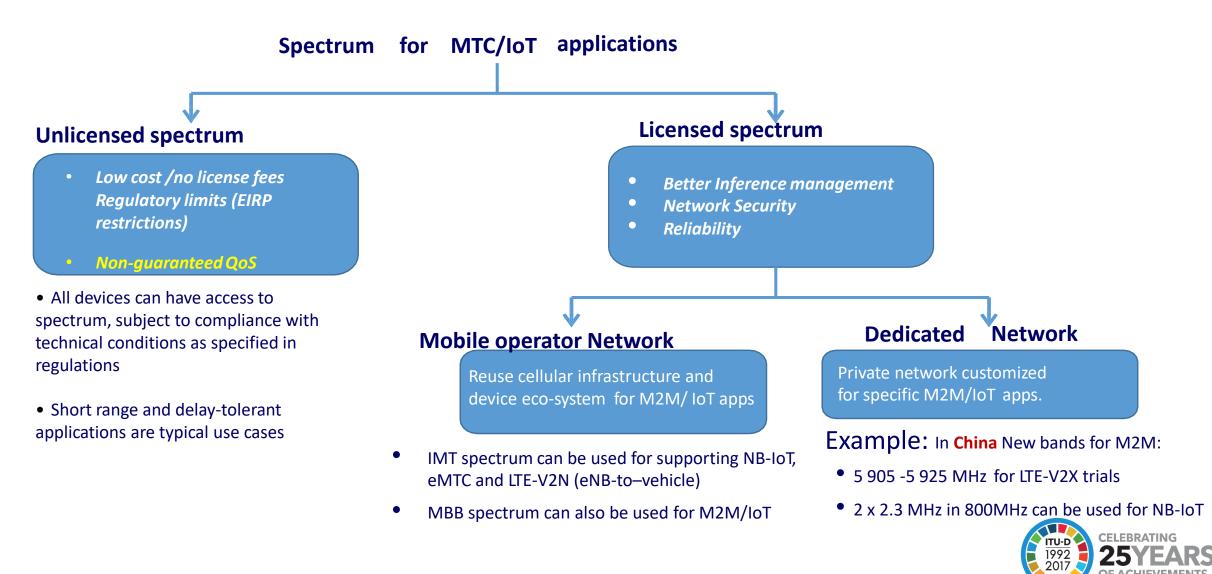

- Determined by each application's throughput requirements, but also latency
 - For a given spectral efficiency (b/s/Hz), the lower the latency requirements the larger the bandwidth needed to send a given amount of data
- While many IoT applications might not need high speed connections and/or have very stringent latency requirements, some do (e.g. remote surgery)

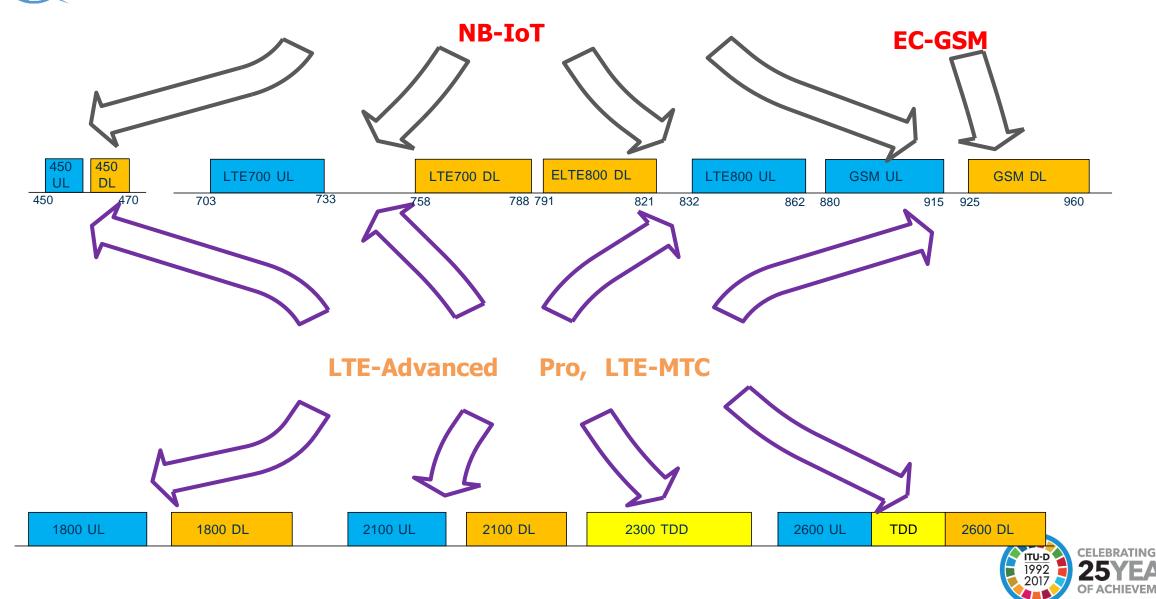
In what frequency bands?

- Determined by each IoT application's range and coverage requirements, but also bandwidth needs of the applications
- Range and coverage requirements also depend on deployment scenarios
 - Point-to-point, mesh, broadcast, multi-cast, etc.



Spectrum usage for IoT - SRDs


Some widely deployed SRD technologies in Sub 6GHz bands


Source: ITU Workshop on Spectrum Management for Internet of Things Deployment, 22 November 2016, Geneva

