
MARKET METHODS IN SPECTRUM RE-ALLOCATION

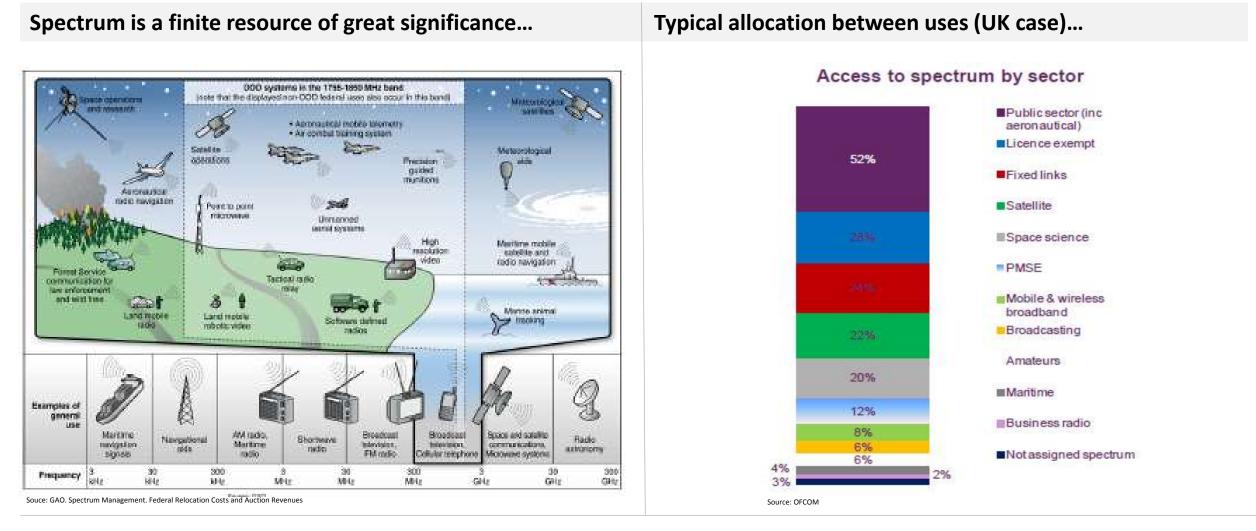
21 – 23 November 2016, Tehran, Islamic Republic of Iran

ITU Workshop on Spectrum Management: Economic Aspects

Pavel Mamchenkov, Russian Federation

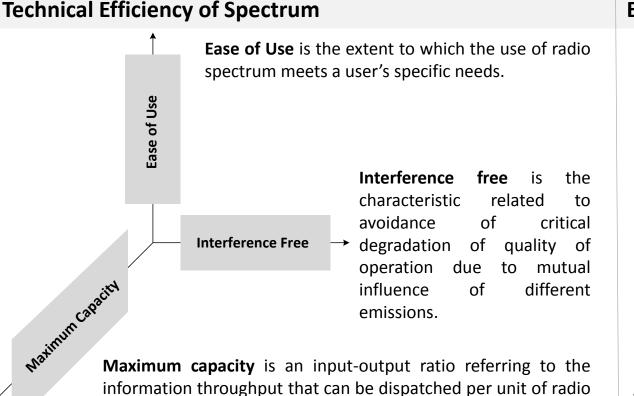
The Footings of Spectrum Re-allocation

Revolving spectrum allocations...


WRC-07	WRC-07	WRC-15	WRC-15
candidate bands	identified bands	Candidate bands	Identified bands
410 – 430 MHz 450 – 470 MHz 470 – 862 MHz 2300 – 2400 MHz 2700 – 2900 MHz 3400 – 3600 MHz 3600 – 3800 MHz 3800 – 4200 MHz 4400 – 4990 MHz	790 – 862 MHz	470 - 698 MHz 1350 - 1400 MHz 1427 - 1452 MHz 1452 - 1492 MHz 1492 - 1518 MHz 1518 - 1525 MHz 1695 - 1710 MHz 2700 - 2900 MHz 3300 - 3400 MHz 3600 - 3700 MHz 3700 - 3800 MHz 3800 - 4200 MHz 4400 - 4500 MHz 4500 - 4800MHz 4500 - 4800MHz 4500 - 4990 MHz 5350 - 5470 MHz 5725 - 5850 MHz 5925 - 6425 MHz	3300 – 3700 MHz

Demand for data is satisfied by faster growing radio technologies with greater geographic reach and capacity, advanced handsets with increased processing power, larger screens, ubiquitous applications such as social media, messaging, video streaming. Data traffic is growing exponentially 60% annually.

