

IoT Standards Part I: IoT Technology and Architecture

Training on PLANNING INTERNET OF THINGS (IoTs) NETWORKS

25 – 28 September 2018

Bandung – Indonesia

Sami TABBANE September 2018

Objectives

Present short range and long range
IoT standards and architecture.

State of Art in the world.

I. Introduction

II. LPWAN Architecture

III. IoT Short Range and Long Range Systems

IV. State of Art

I. Introduction

IoT Definition of ITU

Internet of things (IoT) [ITU-T Y.2060]: A global infrastructure for the information society enabling advanced services by interconnecting (physical and virtual) things based on existing and evolving, interoperable information and communication technologies.

NOTE 1 (from [ITU-T Y.2060]) – From a broad perspective, the IoT can be perceived as a vision with technological and societal implications.

NOTE 2 (from [ITU-T Y.2060]) – Through the exploitation of identification, data capture, processing and communication capabilities, the IoT makes full use of things to offer services to all kinds of applications, whilst ensuring that security and privacy requirements are fulfilled.

"In the vision of IoT, 'things' are very various such as computers, sensors, people, actuators, refrigerators, TVs, vehicles, mobile phones, clothes, food, medicines, books, etc. These things are classified as three scopes:

- > People,
- > Machine (for example, sensor, actuator, etc.)
- Information (for example, clothes, food, medicine, books, etc.).

These 'things' should be identified at least by one unique way of identification for the capability of addressing and communicating with each other and verifying their identities. In here, if the 'thing' is identified, we call it the 'object.'"

"An IoT system is a network of networks where, typically, a massive number of objects, things, sensors or devices are connected through communications and information infrastructure to provide value-added services via intelligent data processing and management for different applications (e.g. smart cities, smart health, smart grid, smart home, smart transportation, and smart shopping)." -- IEEE Internet of Things Journal

General Concept of Web of Things

Source: Recommendation ITU-T Y.4414/H.623 (11/2015)

Technically, IoT consists in the direct digital and standardized identification (IP @, smtp, http protocols ...) of a physical object through a wireless communication system.

IoT Specificities versus Cellular

- *IoT communications* are or should be:
- > Low cost,
- > Low **power**,
- Long battery duration,
- High number of connections,
- ≻ Low bitrate,
- Long range,
- Low processing capacity,
- Low storage capacity,
- Small size devices,
- Simple **network architecture** and **protocols**.

- **>** Low power,
- Low cost (network and end devices),
- Short range (first type of technologies) or Long range (second type of technologies),
- Low bit rate (≠ broadband!),
- > Long battery duration (years),
- Located in any area (deep indoor, desert, urban areas, moving vehicles ...)

IoT Specificities and Impacts on Network planning and design

Characteristics	Impact
Low power and Wide Range	 High sensitivity (Gateways and end-devices with a typical sensitivity around -150 dBm/-125 dBm with Bluetooth/-95 dBm in 2G/3G/4G) Low frequencies → strong signal penetration Narrow band carriers → far greater range of reception +14 dBm (ETSI in Europe) with the exception of the G3 band with +27 dBm, +30 dBm but for most devices +20 dBm is sufficient (USA)
Low deployment and Operational Costs	 Low gateways cost Wide range → Extended coverage + strong signal penetration (deep indoor, Rural) Low numbers of gateways → Link budget: UL: 155 dB (or better), DL: Link budget: 153 dB (or better)
Long Battery life (10mA RX current, 100nA sleep current)	 Low Power Idle mode most of the time. Connected mode just for transmission (some mA) < 100 MHz clock frequency Embedded memory of a few Mo Idle mode allowing an energy consumption of around 100 μW

<u>*N.B.*</u>: planning tasks only apply to long range technologies (type 2).