IoT deployments in Licensed Spectrum - IMT

M2M

Radiocommunication Technologies

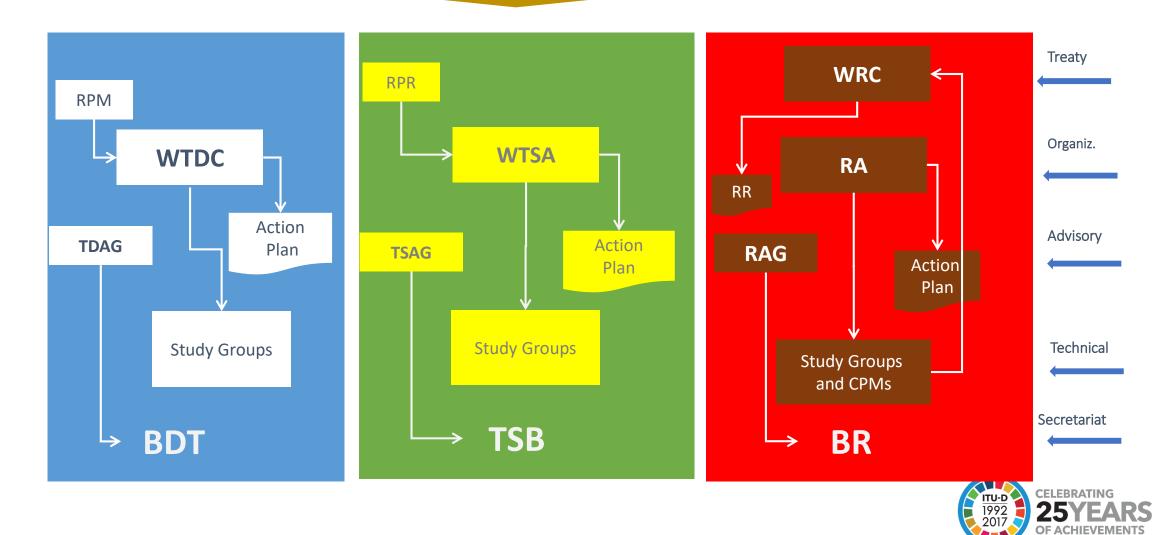
Technology	Spectrum band		
NB-IoT	MBB bands		
eMTC	MBB bands		
Sigfox	868MHz		
	MBB bands (Uu)		
LTE-V2X	5.8,5.9GHz (PC5)		
Bluetooth	2.4GHz		
ZigBee	868/2450MHz		
RFID	13.56/27.12/433/ 860MHz		
NFC	13.56MHz		
Z-WAVE	868 MHz		
Ingenu	2.4GHz		

Frequency range

• Sub-1 GHz band are most suitable for efficient provision of wide area coverage;

Authorization

- Sharing spectrum with unlicensed authorization to achieve low cost and low power requirements
- Licensed (exclusive) spectrum is more suitable for wide area coverage and/or higher reliability requirements for delay sensitive applications

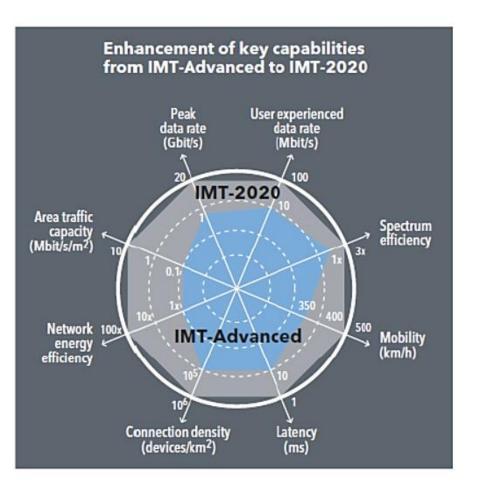


IMT- Identified Spectrum

Membership Inputs

Res. ITU-R 56-1: Naming for International Mobile

Telecommunications


Since ITU is the internationally recognized entity that has sole responsibility to define and to recommend the standards and frequency arrangements for IMT systems, with the collaboration of other organizations such as standard development organizations, universities, industry organizations and with partnership projects, forums, consortia and research collaborations, therefore the RA-15 debated especially on naming of IMT systems.

- the existing term IMT-2000 continues to be relevant and should continue to be utilized;
- the existing term **IMT-Advanced** continues to be relevant and should continue to be utilized;
- However for systems, system components, and related aspects that include new radio interface(s) which support the new capabilities of systems beyond IMT-2000 and IMT-Advanced, the term "IMT-2020" be applied
- In addition it was resolved that the term "IMT" would be considered the root name that encompasses all of IMT-2000, IMT-Advanced and IMT-2020 collectively.

The values in the figures above are targets for research and investigation for IMT-2020 and may be revised in the light of future studies. Further information is available in the IMT-2020 Vision **(Recommendation ITU-R M.2083)**

