UIT Formation sur l'interopérabilité et de conformité pour la Mauritanie Décembre 2018

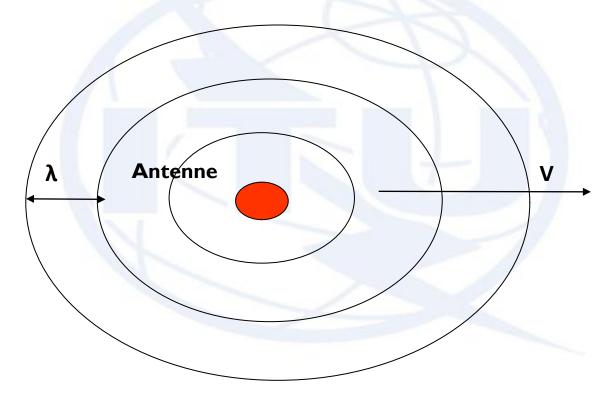
Session #4: -les fondamentaux de la CEM et de la RF

Les fondamentaux de la CEM et de la RF

Place: Nouakchott

Date: Décembre 2018

Presenté par : Karim Loukil Karim.wakil@cert.mincom.tn



Principes de base de l'électromagnétisme

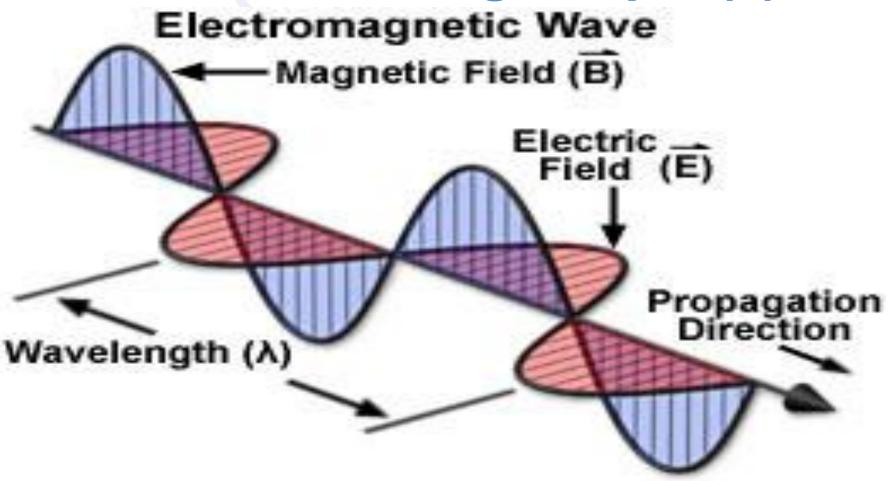
Onde Électromagnétique

Une onde est un mouvement oscillatoire

$$\lambda$$
 (M) = c (m / s) / F (Hz)

définitions

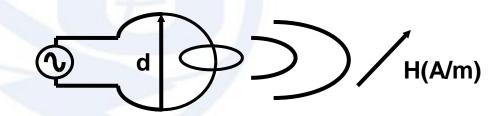
- La longueur d'onde est la distance parcourue par une onde dans un cycle d'oscillation
- La fréquence est mesurée par le nombre de cycles par seconde et l'unité est le Hz
- Un cycle par seconde est le Hertz.



Onde Électromagnétique (2)

- Une onde électromagnétique se compose de :
 - ✓ un champ électrique E (produit par la force de charges électriques)
 - ✓ un champ magnétique H (produite par le Mouvement des charges électriques)
- Les champs E et H sont orthogonaux et se déplacent à la vitesse de la lumière $c = 3. 10^8$ m/s

Onde Électromagnétique (3)