IoT Specificities and Impacts on Network planning

Characteristics	Impact
Shared Spectrum -> Interference Management	 Clear channel assessment Frequency hopping OFDM/CDMA access and NOMA technologies Activity rate around 1% (regulation and energy constraints)
Service diversity	 Diversity of the traffic models Diversity of the transmission modes
Low bitrates (hundreds to thousands of bits/sec. compared to 250 Kbit/s in ZigBee and 1-2 Mbit/s in Bluetooth)	- Low capacity and lower number of gateways
Small payloads (around 1000 bits): encrypted device ID and measurement or actuation command	- Low capacity and lower number of gateways
Simple topology (single-hop links)	 Simplifies the coverage of large areas Share the existing cellular networks infrastructure

IoT Networks and Services are **Very Different** from « Classical Networks » in Many Aspects and Especially from a Planning Perspective

II. LPWAN Architecture

IoT wireless technologies overview

IoT 4 layers model

Integrated Applications

Information Processing

Network Infrastructure

Sensing and Identification

IoT reference model

IoT network general architecture

IoT and Fog Computing (FC)

- Transmission of all data to the cloud for: *processing* and *analysis*
- → Large bandwidth and communication procedure very inefficient, energy-hungry or even critical in case of scarce available bandwidth resources or massive concurrent accesses,
- → Introduces *unacceptable latencies* in the decision making process.
- ⇒ Fog Computing complements the Cloud Computing by *moving* storage and computation close to end-devices also taking advantage of relationships in space and time among collected information.
- ⇒ FC relies on *local highly performing computational units* meant to collect, store and process data acquired by IoT objects.
- ⇒ In IoT solutions supporting FC part of the application processing is executed directly at IoT objects and only when needed. More complex and resource-consuming tasks are transferred to higher level units (FC units) or directly to the cloud.

IoT, edge and fog computing

Fog computing = use of decentralized servers in *between network core and network edge* for *data processing* and *to serve the immediate requirements* of the end systems

Edge and fog computing

A *cloudlet* (Edge) = a mobility-enhanced small-scale cloud datacenter that is located at the edge of the Internet

Edge and fog computing

Things classification

- Things/Objects differentiate according to:
 - The range (short, medium, long)
 - The type of interaction with the system (i.e., service type):

End device

Fnd device

End device

Network

Network

Network

- Network Alarm (transmission initiated by the enddevice only, according to the events, bursty traffic),
 - *Measurements* (triggered either by the end-device or by the system),

- Control (transmissions initiated by the system),
- Combination of these.

Things states and operations

The device can:

- Publish or Subscribe
- Be online or offline
- Manage messages of different formats
- Have different types of communication channels
- Have one channel or several data streams

III. IoT Short Range and Long Range Systems

Summary

A. Fixed & Short Range

B. Long Range technologies

- 1. Non 3GPP Standards (LPWAN)
- 2. 3GPP Standards

A. Fixed & Short Range

- i. RFID
- ii. Bluetooth
- iii. Zigbee
- iv. WiFi

- > Appeared first in 1945
- Features: Identify objects, record metadata or control individual target
- More complex devices (e.g., readers, interrogators, beacons) usually connected to a host computer or network
- ➢ Radio frequencies from 100 kHz to 10 GHz
- > Operating: reading device called a reader, and one or more tags

			induct	tive		radiative	
REÎD	frequency (Hz)	100K	1M	10M	100M	1G	10G
	wavelength (m)	3000	300	30	3	0.3	0.03
RFID Frequencies	common RFID bands	125/13 KHz	4	13.56 MHz		860-960 2.4 MHz GH	4 z
						i	
	less-frequent RFID bands		1	5-7 MHz		433 (MHz	5.2-5.8 GHz

RFID

How does it work?

ii. Bluetooth

- Low Power wireless technology
- Short range radio frequency at 2.4 GHz ISM Band
- Wireless *alternative* to wires
- Creating **PANs** (*Personal area networks*)
- Support Data Rate of 1 Mb/s (data traffic, video traffic)
- Uses frequency-hopping spread spectrum

Class	Maximum Power	Range
1	100 mW (20 dBm)	~100 m
2	2,5 mW (4 dBm)	~10 m
3	1 mW (0 dBm)	~1 m

Bluetooth and IoT

Bluetooth Low Energy

- Enables IoT features
- Lowest cost and Easy to implement
- Discovery & connection improvements
- Low latency, fast transaction (3 ms from start to finish)
- Data Rate 1 Mb/s: sending just small data packets
- **Bluetooth 5**: 4x range, 2x speed and 8x broadcasting message capacity.

