# **ENABLING ACCESS TO THE SPECTRUM & ORBIT RESOURCES**

Workshop on the Efficient Use of the Orbit/Spectrum Resource, Bangkok, 30 August 2017



#### Access to spectrum: Agenda Item 7 of the WRC

- Combining a pragmatic approach for new entrants
- The case for partnering
- Conclusions



### **ACCESS TO SPECTRUM: AGENDA ITEM 7 OF THE WRC**

#### Agenda Item 7 of WRC-15

- → a standing agenda item at WRC conferences (Resolution 86)
- → "to consider possible changes, and other options... to facilitate rational, efficient and economical use of radio frequencies and any associated orbits, including the geostationary-satellite orbit."
- Incremental progress continues to be made to improve, rationalize and fairly apply the rules.
- Nevertheless it remains very difficult for a new satellite project to get the access to spectrum needed to assure its success.

3

**/** The regulatory framework alone will not fully solve the problem



### **REALITY OF THE INTERNATIONAL REGULATORY FRAMEWORK**

#### Satellite spectrum is increasingly congested

- → And key to any satellite project,
- While the number of satellite projects is increasing, and the demands for satellite capacity increasing even faster.
- ITU regulations for access to spectrum are complex by nature

#### Need to strike a difficult balance between

- → Equitable access (e.g. planned bands), and
- → Efficient use (e.g. unplanned bands),

#### While providing a stable environment supportive of long term investment.

4



- Access to spectrum: Agenda Item 7 of the WRC
- Combining a pragmatic approach for new entrants
- The case for partnering
- Conclusions



### **OUR EXPERIENCE IN PLANNING A SATELLITE PROJECT...**

#### I One key point from which all else follows:

- → Cost of building and operating a satellite is relatively fixed
- → revenue and value of service provided varies greatly depending on how effectively the satellite can address the market demand

#### And one key error to avoid:

- → Not usually effective to design the satellite on the basis of the presumed available orbital resources
- → E.g., satellite projects based only on a national allotment may not address the full needs to meet market demand.
  - $\rightarrow$  Constraints in coverage, frequencies, power, protection
  - $\rightarrow$  Limitations in both satellite resources and market demand



### **ADDRESSING MARKET DEMAND – BASIC FACTORS**

#### I Long term design needs to address a moving/changing target

- → From conception to on-orbit availability of a satellite is typically at least 4-5 years, the procurement and launch on its own being three years
- → Satellite then generally remains in service for 15 years or more
- → Lesson: very long time scales in terms of predicting, at time of satellite design, where the market demand will be
- Market assessments are essential to developing a viable business plan, but even this is not enough to assure a successful project:

7

- A flexible and versatile satellite design is key
  - → To provide a mix of services to cover the full range of market demand
  - → to address opportunities as they develop



### **CHOOSE A FLEXIBLE SATELLITE DESIGN**

#### What makes a flexible and versatile satellite design?

#### Provides the full range of needed satellite services

- → Broadcast television
  - $\rightarrow$  Contribution
  - $\rightarrow$  Direct to home
- → Broadband connectivity
- → Trunking and backhaul
- → VSATs / corporate data networks

#### Øver a wide addressable coverage area

- → Reach populations outside national boundaries (e.g. broadcast television)
- → Capability to focus resources where demand arises (e.g. data / telecom services)



### PLANNING A SATELLITE PROJECT: ORBITAL RIGHTS CONSIDERATIONS

#### Service and coverage flexibility require corresponding orbital rights

- ✓ Wide geographic coverage/reach is important, but the frequencies and the manner in which they can be operated are also key
  - → Power, antenna sizes
  - Ability to license a service in the target national territories
    - → For example, DTH can be provided in all Ku-bands, but, for example data or VSAT not generally possible and/or feasible in BSS bands.
  - → Availability of equipment in a given frequency and for a given service.
    - → VSAT data equipment for planned bands is more expensive (App30B) and/or very difficult to supply (App30 / 30A)
  - → Compatibility of service both in terms of national terrestrial usage of frequency, as well as in terms of protection / compatibility with respect to nearby satellite operations / rights