The pace of change in radio technologies is speeding up. From ten years life cycle of new generation in the past, now turnover is increasing. The advent of 4G LTE happened six/seven years from the mass commercial adoption of 3G. 5G is estimated to happen four/five years from adoption of 4G.


ITU is in the pervasive rush of seeking for new allocations for emerging radio technologies. Effectively each WRC adopts a host of new spectrum bands for developing and emerging advanced radio technologies.

Today Spectrum Demand Exceeds Available Supply

Balancing competing government and industry demands for a limited amount of spectrum, today and in future, is a challenging and complex task for each Telecommunications Administration

Spectrum Efficiency is the Aspiration Target

spectrum per unit of location. Typically measured in

MBits/MHz/km2

Economic Efficiency of Spectrum

Productive Efficiency **Productive Efficiency**: providing services with the optimal combination of resources to produce maximum output for the minimum cost.

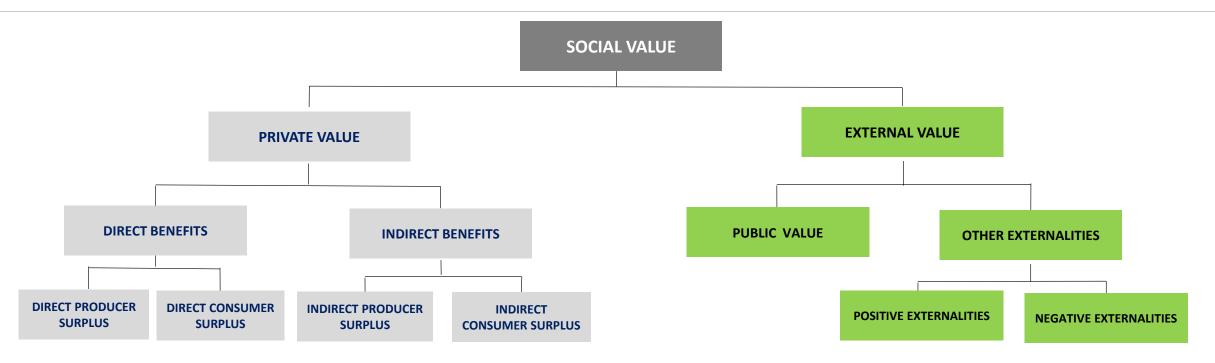
Dynamic efficiency: using the resource in such a way that it enables long-term productivity improvements such as through innovation and R&D.

Allocative efficiency: producing a bundle of services so composed that no other bundle could improve the well being of an agent without harming that of another agent.

Economic efficiency relies here on the Pareto criteria, that is, being able (or not) to improve the well-being of one economic agent without harming that of another.

Dynamic Efficiency ->

Maximizing technical efficiency does not always maximizes total benefits for the society. Market methods in re-allocation underpin an increase in spectrum efficiency.