The importance of key capabilities

in different usage scenarios

Medium

Low

User experienced

Spectrum

Mobility

Ultra-reliable

Latency

and low-latency

communications

data rate

Peak

Enhanced

mobile broadband

Area traffic

capacity

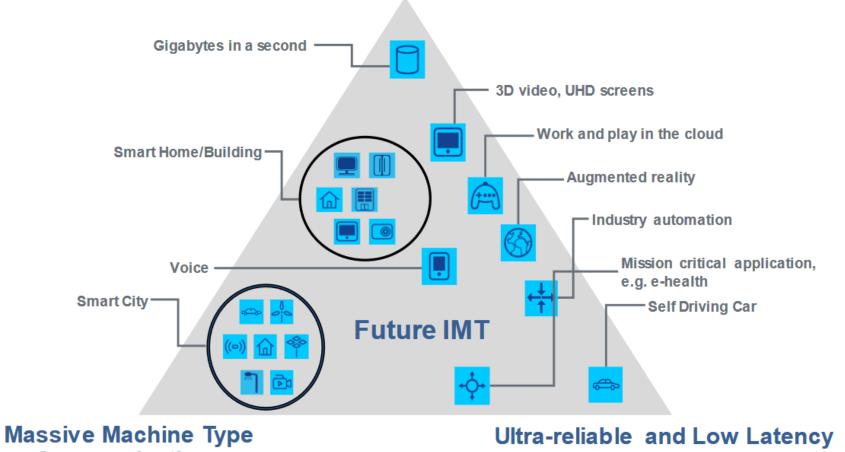
Network

efficiency

energy

Massive machine

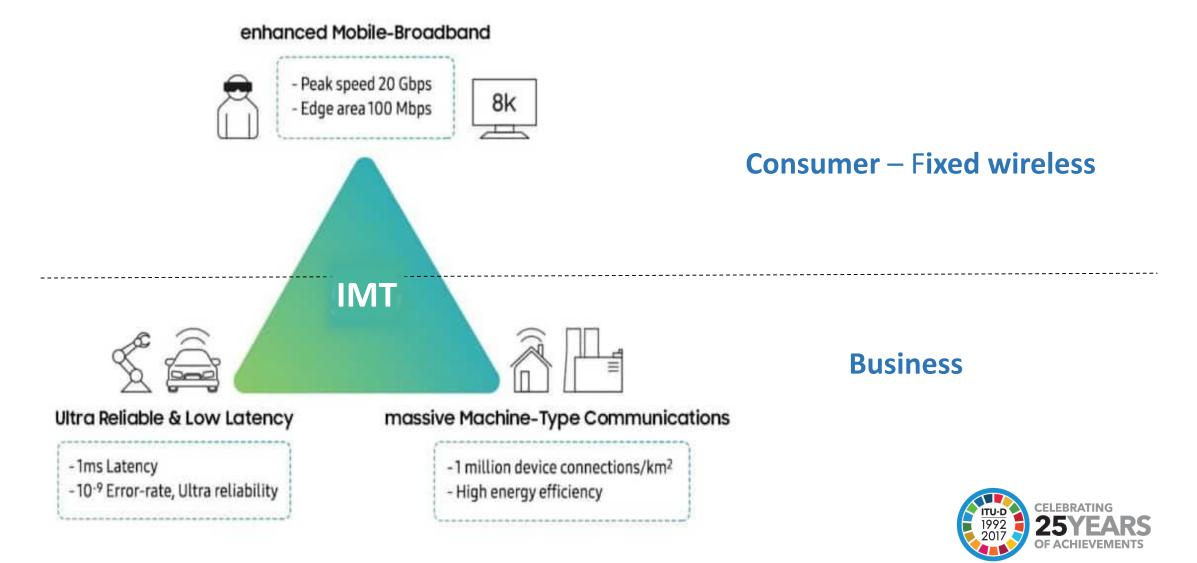
Connection


density

type communications

data rate High importance

Enhanced Mobile Broadband


Communications

Communications

Understanding IMT applications

Recalling WRC-15 outcomes

WRC-15 (General Information) 2-27 November 2015 in Geneva

3275 participants attended WRC-15, including:

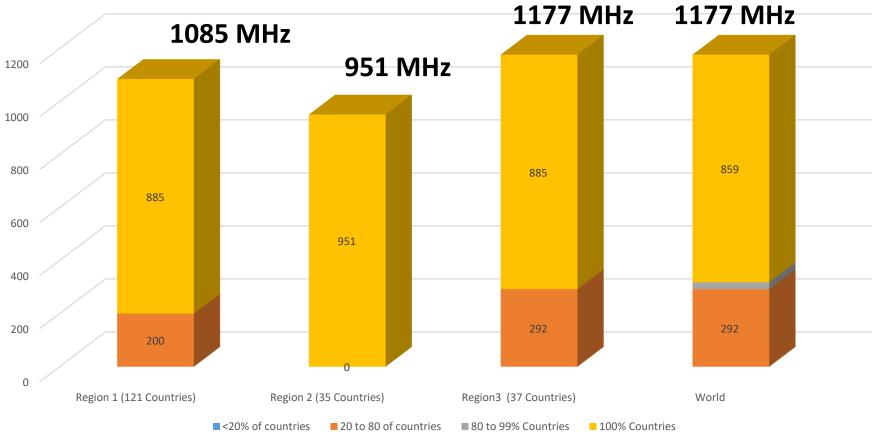
- 2780 participants from 162 Member States, and
- 495 participants representing 130 other entities, including industry, which also attended as observers

▶678 Documents including 2888 Member states proposals

Two thirds (66%) of those were common proposals (either regional or multi-country).

WRC-15 addressed over 40 topics related to frequency allocation and frequency sharing for the efficient use of spectrum and orbital resources.

Mobile Broadband (MBB)


(agenda Item 1.1 and 1.2)

IMT Spectrum After WRC-07 (MHZ)

Need for More spectrum

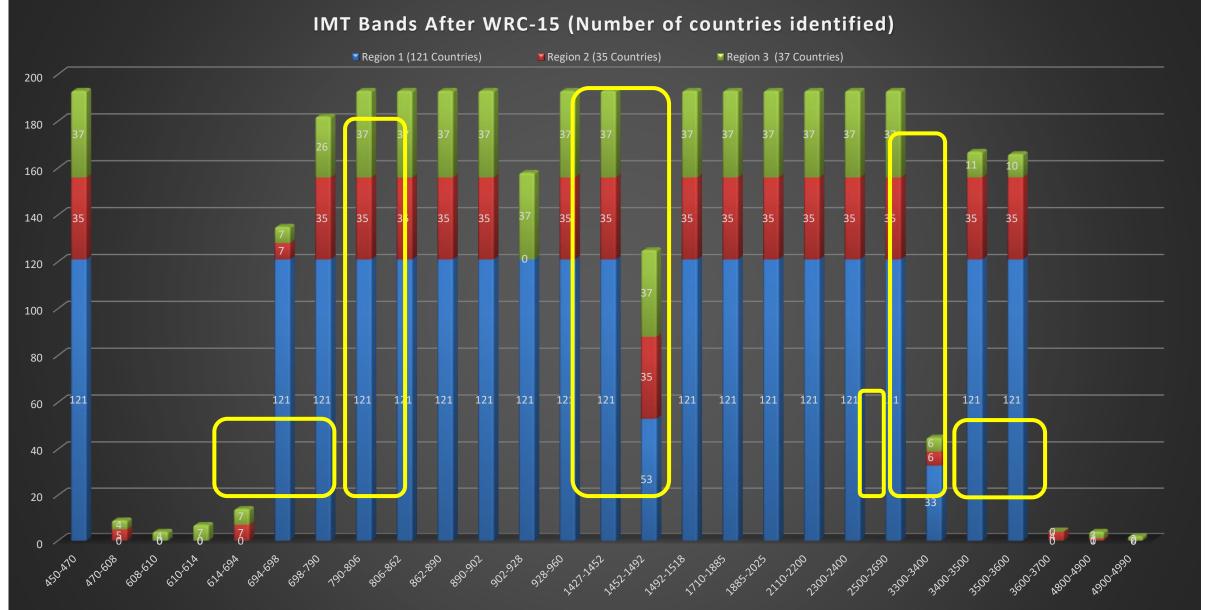
Total User requirement density by 2020 (MHz)	Region 1		Region 2		Region 3		
	requirement by 2020	Already identified (MHz)	Additional demand (MHz)	Already identified (MHz)	Additional demand (MHz)	Already identified (MHz)	Additional demand (MHz)
Low	1 340	001 1 101	159 – 359	951	389	885 - 1 177	163 – 455
High	1 960	981-1 181	779 - 979		1 009		783 - 1 075