Les champs E et H

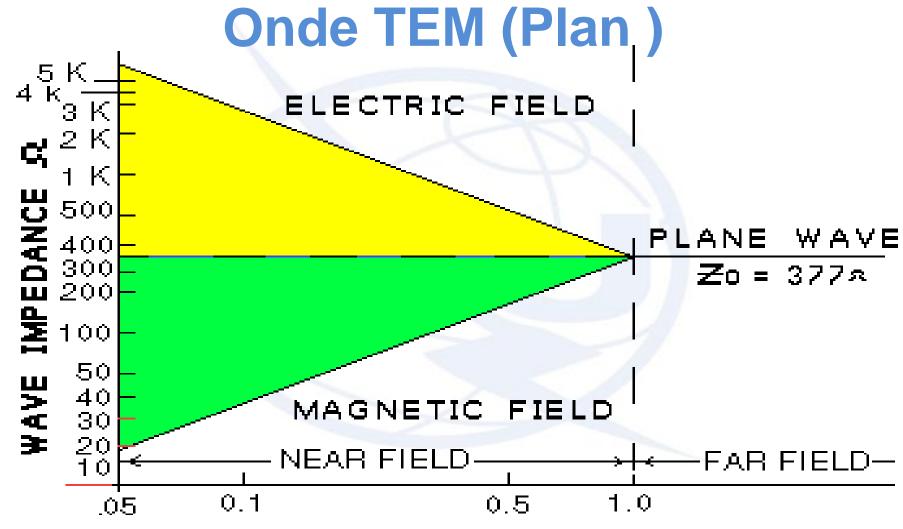
Champs Électrique

le champs amplitude est exprimé en (V / m).

Le champs Magnétique

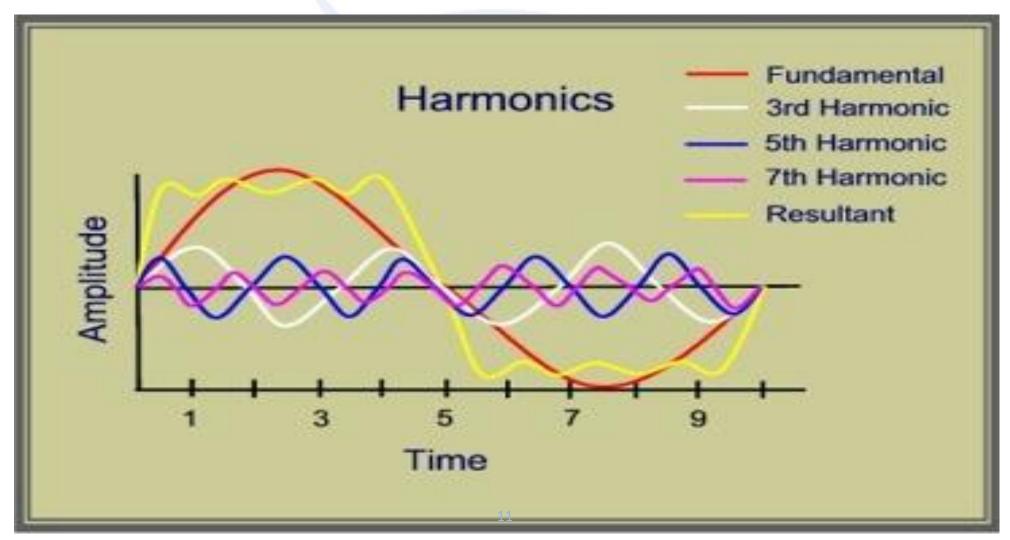
le champs amplitude est exprimé dans (A/m).