Market Methods at Different Stages of Spectrum Management

Market Methods in Spectrum Life-Cycle

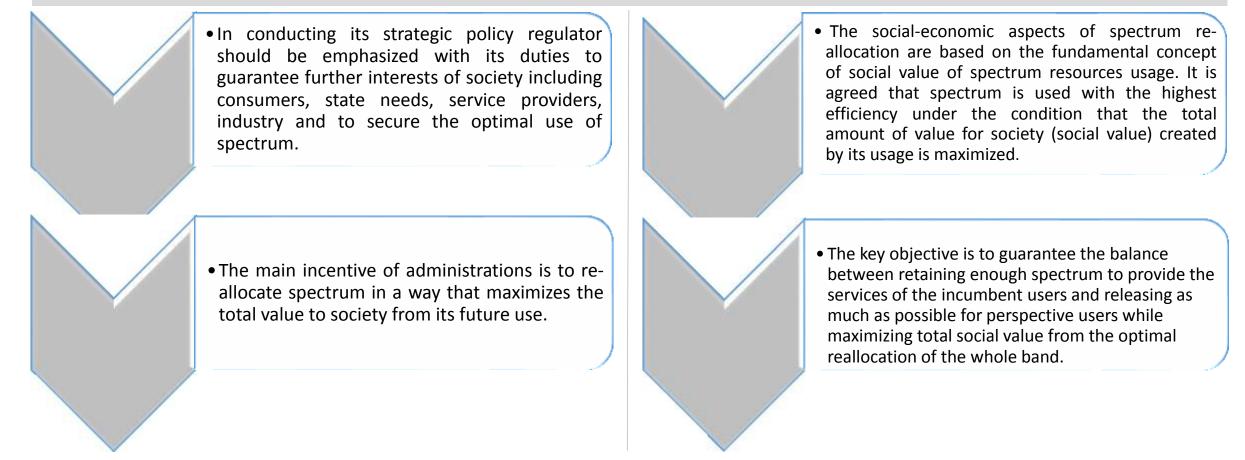
i i i i i i i i i i i i i i i i i i i		, one							
Primary issuing of spectrum (initial licencing)									
Spectrum Auctions	Spectrum Pricing and Trading	Spectrum Incentive Auctions							
Auction ensures that any newly released spectrum into the market is acquired by those who value it most. Primary issuance of licences based on market signals reflects more accurately the value of spectrum and lead to more efficient spectrum utilization.	Genuine spectrum markets are creating under which ownership and use of spectrum can change in the course of licence's operation. Spectrum Trading involves the transfer of spectrum usage rights between interested parties (government, public or private users).	Incentive Auctions is a market-driven mechanism of re-allocation where regulator plays the role of auctioneer in two-sided bidding process and finds equilibrium in supply and demand. Sellers (incumbents) are showing the price for their spectrum intended to be sold - supply.							
	Spectrum Pricing is powerful mean to achieve a range of spectrum management objectives – efficient usage, innovation and competition.	Buyers (newcomers) are showing the price at which they are willing to acquire spectrum proposed by incumbents - demand.							

Market methods should be applied through the whole spectrum life-cycle

Seminal Components of Spectrum Social Value

Private value is the benefit to society created as the sum of direct and indirect benefits.

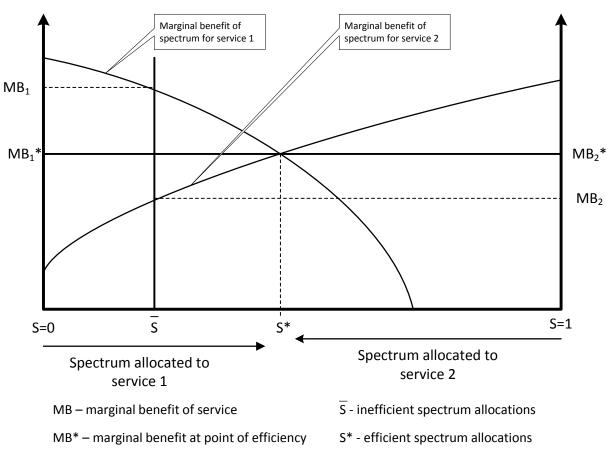
Direct benefits are generated from the direct consumption and provision of radio services.

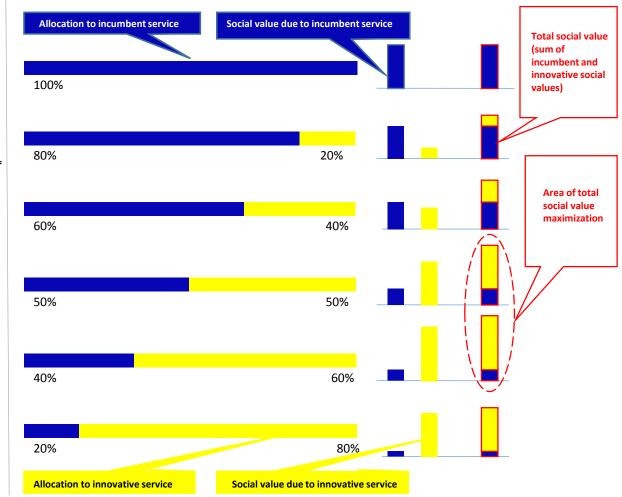

Indirect benefits are generated due to unintended effects of direct service on other product markets thus resulting in further indirect increase of producers and customers surplus.

External value is the additional surplus to consumers or third parties not reflected in the value of the service to consumers.

Public value captures the value that public derives from services because of their broader contribution to society, such as defense and security, social assistance, universal service provision, etc.

Non-Technocratic View on Spectrum Re-allocation


With the experience gained in the last several years it is quite obvious that the technocratic approach with spectrum re-allocation is no longer all-encompassing.