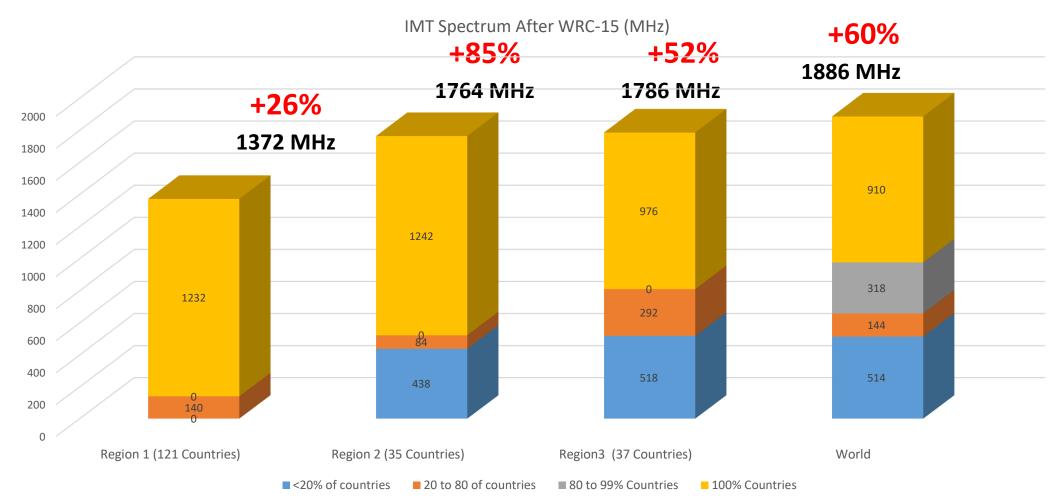
Estimated additional spectrum requirements by 2020 ranged from 159 to 1075 MHz depending on Region and user density)

Source: CPM-15 report (Additional Spectrum Requirements)

New spectrum Identified

WRC - 15				
Band (MHz)	Bandwitdh (MHz)	R1	R2	R3
470 – 608	138		some	
608 – 698	84		some	
1427 – 1452	25	any	any	any
1452 – 1492	40	some	any	any
1492 – 1518	26	any	any	any
3300 – 3400	100	some	some	some
3600 – 3700	100		some	
4800 – 4990	190		some	some
	<mark>New BW 709</mark>			2017




<u>B</u> and	<u>F</u> ootnotes identifying the band for IMT			Bandwidth
(MHz)	Region 1	Region 2	Region 3	
	or parts thereof	or parts thereof	or parts thereof	
450-470		<u>5</u> .286AA		20
<u>470-698</u>	<u>-</u>	<u>5.295, 5.308A</u>	<u>5.296A</u>	228
6 <u>94/</u> 698-960	<u>5.317A</u>	<u>5.317A</u>	<u>5</u> .313A, 5.317A	262
<u>1 427-1 518</u>	<u>5.341A, 5.346</u>	<u>5.341B</u>	<u>5.341C, 5.346A</u>	91
1 710-2 025		315		
2 110-2 200	5.388 90			
2 300-2 400	5.384A 100			
2 500-2 690	5.384A 190			190
<u>3 300-3 400</u>	<u>5.429B</u>	<u>5.429D</u>	<u>5.429F</u>	100
3 400-3 600	<u>5</u> .430A	<u>5.431B</u>	<u>5</u> .432A, 5.432B, 5.433A	200
<u>3 600-3 700</u>	<u>-</u>	5.434	<u>-</u>	100
<u>4 800-4 990</u>	<u>-</u>	<u>5.441A</u>	<u>5.441B</u>	190
Total Bandwidth	1,886 (Regional allocations vary and therefore totals can be different for a specific region)			

IMT Bands after WRC-15

- Satisfy growing IMT broadband spectrum requirements:
 - 60% increase in IMT bands after WRC-15
 - Total IMT spectrum of 1886 MHz
- Harmonization of IMT bands:
 - 39% increase in globally harmonized spectrum after WRC-15
 - 318 MHz of harmonized bands in more than 80% of countries:

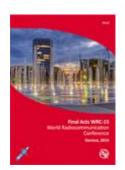
Secures future of other services through:

- coordination procedures,
- technical restrictions,
- In some cases operation on a non-interference basis

WRC-15 (Follow up)

- WRC-15 Final ACTs available at:
 - www.itu.int/pub/R-ACT-WRC.12-2015 (ITU CL-16/22 of 17 May 2016)

Radio Regulation 2016 edition available at:


<u>http://www.itu.int/pub/R-REG-RR/en</u>

2016 New! Publication Notice with Order Form

The Radio Regulations, edition of 2016, contains the complete texts of the Radio Regulations as adopted by the World Radiocommunication Conference (Geneva, 1995) (WRC-95), subsequently revised and approved by the World Radiocommunication Conference (Geneva, 1997) (WRC-97), the World Radiocommunication Conference (Istanbul, 2000) (WRC-2000), the World Radiocommunication Conference (Geneva, 2003) (WRC-03), the World Radiocommunication Conference (Geneva, 2007) (WRC-07), the World Radiocommunication Conference (Geneva, 2012) (WRC-12) and the World Radiocommunication Conference (Geneva, 2015) (WRC-15), including all Appendices, Resolutions, Recommendations and ITU-R Recommendations incorporated by reference. Available: end-October 2016

Available in

Going Forward

- Following the WRC-15 the CPM19 had its first meeting from 30 November 1 December 2015.
 - 269 participants from 63 Member States, 1 Observer from the State of Palestine and 25 Sector Members
- The main task of the CPM was to decide on the structure of the CPM Report (for the WRC-19 conference) and the chapter rapporteurs and allocate the work to the relevant study groups.

Resolution COM 6/16 of WRC-15 contains the proposed agenda items for the WRC-19 and also references to the relevant Resolutions which are calling for the appropriate studies.