Range	~ 150 m	
Output Power	~ 10mW(10 dBm)	Low cost, available, ready to
Max current	15 mA	
Modulation	GFSK at 2.4 GHz	
Sleep current	\sim 1 μ A	

Bluetooth Low Energy for Smart Applications

ZigBee

- Coordinator: acts as a root and bridge of the network
- **Router**: intermediary device that permit data to pass to and through them to other devices
- End Device: limited functionality to communicate with the parent nodes

Low cost, available, ready to go.

ZigBee

- Wireless technology
- Alternative to Wired Technologies

• IEEE 802.11 standard for WLANs

Standard	Frequency bands	Throughput	Range
WiFi a (802.11a)	5 GHz	54 Mbit/s	10 m
WiFi B (802.11b)	2.4 GHz	11 Mbit/s	140 m
WiFi G (802.11g)	2.4 GHz	54 Mbit/s	140 m
WiFi N (802.11n)	2.4 GHz / 5 GHz	450 Mbit/s	250 m
IEEE 802.11ah	900 MHz	8 Mbit/s	100 M

WiFi HaLow

• A new low-power, long-range version of **Wi-Fi** that bolsters **IoT** connections, it will be available in 2018 • Wi-Fi HaLow is based on the pending IEEE 802.11ah specification • Wi-Fi HaLow will operate in the unlicensed wireless spectrum in the 900MHz band • It will easily penetrate walls and barriers thanks to the propagation capabilities of low-frequency radio waves. • Its range will be nearly double today's available Wi-Fi (1 kilometer)

- WiFi is longer range than Bluetooth and ZigBee
- More flexible
- Closer to networks

WiFi Halow

WiFi-based IoT Devices

Summary

A. Fixed & Short Range

B. Long Range technologies

- 1. Non 3GPP Standards (LPWAN)
- 2. 3GPP Standards

Wide-area M2M technologies and IoT

Carrier frequ	iency	Technology	Channel bandwidth	Representative data rate	Link budget target or max. range
Licensed cellular		LTE Cat. 0	20 MHz	DL: 1 Mb/s UL: 1 Mb/s	140 dB
		LTE Cat. M	1.4 MHz	DL: 1 Mb/s UL: 1 Mb/s	155 dB
		NB-IoT	200 kHz	DL: 128 kb/s UL: 64 kb/s	164 dB
		EC-GSM	200 kHz	DL: 74 kb/s UL: 74 kb/s	164 dB
Unlicensed	2.4 GHz	Ingenu RPMA	1 MHz	UL: 624 kb/s DL: 156 kb/s	500 km line of sight
	Sub-1 GHz	LoRa chirp spread spectrum	125 kHz	UL: 100 kb/s DL: 100 kb/s	15 km rural 5 km urban
	Sub-1 GHz	Weightless-N	200 Hz	UL: 100 b/s	3 km urban
	Sub-1 GHz	Sigfox	160 Hz	UL: 100 b/s	50 km rural 10 km urban

H. S. Dhillon et al., "Wide-Area Wireless Communication Challenges for the Internet of Things," IEEE Communications Magazine, February 2017

B. Non 3GPP Standards (LPWAN)

- i. LoRaWAN
- ii. Sigfox
- iii. Weightless
- iv. RPMA
- v. Others

LPWAN REQUIREMENTS

General architecture of LPWAN

i. LoRaWAN

LoRa technology Overview

- LoRaWAN is a *Low Power Wide Area Network*
- LoRa modulation: a version of Chirp Spread Spectrum (CSS) with a typical channel bandwidth of 125KHz
- High Sensitivity (End Nodes: Up to -137 dBm, Gateways: up to -142 dBm)
- Long range communication (up to 15 Km)
- Strong indoor penetration: With High Spreading Factor, Up to
 20dB penetration (deep indoor)
- Occupies the entire bandwidth of the channel to broadcast a signal, making it robust to channel noise.
- Resistant to Doppler effect, multi-path and signal weakening.