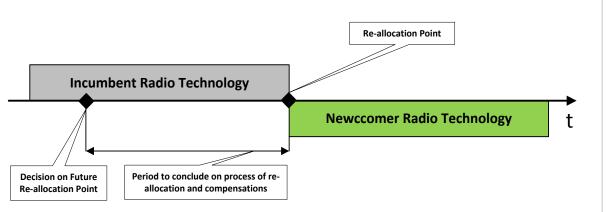

Spectrum re-allocation is the potentiality to obtain additional benefits to society arising from the optimal distribution of spectrum to innovative services taking due account of incumbent uses.

How to Obtain Efficient Re-allocation

Simplified economic example...

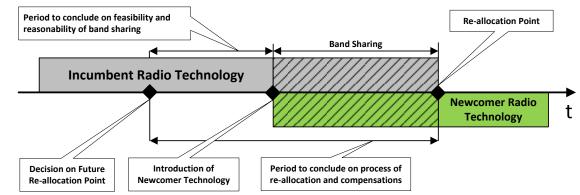
How it works in practice...

Source: Martin Cave, Spectrum Management, Cambridge University Press, 2015

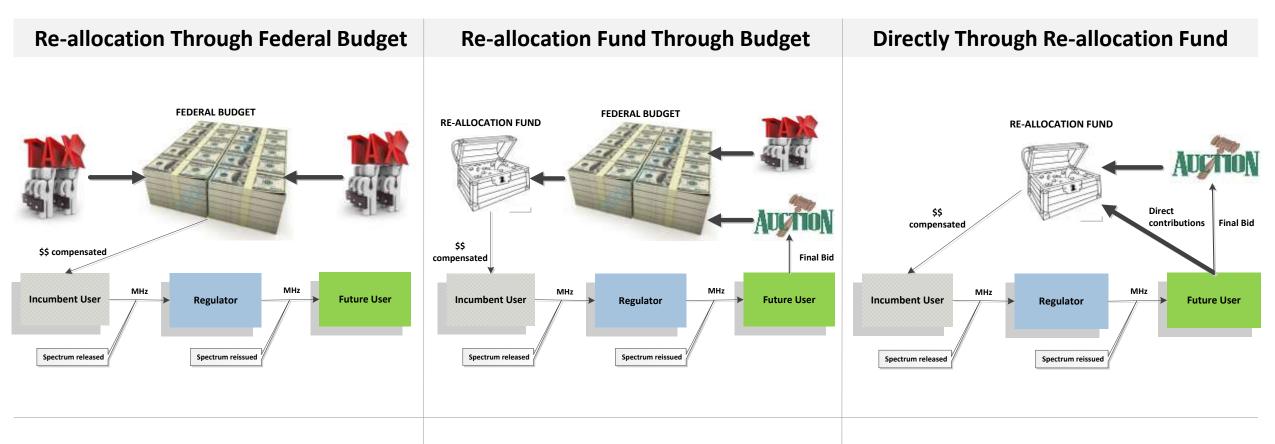

The core challenge is to determine optimal ratio of spectrum resources allocated to incumbents and newcomers so as to maximize the overall social welfare. Market methods are highly eligible.

Re-allocation Classification and Timelines

Re-allocation Classification


Between Private Users	Between Public and Private Users	Between Public Users
 Market methods are preferred to decide on optimum and efficient distribution of allocations among users based on: Spectrum trading Spectrum pricing In a loose sense – Coase theorem and Pareto criterion. Incentive auction – innovative tool to facilitate spectrum turnover. 	Market methods should be applied to deal with compensations. Regulator estimates the cost of spectrum re-allocation. Re-allocation costs could be agreed as the reserve price for an auction.	Typically command-and-control methods. More arguable with introduction of market methods into the area of spectrum allocations of public sector.

Option 1. Re-allocation timeline, no sharing.


It is an incredible fortune for a regulator to intuit the correct Reallocation Point of time. The raft of activities should be arranged in between the decision on and practical re-allocation.