**/** Orbital rights are a major challenge / enabler for new satellite projects



- Access to spectrum: Agenda Item 7 of the WRC
- Combining a pragmatic approach for new entrants
- The case for partnering
- Conclusions



Players with complementary profiles can bring together the needed enablers, including:

- Mix of orbital resources, including mature, coordinated networks
- Synergy of general satellite market experience with local access, knowledge and reach
- **/** Reliability and Economy of scale on the satellite:
  - Lower initial investment
  - → More versatile satellite at a lower effective cost
    - $\rightarrow$  Wider range of services
    - $\rightarrow$  Larger coverage
  - Experience with procurement process and satellite operations mitigates satellite design and implementation risk
  - → Ability to provide contingency and backup vs a single satellite scenario

Provides for viable opportunities for new entrants



### **ONE EXAMPLE: THE CONDOMINIUM SATELLITE**

- Several partners joint forces to pursue a satellite project together
- The satellite embarks several payloads, each of them being specific and fully dedicated to the needs of each partner
- Partners share the fixed costs of the satellite program
- > Each partner can commercialise its payload under its own name, which is then recognised as its own spacecraft e.g. CountrySat





#### Real Estate condominium



## **COMPARING STAND-ALONE WITH CONDOMINIUM OPTION**

|                     |                                           | Stand-alone                                                                                                                                                                                                                                                                                                                              |                                             | Condominium Satellite                                                                                                                                                                                                                                                                                       |  |
|---------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Satellite<br>Design | <b>→</b>                                  | satellite technology not optimal for single average-size country coverage                                                                                                                                                                                                                                                                | <b>&gt;</b>                                 | Satellites are well suited to cover wide areas and address many countries                                                                                                                                                                                                                                   |  |
| Financial           | →                                         | Fixed costs not directly proportional to payload size: launch,<br>insurance, platform<br>Financing can be challenging                                                                                                                                                                                                                    | <b>→</b>                                    | Fixed costs shared reducing cost per transponder<br>Financing expertise with ECA (Coface, EXIM) and<br>Development finance institution (EBI, IFC)                                                                                                                                                           |  |
| Independence        | <b>→</b>                                  | Full ownership on both mission / payload and control / platform                                                                                                                                                                                                                                                                          | <ul> <li>→</li> <li>→</li> <li>→</li> </ul> | Full independence of mission achievable: dedicated payload & telecommunication operations from local teleport<br>Platform control responsibility of one party or 3rd party<br>Each partner commercialises its payload under own name,<br>recognised as its own spacecraft e.g. CountrySat                   |  |
| Commercial          | $\rightarrow$ $\rightarrow$ $\rightarrow$ | <ul> <li>New entrants exposed to fierce competition</li> <li>Return on investment is a challenge in a global market</li> <li>Not all frequency rights are adapted to all applications:</li> <li>→ data is generally not possible in BSS</li> <li>→ low cost VSAT equipments today available for unplanned Ku and Ka-band only</li> </ul> | <ul> <li>→</li> <li>→</li> </ul>            | Enlarged coverage & target market ease commercialisation of<br>satellite capacity<br>Marketing expertise can be added to the national satellite<br>initiative via partnering with an existing operator<br>Wider regulatory rights allow to benefit from the right<br>frequencies for the right applications |  |



- Access to spectrum: Agenda Item 7 of the WRC
- Combining a pragmatic approach for new entrants
- The case for partnering
- Conclusions



### CONCLUSIONS

- J Despite congestion and competition for orbital resources, there are possibilities for new entrants today
- Partnerships offer a route to develop economically viable satellite programmes
- Challenges can be addressed through a cooperative/collaborative approach to achieve the enablers to meet market demand
  - → A versatile offer covering the full range of needed satellite services
  - → Wide coverage with flexible operating conditions in the appropriate frequencies
  - → Market reach and regulatory market access.
  - → Risk mitigations and contingency options

I Efficient use of orbital resources ultimately is about how to best providing the needed services over a scarce resource



# Thank you

Ethan Lavan Director of Orbital Resources

tel. : +33 1 5398 3096 email : elavan@eutelsat.fr