CHAPTER 1:

Agenda items: Rapporteur:

Agenda items:

Rapporteur:

Land mobile and fixed services 1.11, 1.12, 1.14, 1.15 Ms Keer ZHU (China (People's Republic of))

CHAPTER 2:

Broadband applications in the mobile service 1.13, 1.16, 9.1 (issues 9.1.1, 9.1.5, 9.1.8) Mr José ARIAS (Mexico)

CHAPTER 3:

Satellite services

 Agenda items: Rapporteur: 1.4, 1.5, 1.6, 7, 9.1 (issues 9.1.2, 9.1.3, 9.1.9) Mr Nicolay VARLAMOV (Russian Federation)

CHAPTER 4:

 Agenda items: Rapporteur:

Science services

1.2, 1.3, 1.7 Mr Vicent MEENS (France)

CHAPTER 5:

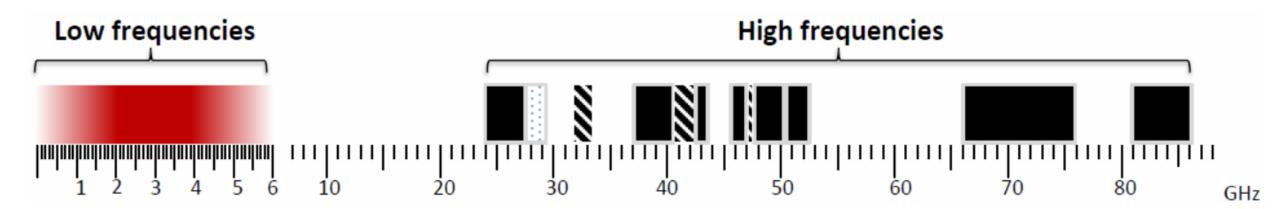
 Agenda items: Rapporteur:

Maritime, aeronautical and amateur services 1.1, 1.8, 1.9, 1.10, 9.1 (issue 9.1.4) Mr Wael EL SAYED (Egypt (Arab Republic of))

CHAPTER 6:

General issues

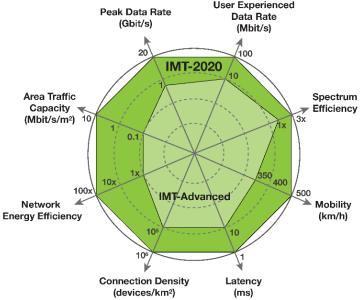
 Agenda items: Rapporteur: 2, 4, 9.1 (issues 9.1.6, 9.1.7), 10 Mr Peter N. NGIGE (Kenya (Republic of))



Agenda Item	Issues Covered	Chapter Number
1.1, 1.2, 1.3, 1.4	Mobile and Amateur	1
1.11, 1.12, 1.13, 1.14	Science	2
1.5,1.15, 1.16, 1.17, 1.18	Aeronautical, Maritime and Radiolocation Issues	3
1.6, 1.7, 1.8 , 1.9 (1.9.1 and 1.9.2), 1.10	Satellite Services, FSS	4
7, 9 (9.1, 9.2, 9.3)	Satellite Regulatory Issues	5
2 (2.1 and 2.2), 4, 9, 10	General Issues	6

Res. 809 (WRC-15): 17 specific and 6 standing Items

IMT spectrum requirements and WRC-19


- In scope of WRC-19, already allocated to Mobile Service
- In scope of WRC-19, require allocation to Mobile Service
- Not in scope of WRC-19, but allocated to Mobile Service
- In scope of previous WRCs

BB applications in MS (WRC-19 Agenda item 1.13 and 1.16)

- The following bands, which are already allocated to mobile, will be studied with a view to an IMT-2020 identification:
 Peak Data Rate
 User Experienced
 Determined
 - 24.25 27.5 GHz
 - 37 40.5 GHz
 - 42.5 43.5 GHz
 - 45.5 47 GHz
 - 47.2 50.2 GHz
 - 50.4 52.6 GHz
 - 66 76 GHz
 - 81 86 GHz
- The following bands will also be studied, although they do not currently have global mobile allocations: Res. 238 (WRC-15)
 - 31.8 33.4 GHz
 - 40.5 42.5 GHz
 - 47 47.2 GHz

Overlapping Bands in WRC-19 Agenda Items

1.6 – NGSO FSS Res. 159 (wrc-15)	1.13 – IMT Res. 238 (wrc-15)	1.14 – HAPS Res. 160 (wrc-15)	9.1 (9.1.9) – FSS Res. 162 (wrc-15)
	24.25 - 27.5	24.25 - 27.5 (Reg. 2)	
37.5 - 39.5 (s-E*)	37 - 40.5	38 - 39.5 (globally)	
39.5 - 42.5 (s-E*)	40.5 - 42.5		
47.2 - 50.2 (E-s*)	47.2 - 50.2		
50.4 - 51.4 (E-s*)	50.4 - 52.6		51.4 - 52.4 (E-s*)

• E-s: Earth-to-space; s-E: space-to-Earth.

• All bands in GHz

Studies to address mutual compatibility & sharing feasibility among the services/applications for which allocation/identification is envisaged under the corresponding Res. relating to the AI in the overlapping bands

Future Spectrum need estimation for IMT (24.25 GHz - 86 GHz)

	Examples	Associated conditions for different examples (For details, please see the corresponding sections in the Annex A)	Spectrum needs in total (GHz)	Spectrum needs (GHz) per range
		Overcrowded, Dense urban and Urban areas	18.7	 3.3 (24.25-33.4 GHz range) 6.1 (37-52.6 GHz range) 9.3 (66-86 GHz range)
Application- based approach	1	Dense urban and Urban areas	11.4	 2.0 (24.25-33.4 GHz range) 3.7 (37-52.6 GHz range) 5.7 (66-86 GHz range)
<u>ITU-R</u> <u>M.1651</u>	2	Highly crowded area	3.7	 0.67 (24.25-33.4 GHz range) 1.2 (37-52.6 GHz range) 1.9 (66-86 GHz range)
		2 Crowded area	1.8	 0.33 (24.25-33.4 GHz range) 0.61 (37-52.6 GHz range) 0.93 (66-86 GHz range)

Source: Chairman's report TG 5/1 Annex 2: Working document towards Draft CPM text for WRC-19 AGenda Item 1.13

Future Spectrum need estimation for IMT (24.25 GHz - 86 GHz)