Architecture

Spectrum (Influence of the Spreading Factor)

Far with obstacles:

RSSI and SF versus BW

Spreading factor	Bitrate (bit/sec)	Sensitivity (dBm)	LoRa demodulator SNR
7 (128)	5 469	-124 dBm	-7.5 dB
8 (256)	3 125	-127 dBm	-10 dB
9 (512)	1 758	-130 dBm	-12.5 dB
10 (1024)	977	-133 dBm	-15 dB
11 (2048)	537	-135 dBm	-17.5 dB
12 (4096)	293	-137 dBm	-20 dB

SF and repetition can be either **manual** (i.e., determined by the end-device) or **automatic** (i.e., managed by the network)

Maximum throughput (for a single device)

Channel capacity versus load (1)

Assumptions:

- Packets duration: Semtech calculator, for a spreading factor of 7, a bandwidth of 125 kHz, a code rate of 5/4 and 6 symbols in the preamble,
- Packet arrivals follow a Poisson law.
- Uniform distribution of the payloads lengths between 1 and 51 bytes.

- *Results*:
 The variable packet length does not *≥* Capaci greatly impact the performance of LoRaWAN,
- The observed behavior is very close to that of pure ALOHA,
- The maximum capacity usage = 18% of the channel capacity reached for a link load of 0.48,
- At this load, around 60% of the packets transmitted are dropped because of collisions.

Channel capacity versus load (2)

Link capacity usage and packet collision rate for a LoRaWAN network when using confirmed messages

Spectrum (Robustness)

- □ Demodulates the signal at -20 dB below thermal noise thanks to the spread spectrum technique and coding gain mechanisms to improve the robustness of the signal:
 - Spectrum spreading (high SF: penetration up to 20 dB in deep indoor)
 - Forward Error correction to protect the messages
- Increase the probability to decode a signal without minimum errors in interfered environments
- **Dynamic channel management** (network managed)
- Mechanism of non-interfered channels pre-selection

LoRaWAN: device classes

Classes	Description	Intended Use	Consumption	Examples of Services
A (« all »)	Listens only after end device transmission	Modules with no latency constraint	The most economic communication Class energetically Supported by all modules. Adapted to battery powered modules	 Fire Detection Earthquake Early Detection
B (« b eacon »)	The module listens at a regularly adjustable frequency	Modules with latency constraints for the reception of messages of a few seconds	Consumption optimized. Adapted to battery powered modules	 Smart metering Temperature rise
C (« continuous »)	Module always listening	Modules with a strong reception latency constraint (less than one second)	Adapted to modules on the grid or with no power constraints	 Fleet management Real Time Traffic Management

→ Any LoRa object can transmit and receive data

Class A

Class C

End-device address (*DevAddr***)**:

Network identifier	network address of the end-device	
7 bits	25 bits	

❑ Application identifier (AppEUI): A global application ID in the IEEE EUI64 address space that uniquely identifies the owner of the end-device.

Network session key (NwkSKey): A key used by the network server and the end-device to calculate and verify the message integrity code of all data messages to ensure data integrity.

□ Application session key (*AppSKey*): A key used by the network server and end-device to encrypt and decrypt the payload field of data messages.

