Launching a DTV Transmitter Network with modern Transmitter Design

or how GREEN is DVB-T2 with the latest transmitter technology

Nils Ahrens Samoa – PMPC August 2015

Table of contents

- Overview Digital UHF Transmitter
- Energy Efficiency
- System Comparison and Improvements
 - I DVB-T vs DVB-T2
 - I Payload, Coverage and Output Power
- Space Efficiency
- Potential energy savings

Digital UHF Market Leading Transmitter Generations...

...and the impact for Digital TV Networks

Energy Efficiency & Operational Costs

ROHDE&SCHWARZ

System Compare & Improvements

S

RO

E&SCHWA

DVB-T 16 QAM	G ST WENDEL	1	BEASHENN
16 QAM			1 2 Surey market
	LYSANCERUCKEN	KAISERS	AND TERROR VISELIER A
8k	p	RMASENS	SDEVER LANDOU IN DEPENDENCE
2/3	1	Â	ARRING ISEC
1⁄4	Sar fodgurg		BARTATT PIORZHEIM BAREN-BADEN
> Normal		TRASHOUP	
13.3 Mbit/s	μ	Lehr	TUBIN
Capacity		2 R 🕯	Coverage – same E _{min}
	STATISTICS AND		Coverage – same data rate
YUD	ARTZY ELDEN	REAL URG	No Coverage
68,4 dBµV/m	- CIVILION CALL CAL	CHOMAD	0 <u>50km</u> pF
ge Improvement	Figure 13: Coverage same data	portable indo rate	or reception for same E _{min} and
	8k 2/3 1⁄4 Normal 13.3 Mbit/s CapaqitysD 68,4 dBµV/m ge Improvement	8k 2/3 1/4 1/4 Normal 13.3 Mbit/s Capaqitys D 100 68,4 dBµV/m ge Improvement	8k 2/3 1/4 1/4 Normal 13.3 Mbit/s Capaqitgp 100 68,4 dBµV/m ge Improvement

System Compare & Improvements

		and the second second second	
	DVB-T	DVB-T2	DVB-T2
Modulation	16 QAM	64 QAM	16 QAM
FFT Size	8k	16k	16k
Code Rate	2/3	2/3	3/5
Guard Interval	1/4	1/8	1/8
Carrier Mode	Normal	Extended	Extended
ncrease in paylo	ad capacity	25.0 Mbit/s payload ar	nd cover the same
at the same C/N	ratio 6 SD	areawith	6 SD
Programs (MPEG4)	1 HD	5 dB − 7 d	B weaker signals
Effective Spectr	uro8\$4axBng//m	68,6Reduction	of 2, Aat Suivitter
60% (Approx)		Output po	wer to 1/4
		_	7

RO

HDE&SCHW

System Compare & Improvements

ROHDE&SCHWARZ

Comparision DVB-T vs DVB-T2

Coverage – Tx Output Power – Data Rate

Scenario	Tx Output Power	Data Rate	Coverage	Remarks
1	=	=	~	Keeping the Modulation
2	=	7	=	Using a higher Modulation
3	\sim	=	=	Keep Modulation and use PAPR
4	×	×	*	Not Valid

- 1) Make your Network planning first
- 2) Set up your Priorities (More Programs or HD Services, better coverage, etc)
- 3) Check your requirements (SFN, IP distribution, SPLP or flexible MPLP)

Reducing Costs

Space Efficiency

Energy Efficiency

I 99% of the energy for a broadcasting Tx is required during operation

I 99% of the carbon footprint generated during operation

- → Reducing the energy requirement during operation best approach to reduce carbon footprint
- ➔ Power efficiency of a transmitter reflects its carbon footprint

Focus on transmitters How to calculate power efficiency

Useful Energy Output Total Energy Input Power Efficiency =

Example 1 kW digital TV Transmitter

- Assuming 20% efficiency L 1kW/20% = 5.00 kW
- 5 kW x 24 h x 365 days
 - → 43,800 kWh
- 43,800 kWh x 1.5 pounds per kWh

Typical conversion formula from electrical energy consumption to carbon emission:2 1 kWh = 1.5 pound CO₂ (coal-fired power plant), source: Difference Contraction of the first of

Energy Efficiency I How to reduce Energy costs

I Highest Factor in Transmission costs is Energy costs

Reducing Energy costs by using modern & highly efficient Transmitter technologies such as

Doherty & Crest Factor Reduction

Improving Efficiency for Digital Broadcast Transmitter from to 38% (UHF) 46% (VHF)

Efficiency enhancement technologies Doherty amplifier

I Amplification for main and peak signals is separated

- I Main amplifier amplifies average signals (class A/B)
- I Peak amplifier amplifies peak signals (class C)
- ➔ lower headroom in main amplifier required
- ➔ No energy required in peak amplifier as long no peaks are in the signal

The High Efficiency Doherty Power amplifier

The High Efficiency Doherty Power amplifier

Rohde & Schwarz Doherty Power Amplifier:

Nils Ahrens – Samoa – PMPC – August 2015 20

RO

HDE&SCHWARZ

7.5kW

Costs Significant Reduction in Energy costs

Costs...some thoughts

When is the right moment for new investments...Example 1

@ \$ 0.15/ kWh

SCHW

Costs...some thoughts

When is the right moment for new investments...Example 2

DVB-T2 Measurements I

I DVB-T2 Measurements are more complex than DVB-T

Examples

HDE&SCHWARZ

24

DVB-T2 Measurements II

HDE&SCHWAR7

I DVB-T2 Measurements are more complex than DVB-T

Examples: BUT WHO CAN TELL WHICH ONE IS GOOD, ACCTEPTABLE OR BAD

25

DVB-T2 Configurations

8MHz Channel, 32K FFT, 1/128GI, PP7

E&SCHWARZ Nils Ahrens – Samoa

Space Efficiency & Operational Costs

E&SCHWARZ Nils Ahrens – Samoa – PMPC – August 2015 27

E⁵ - Efficiency to the Power of Five Effects for a DVB-T2 network deployment

- Outstanding energy Efficiency: cost savings over the system lifetime
- Space Efficiency: smaller footprint yet more power
- Operational Efficiency: faster operation and more functionality
- Efficiency for customer requests: customized system solutions
- Investment Efficiency: modular system concept for future needs

Thank you!