	Examples	Associated conditions for different examples (For details, please see the corresponding sections in the Annex A)	Spectrum needs in total (GHz)	Spectrum needs (GHz) per range
Technical performance	1	User experienced data rate of 1 Gbit/s with N simultaneously served users/devices at the cell-edge, e.g., Indoor	 3.33 (N=1), 6.67 (N=2), 13.33 (N=4) 	Not available
-based approach (Type 1) Calculated on single	Ţ	User experienced data rate of 100 Mbits/s with N simultaneously served users/devices at the cell-edge, for wide area coverage	 0.67 (N=1), 1.32 (N=2), 2.64 (N=4) 	Not available
technical	2	eMBB Dense Urban	▶ 0.83-4.17	Not available
performance requirement,	2	eMBB Indoor Hotspot	≽ 3-15	Not available
i.e. user experienced data rate. 3	3	With a file transfer of 10 Mbits by a single user at cell-edge in 1 msec	33.33 GHz (one direction)	
		With a file transfer of 1 Mbit by a single user at cell-edge in 1 msec	3.33 GHz (one direction)	Not available
		With a file transfer of 0.1 Mbits by a single user at cell-edge in 1 msec	333 MHz (one direction) 2017	

Source: Chairman's report TG 5/1 Annex 2: Working document towards Draft CPM text for WRC-19 Agender 1.13

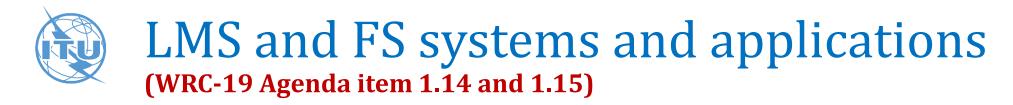
	Examples	Associated conditions for different examples (For details, please see the corresponding sections in the Annex A)	Spectrum needs in total (GHz)	Spectrum needs (GHz) per range		
Technical performance- based approach (Type	Dense urban micro		Dense urban micro			5.8-7.7 (24.25-43.5 GHz range)
2) Calculated taking into account different technical performance requirements, i.e. user experienced data rate, peak data rate and area traffic capacity	-	Indoor hotspot	14.8-19.7	9-12 (24.25-43.5GHz and 45.5-86 GHz range)		
Information from some countries based on their national considerations	-	_	7-16	2-6 (24.25-43.5 GHz range) 5-10 (43.5-86 GHz range)		

Source: Chairman's report TG 5/1 Annex 2: Working document towards Draft CPM text for WRC-19 Agenda Item 1.13

Note: The spectrum needs estimates of the different approaches and examples should be considered separately.

Future Spectrum need estimation for IMT (24.25 GHz - 86 GHz)

Deployment	Indoor botcoot	Dense urban		Urban macro
scenarios	Indoor hotspot	Micro	Macro	Urban macro
Frequency range	24.25-86 GHz	24.25-43.5 GHz	<6 GHz	<6 GHz


Deployment scenario	Micro	Indoor hotspot
Total spectrum needs for 24.25-86 GHz	14.8-19.7 GI	Hz [*]
Spectrum needs for 24.25-43.5 GHz	5.8-7.7 GHz	0 12 CU-
Spectrum needs for 45.5-86 GHz	— **	9-12 GHz

* Considering the coexistence between multiple network operators (e.g. the guard band(s) may be required in the case of multiple network operators scenarios), the total spectrum needs are expected to be increased.

** The division in this table regarding frequency ranges and deployment scenarios is just an indicative example on how spectrum needs could be distributed for different spectrum sub-ranges within 24.25-86 GHz and different deployment scenarios. This table should not be understood nor used to exclude any possible IMT-2020 deployment options in the range 45.5-86 GHz.

Source: WP 5D Liaison statement to Task Group 5/1

- Res. 160 (WRC-15) Studies for considering appropriate regulatory actions for HAPS, within existing FS allocation i.e
 - at 47.2-47.5, 47.9-48.2 & 31.0-31.3**/27.9-28.2GHz (outside Reg. 2, +5 ADMs @6.5/6.5MHz)
 - or study new bands: 38-39.5 GHz & 21.4-22 & 24.25-27.5 GHz

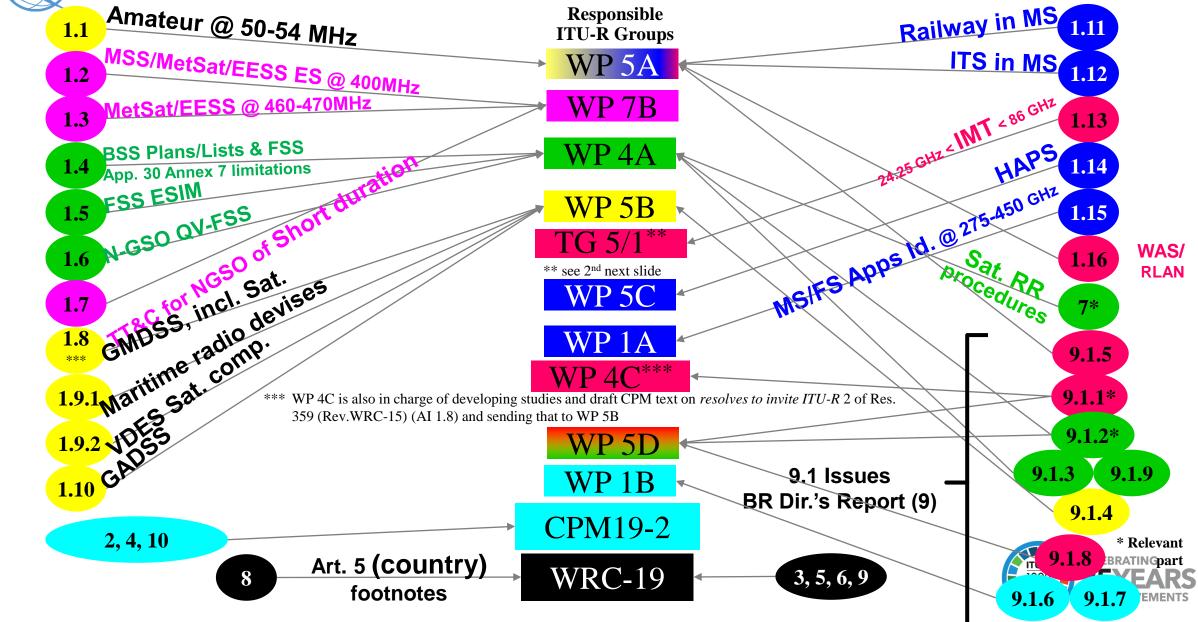
Res. 767 (WRC-15) Studies towards an identification for use by Administrations for LMS and FS applications operating in the frequency range 275-450 GHz