Lora network	GSM network	
DevAddr	TMSI	
DEVEUI	IMEI	
Gateway EUI	GUI	
AppEUI	IMSI	
Network identifier	PLMN	
NwkSKey, AppSKey	A5/1 algorithm	
Network server	Core network	

Sigfox Overview

- First LPWAN Technology
- The physical layer based on an Ultra-Narrow

band wireless modulation

- Proprietary system
- Low throughput (~100 bps)
- Low power
- Extended range (up to 50 km)
- 140 messages/day/device
- Subscription-based model
- Cloud platform with Sigfox –defined API for

server access

Roaming capability

Architecture

Spectrum and access

- > Narrowband technology
- Standard radio transmission method: binary phase-shift keying (**BPSK**)
- > Takes very narrow parts of spectrum and changes the phase of the carrier radio

Sigfox transmission

- Each message is transmitted 3 times
- A DL message can be sent (option)
- Maximum payload of **UL messages** = 12 data bytes
- Maximum payload of **DL messages** = 8 bytes

Current state

 SIGFOX LPWAN deployed in France, Spain, Portugal, Netherlands, Luxembourg, and Ireland, Germany, UK, Belgium, Denmark, Czech Republic, Italy, Mauritius Island, Australia, New Zealand, Oman, Brazil, Finland, Malta, Mexico, Singapore and U.S.

Sigfox company objectives:

- ✓ Cover **China** in 2017
- \checkmark 60 countries covered by the end of 2018

iii. Weightless

- Low cost technology to be readily integrated into machines
- Operates in an unlicensed environment where the interference caused by others cannot be predicted and must be avoided or overcome.
- Ability to operate effectively in unlicensed spectrum and is optimized for M2M.
- Ability to handle large numbers of terminals efficiently.

Architecture

	Weightless-N	Weightless-P	Weightless-W	
Communication	1-way	2-ways	2-ways	
Range	5Km+	2Km+	5Km+	
Battery life	10 years	3-8 years	3-5 years	
Terminal cost	Very low	Low	Low-medium	
Network cost	Very low	Medium	ım Medium	
Data Rate	Up to 10 Mbps	Up to 100 Kbps	Up to 200 Kbps	

JOGENU

Random Phase Multiple Access (RPMA)
technology is a low-power, wide-area
channel access method used exclusively
for machine-to-machine (M2M)
communication

- □ RPMA uses the popular 2.4 GHz band
- □ Offer extreme coverage
- □ High capacity
- □ Allow handover (channel change)
- **D** Excellent link capacity

INGENU RPMA Overview

□ RPMA is a Direct Sequence Spread Spectrum (DSSS) using:

Convolutional channel coding, gold codes for spreading

✤1 MHz bandwidth

Using TDD frame with power control:

- **Closed Loop Power Control:** the access point/base station measures the uplink received power and periodically sends a one bit indication for the endpoint to turn up transmit power (1) or turn down power (0).
- **Open Loop Power Control:** the endpoint measures the downlink received power and uses that to determine the uplink transmit power without any explicit signaling from the access point/base station.

		Complete Slot		
-	2.2 Seconds	$\rightarrow \leftarrow$	2.1 Seconds	
	Downlink Slot	D U G	Uplink Slot	U D G
		TDD frame		

INGENU RPMA architecture

Uplink Subslot Structure Supporting Flexible Data Rate

Step 1: Choose Spreading factor from 512 to 8192

Step 2: randomly select subslot

Step 3: Randomly select delay to add to subslot start from 0 to 2048 chips

EnOcean

- □ Based on **miniaturized power converters**
- **Ultra low power** radio technology
- Frequencies: 868 MHz for Europe and 315 MHz for the USA
- □ Power from pressure on a switch or by photovoltaic cell
- These power sources are sufficient to power each module to transmit wireless and battery-free information.
- □ EnOcean Alliance in 2014 = more than 300 members (Texas, Leviton, Osram,

Sauter, Somfy, Wago, Yamaha ...)

Green.Smart.Wireless. enocean®

Low power radio protocol

- □ Home automation (lighting, heating, ...) applications
- □ Low-throughput: 9 and 40 kbps
- □ Battery-operated or electrically powered
- □ Frequency range: 868 MHz in Europe, 908 MHz in the US
- □ Range: about 50 m (more **outdoor**, less indoor)
- □ Mesh architecture possible to increase the coverage
- Access method type CSMA / CA
- □ Z-Wave Alliance: more than 100 manufacturers in

Thank you!