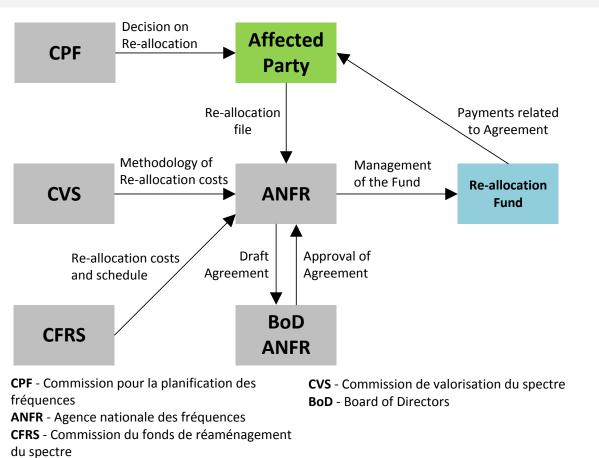
Option 2. Re-allocation timeline, spectrum sharing.

At large extent band sharing assists in fastest possible introduction of newcomer technologies. But it complicates the spectrum management and should not become an endless process.

Landmarks in Re-allocation Financing

Pros: Typically the compensation funded by federal budget is connoted with a sort of governmental guarantees.

Cons: Non-spectrum users – ordinary taxpayers – are subsidizing spectrum related initiatives.

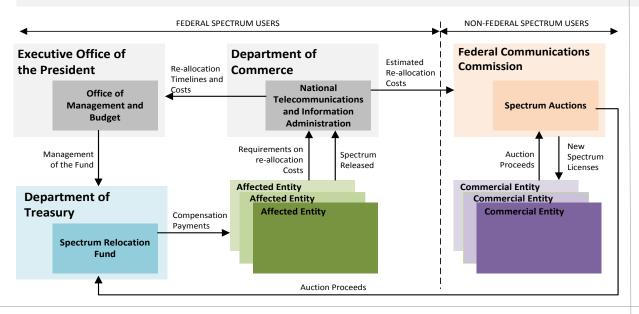

Pros: In essence is similar to bank saving account. Can be financed through spectrum pricing at the primary stage of spectrum issuing (auctions).

Cons: Still might utilize subsidizing from non-spectrum users.

Pros: Re-allocation costs are covered directly by those interested in new allocations. Financial sources from auctions and spectrum fees.

Cons: Requires comprehensive mechanism of Fund's administration.

Spectrum Re-allocation Fund in France

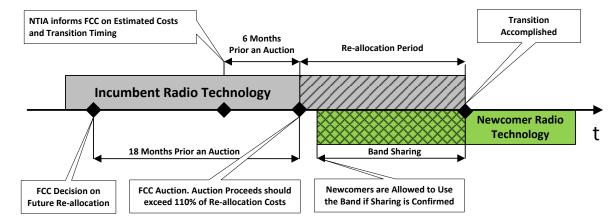

Re-allocation Fund Management

Practical Results

Systems	Spectrum Amount	Transferred from
GSM900	50 MHz	Defense
GSM1800	150 MHz	Defense
UMTS2100	140 MHz	Defense (partly)
WiFi2400	83 MHz	Defense
WiFi5 GHz	450 MHz	Defense, Meteo, Space
LTE2600	190 MHz	Defense
LTE800	40 MHz	Defense, Broadcasting

The Fund is established by Law and managed by ANFR. The money is used for required changes, bills are provided to ANFR. Every six months the newcomer refunds ANFR based on the amount of spectrum owned or on actual amount spend. If the newcomer is not known (auction has not taken place yet) ANFR takes expenditures from the ANFR accumulated funds. A "convention"/contract is produced between the three parties involved (existing user, new user and ANFR). This document sets out the modality for the move, financial implications and how ANFR will monitor and control this process.

Spectrum Re-allocation Fund in the USA



Re-allocation Fund Management

Primary Legislation on Re-allocation

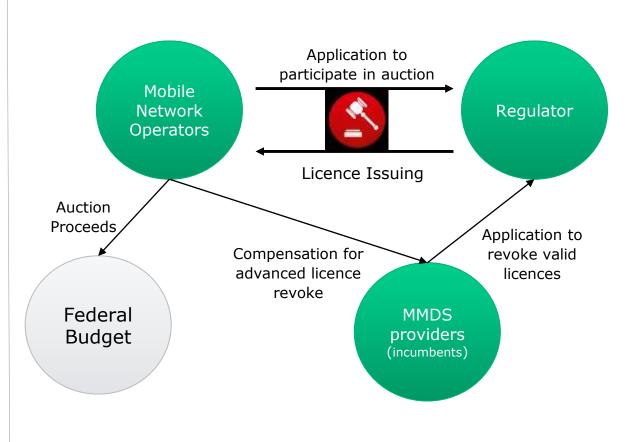
Omnibus Budget Reconciliation Act, 1993	Identification bands of frequencies which meet certain criteria of re-allocation. Initial provisions on the process.								
Commercial Spectrum Enhancement Act, 2004	Specifies provisions on the process of reallocation from governmental to commercial users. Establishes Spectrum Relocation Fund (SRF).								
Middle Class Tax Relief and Job Creation Act, 2012	Extends reimbursement to spectrum sharing scheme. Requires agencies to submit transition plans for interagency management review of costs and timelines								