Res. 236 (WRC-15) Studies to facilitate global or regional harmonized bands to support railways RF systems between train & trackside within existing MS allocations

Res. 237 (WRC-15) Global or regionally harmonized bands, to the maximum extent possible, for implementation of evolving ITS within existing MS allocations

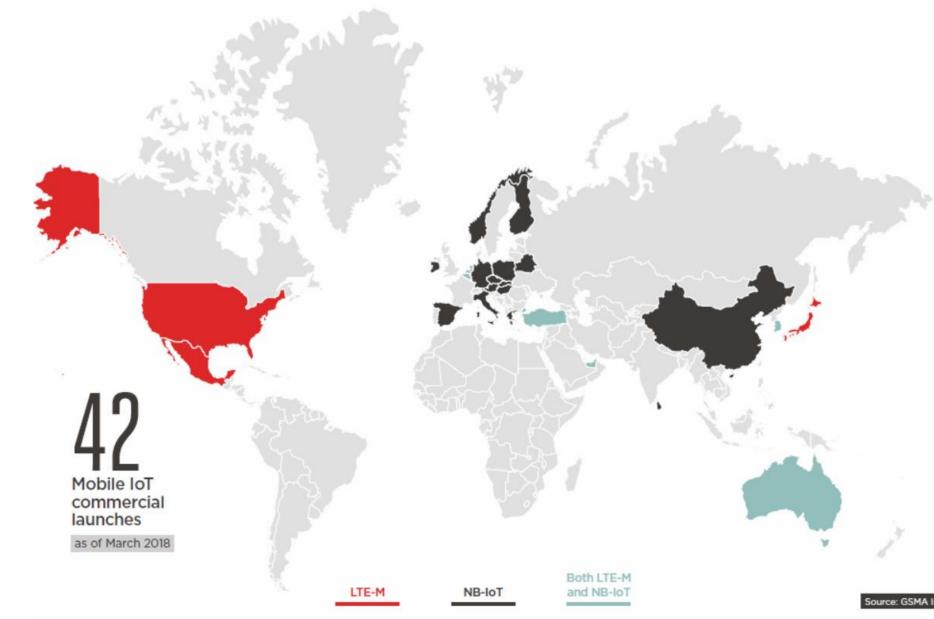
- Res. 958 (WRC-15): URGENT STUDIES to be reported under WRC-19 agenda item 9.1 :
 - (9.1.6) Wireless Power Transmission (WPT) for electric vehicles
 - Study suitable harmonized bands to minimize impact on RF services
 - (9.1.7) Managing unauthorized operations of Earth Station terminals
 - study need for possible additional measures and possible methods that will assist administrations
 - (9.1.8) Narrowband & BB machine-type communication infrastructures
 - study related technical and operational aspects of radio networks and systems (incl. spectrum needs & possible harmonized use of spectrum)

Other studies in WRC-15 Res. to be reported in WRC-19


OTHER STUDIES to be reported under WRC-19 agenda item 9.1 :

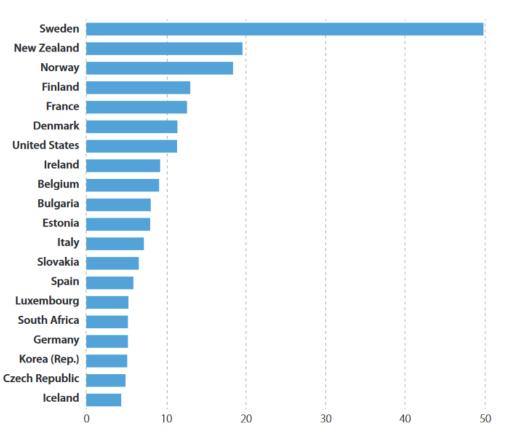
- (9.1.1) Res. 212 Terrestrial and Satellite components (Rev.WRC-15) of IMT, co- existence & compatibility @ 1 885-2025 & 2110-2200 MHz
- (9.1.2) Res. 761 IMT and BSS sound @ 1452-1492 MHz (WRC-15) in R1&3
- (9.1.3) Res. 157 N-GSO Sat. in "C-Band" allocated to (WRC-15) the FSS
- (9.1.4) Res. 763 Stations on board sub-orbital vehicles (WRC-15)
- (9.1.5) Res. 764 Incorporation by reference of (WRC-15) Rec. ITU-R M.1638-1 & ITU-R M.1849-1
- (9.1.9) Res. 162 FSS needs @ 51.4-52.4 GHz(WRC-15)

WRC-19 agenda items & Resp. Groups


Some 5G Deployments strategies

Regulator	Low (1 GHz)	Medium (<6GHz)	High (mmWave)
FCC	600MHz auctioned – T-Mobile using for 5G	3.5GHz band to be shared under CBRS	28GHz available; 64GHz for unlicensed
Ofcom	700MHz spectrum available by 2020	3.5GHz cleared; 3.7GHz under consultation	26GHz to be repositioned for mobile data
MISP (KOR)	700MHz and 1.3GHz to be freed up in 2018	3.5GHz to be allocated	28GHz – 1GHz available; 38GHz to be allocated
MIIT (CHN)	800MHz for NB-IoT	3.3GHz, <u>3.5GHz</u> , 4.4GHz, 4.9GHz being considered	26GHz and 40GHz reallocation underway
MIC (JPN)	700MHz assigned for LTE	3.4GHz & 4.4-4.9GHz under review, 3.5GHz done	27.5-29.5GHz to be reassigned for mobile BB
	For coverage – mobile BB and massive IoT	3.5GHz has wide support – for eMBB and mission-critical apps	26 – 28GHz has wide support – high density and high capacity

3.5GHz IMT vs FSS will be evaluated and coordinated with neighbouring countries


Mobile IoT commercial Launches

- IoTs are in early stage of deployment
 - Some operators already provided services
- Spectrum requirements vary with usage cases
 - Could be Unlicensed or Licensed.
- IMT supports numerous applications including support for IMT services
- Need to manage spectrum in a way to ensure spectrum remains available to the highest value user/technology.