Practical Results

- 1. FCC shall notify NTIA at least 18 months prior to the commencement of any auction of frequencies subject to re-allocation.
- 2. NTIA at least 6 months prior to an auction on behalf of the affected Federal entities and after review by the Office of Management and Budget, shall notify FCC of estimated relocation costs and timelines.
- 3. NTIA shall provide a Federal entity involved with information on alternative frequencies to which their radio operations could be relocated for purposes of calculating the estimated relocation costs and timelines.
- 4. FCC shall not conclude any auction of re-allocated frequencies if the total proceeds are less than **110 percent** of the total estimated relocation costs.
- 5. FCC may grant a new license for the use of frequencies under transition prior to the termination of Federal entity's authorization subject that the licensee cannot cause harmful interference to such Federal entity.

Auctions as the Instrument of Spectrum Re-allocation

AWS-1 1710 – 1755 MHz Auction with Compensation in the USA

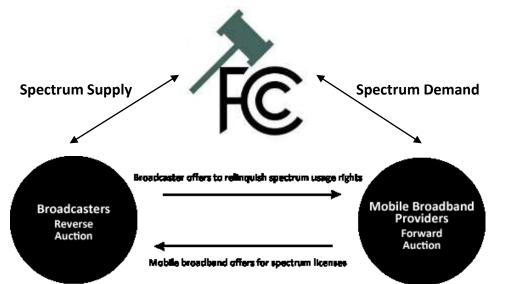

Table 1: Comparison of Estimated and Actual Relocation Costs for the 1710-1755MHz Band (as of March 2013)

Department/agency	Estimated relocation costs ^a	Current actual relocation costs ^b
Agriculture	\$21,578,486	\$21,578,486
Defense	355,351,524	289,846,448
Energy	176,820,959	212,200,959
Homeland Security	89,994,832	282,239,840
Housing and Urban Development	21,115	21,115
Interior	25,411,949	31,936,326
Justice	262,821,000	556,424,000
Transportation	58,062,020	58,062,020
Treasury	5,301,000	5,301,000
National Aeronautics and Space Administration	740,000	740,000
Tennessee Valley Authority	10,687,857	15,751,057
United States Postal Service	1,761,760	8,333,760
Total	1,008,552,502	1,482,435,011

Source: NTIA, Relocation of Federal Radio Systems from the 1710-1755 MHz Spectrum Band: Sixth Annual Progress Report (Washington, D.C.: March 2013).

Actual costs to relocate communications systems for 12 federal agencies from the 1710-1755 MHz band have exceeded original estimates by about \$474 million, or 47 percent, as of March 2013. Although underestimated costs were well exceeded and covered with net auction proceeds 13.8 billion USD.

LTE TDD 2600 MHz Auction with Compensation in Russia

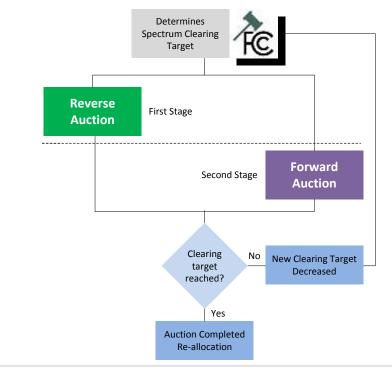

The concept included direct compensation payments from winners (mobile operators) to incumbent MMDS operators, while auction proceeds came to Federal Budget.

Compensation was calculated as the proportion of auction proceeds for the gained spectrum relinquished by incumbent MMDS provader.