M2M subscriptions per 100 mobile-cellular subscriptions

Based on available data, there were 22 mobile-cellular subscriptions for each machine-to-machine (M2M) subscription worldwide at the beginning of 2015.

The countries with the highest M2M penetration rates are highly industrialized, advanced economies, including the Northern European countries of Sweden, Norway, Finland and Denmark

Source: ITU. Note: Data refer to early 2015.

Thank U "Committed to connecting the WORLD"

Further Information

Overview of ITU calendar

Year	January – March	April – June	July – Septemb	er	0	October – [December
2015	CPM15-2	Last meetings of the Responsible Groups		RC-15	RA-15	WRC-15	CPM19-1
	WP 5D (1 st)	WPs 7B & 7C (1 st)	WP 40	+WP 4A (2	nd)		·
		WP 4C+WP 4A (1 st)			W	P 5D (3rd)	
2016		WPs 5A, 5B & 5C (1 st)			N	/Ps 7B & 7	C (2 nd)
2010		TG 5/1 (1 st)				WPs 5A, 5	B & 5C (2 nd)
		WPs 1A & 1B (1 st)				WPs	1A & 1B (2 nd)
		WP 5D (2 nd)	CPM-19 Stee	ering			
	WP 5D (4 th)	WPs 7B & 7C (3 rd)	[TG	5/1 (3 rd)]	WP 5D	(6 th)	.
		WP 4C+WP 4A (3 rd)		WP 4C+WP 4A (4 th)			
2017		TG 5/1 (2 nd)		WPs 7B & 7C (4 th)			
2017		WPs 5A, 5B & 5C (3 rd)				[WPs 5A, 5	B & 5C (4 th)]
		WPs 1A & 1B (3 rd)				[WS on	WRC-19]
		WP 5D (5 th)				[WPs	1A & 1B (4 th)]
			[TG 5/1 (6 th)]				
	[Responsible Groups Meetings]	[Responsible Groups Meetings]	[Responsible Groups	[R	esponsibl	e Groups I	Meetings]
2018	[TG 5/1 (4 th)]	[TG 5/1 (5 th)]	Meetings]				
				CPM-19]	WS on WRC-19]
				Manag ^{nt} Team			
2010	CDN 110 2	[Last meetings of the Res	sponsible Groups]			10	NDC 10
2019	CPM19-2	[WS on WRC-19]				RA-19	WRC-19

[...] = planned meetings

WS on WRC-19 = ITU Inter-regional Workshop on WRC-19 Preparation

2017 OF ACHIEVEMENTS

Up-to-date information online at: <u>www.itu.int/en/events/Pages/Calendar-Events.aspx?sector=ITU-R</u>

ITU preparatory studies for WRC-19

Resolution 809 (WRC-15) contains the WRC-19 agenda.

WRC-19 agenda Item (Chapter)	Issue	WRC Resolution (*)	Responsible Group(s)	Information from Responsible Group(s)
1		-	-	-
1.1 (5)		Res. 658 (WRC-15)	WP 5A	Doc. 5A/298 Sections 3.3 & 4 and Annexes 4 (c), 5 (b), 14 & 15
1.2 (4)		Res. 765 (WRC-15)	WP 7B	Doc. 7B/170 Section 3.3.1 and Annexes 1 (c), 2 (b), & 18
1.3 (4)		Res. 766 (WRC-15)	WP 7B	Doc. 7B/170 Section 3.3.2 and Annexes 3 (c), 4 (b), & 19
1.4 (3)		Res. 557 (WRC-15)	WP 4A	Doc. 4A/196 Section 4.1.1 and Annexes 5 & 26 (b)
1.5 (3)		Res. 158 (WRC-15)	WP 4A	Doc. 4A/196 Section 4.1.2 and Annexes 16 to 20 & 27 (b)
1.6 (3)		Res. 159 (WRC-15)	WP 4A	Doc. 4A/196 Section 4.1.3 and Annexes 4, 8, 9 & 28 (b)
1.7 (4)		Res. 659 (WRC-15)	WP 7B	Doc. 7B/170 Section 3.1.6 and Annexes 5 (c), 6 (b), 7, 8, 9 & 20
1.8 (5)		Res. 359 (Rev.WRC-15)	WP 5B (1)	Doc. 5B/195 Sections 2.1.1 & 3.3.1.2 and Annexes 1 (c) & 2 (b) Doc. 4C/43 Sections 3.2.4 & 4.2
1.9 / 1.9.1 (5)		Res. 362 (WRC-15)	WP 5B	Doc. 5B/195 Sections 2.1.1 & 3.3.1.3 and Annexes 3 (c), 4 (b), 19, 23, 33 & 36 Circular Letter 5/LCCE/64
1.9 / 1.9.2 (5)		Res. 360 (Rev. WRC-15)	WP 5B	Doc. 5B/195 Sections 2.1.1 & 3.3.1.4 and Annexes 5 (c), 6 (b) & 26
1.10 (5)		Res. 426 (WRC-15)	WP 5B	Doc. 5B/195 Sections 2.1.1 & 3.2.1.1 and Annex 8
1.11 (1)		Res. 236 (WRC-15)	WP 5A	Doc. 5A/298 Sections 3.4, 3.7 & 4 and Annexes 6 (c), 7 (b) & 16

www.itu.int/go/rcpmwrc-19-studies

ITU inter-regional Workshops for WRC-19

- To be scheduled halfway through the preparatory cycle
 - Presentation and review of the on-going preparatory studies of the ITU-R responsible groups for CPM-19
 - Presentation of the organization, preliminary views, draft priorities and positions of the regional groups

• To be scheduled few months prior to CPM19-2

1st Workshop**

[21-22] Nov. 2017*

2nd Workshop

[Q4 2018]**

3rd Workshop

[Q3 2019]**

- Presentation of the Draft CPM Report to WRC-19 (explanation of the draft Methods to satisfy the (WRC-19 agenda items)
- Presentation and review of the regional groups' draft views, positions and common proposals

• To be scheduled few months prior to WRC-19

- Presentation of the CPM & Dir. Reports to WRC-19
- Presentation and review of the regional groups' draft views, positions and common proposals

* Subject to the confirmation of the dates of the ITU-R SG 5 meeting currently planned on 20 Nov. 2017

** Updated information on meeting dates to be provided later on at: www.itu.int/en/events/Pages/Calendar-Events.aspx?sector=