Incentive Auctions – Ingenious Market-Based Re-allocation Instrument

Concept of Incentive Auction

The FCC is serving as a matchmaker in 600 MHz incentive auction, going back and forth between broadcasters and bidders to settle on a price that strikes a balance between spectrum supply and demand

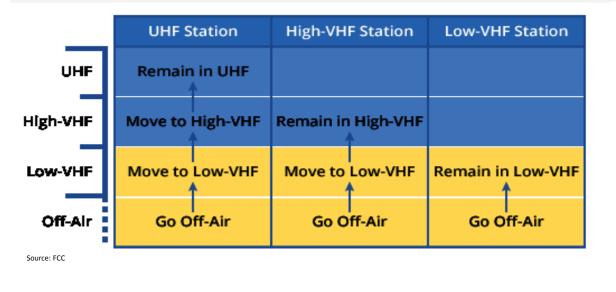


Reverse auction determines the price at which broadcasters will voluntarily relinquish their spectrum usage rights.

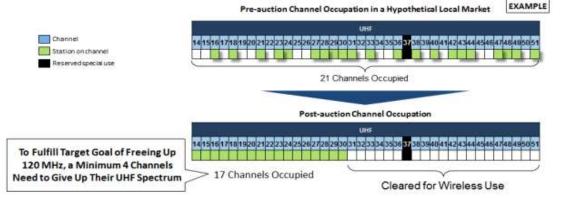
Forward auction

determinesthepricecompanies are willing to payforflexibleusewirelesslicenses in former TV bands.

Auction Algorithm and Costs Distribution


Final Stage Cost Components

Auction proceeds are expended on three components:
1. Winning bidders' payments required for broadcasters
2. FCC's relevant administrative costs around \$226 million
3. \$1,75 billion – relocation costs for broadcasters


Incentive auction leaves market to decide on bandwidth to be released and prices to be paid for spectrum turnover

How Incentive Auction Works

Broadcasting Repacking as the Premise

The lynchpin joining the reverse and the forward auctions is the "repacking" process. Repacking involves reorganizing and assigning channels to the remaining broadcast television stations in order to create contiguous blocks of cleared spectrum suitable for mobile flexible use.

Options for Band Plans and Preliminary Results

lumber I Paired Blocks	Number of Total MHz																																		
12	144	21	22	23	24	25	26	Ű.	A	U.	C	D I	F	6	H	1	13	37	3 1	4 L	Ø	11	A	8	C	0	£	۲	6	н	, t	J.	×	Ł	700 MHz UL
11	138	21	22	23	24	25	26	27	Ø	12	A	8 (C D	ŧ	F	6	H 3	37	3	1	К	V2	n/	A		c	0	£	F	6	н	U.	3	K	700 MHz UL
10	126	21	22	23	24	25	26	27	28	29	9	Ø.,	0	C	D	E.	F 3	37	3 0	вн	1	J.	1	٩.	A	8	¢	D	E	÷.	0	н	1	3	700 MHz UL
9	114	21	22	23	24	25	26	27	28	29	30	31	1	A	8	¢.	D 3	37	3 1	e	0	H	а.	1	1	A	8	C	D .:	£	8	Ģ	н	a.	700 MHz UL
8	108	21	22	23	24	25	26	27	28	29	30	31	32	20	1	A	8 3	37	3	0	E	÷.	0	н	11	VII.	A	B	c	D	£	100	G	.8	700 MHz UL
7	84	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	3 /	A B	c	D	ŧ	F	0	(1	1	A	6	C	D	e	Ŧ	0	700 MHz UL
6	78	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	7	A	8	C	D	E	F	4	92	A	8	C	D	E	+	700 MHz UL
5	72	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	10	12		8	C	0	E	1	g		8	C	D	E	700 MHz UL
4	60	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	103	12	A		C	D	1	1	A	B	C	D	700 MHz UL
3	48	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	4	3	7%	A		C	N	0	٨		C	700 MHz UL
2	42	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	4	3 4	4 5	11	1	A		1A	10	A		700 MHz UL

Source: FCC

Stage 1.	Clearing target 126 MHz	Reverse Auction \$ 88,4 billion
August 2016	Available for mobile	Forward Auction \$ 23,6 billion
	broadband to bid 100 MHz	Clearing Target Not Reached
Stage 2. October	Clearing target 114 MHz	Reverse Auction \$ 54,6 billion
2016	Available for mobile	Forward Auction \$ 21,5 billion
	broadband to bid 90 MHz	Clearing Target Not Reached
Stage 3. November 2016	Clearing target 108 MHz Available for mobile broadband to bid 90 MHz	Reverse Auction \$ 22,5 billion currently Forward Auction not opened yet

Thank You