La densité de puissance

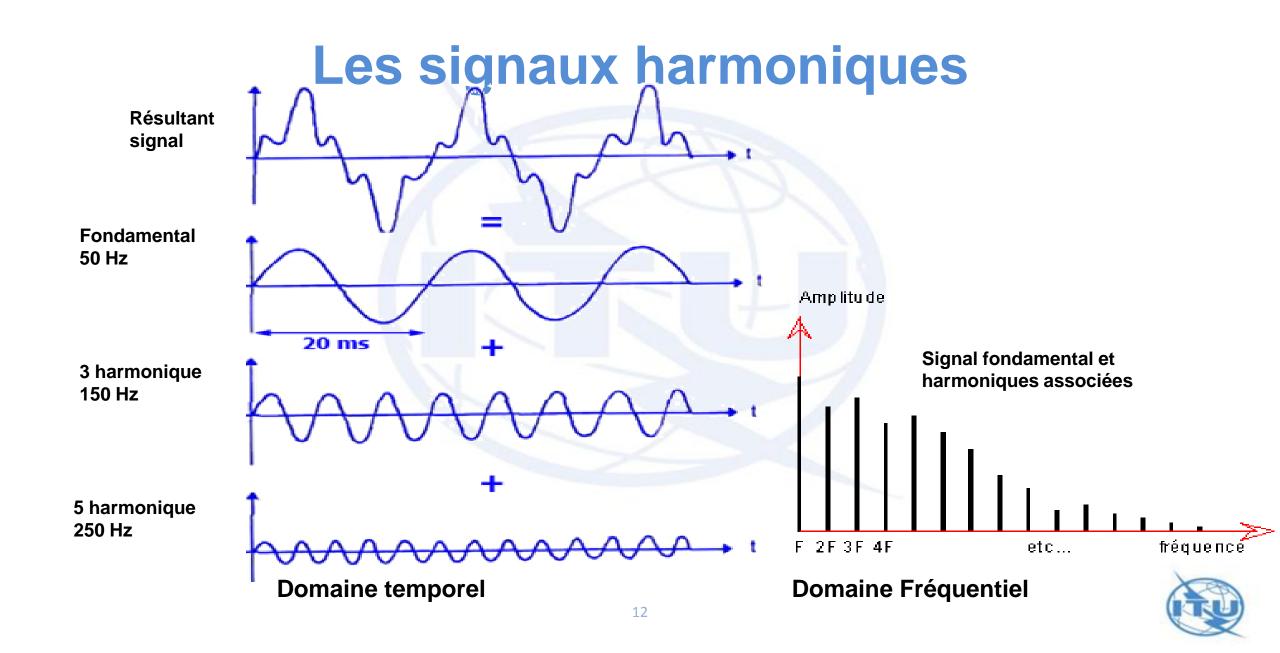

puissance rayonnée est perpendiculaire à une surface, divisé par l'aire de la surface. la densité de puissance est exprimée en S (W / m²), ou (mW / Cm²), ou (μW / cm²).

Les champs E et H

- Près d'un fouet, le champ dominant est le champ E.
 L'impédance dans ce domaine est Zc > 377 ohms.
- A proximité d'une boucle, le champ dominant est le champ H. L'impédance dans ce domaine est Zc < 377 ohms.



Les unités en CEM

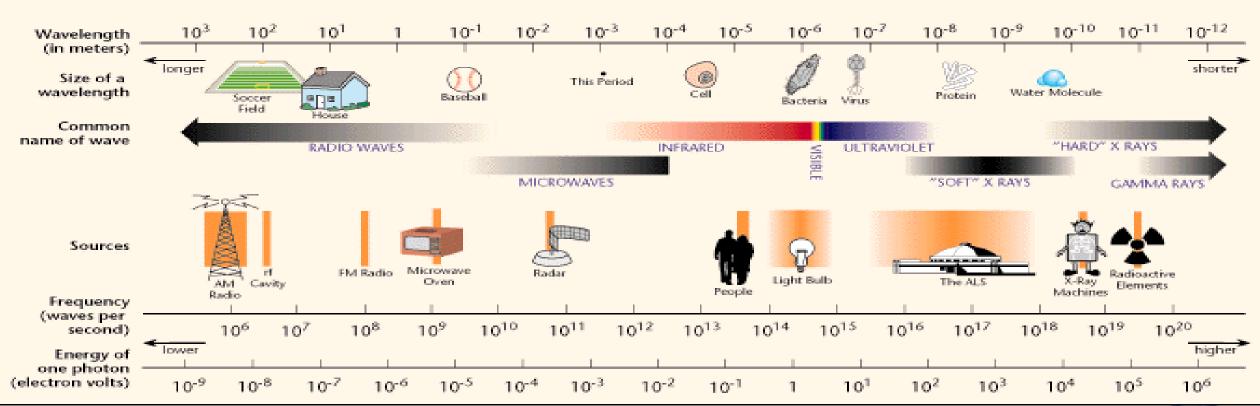

domaine électrique	domaine électromagnétique
La tension V (volt)	Champ électrique E (V / m)
I Courant (Amp)	Le champ magnétique H (A / m)
Impédance Z (Ohm)	impédance caractéristique Z0 (Ohm)
Z = V / I	Z = E / H
$P = I^2 \times R$ (watts)	P = H ² x 377 (W / m ²) conditions champs lointain

Les signaux harmoniques

Les résultats d'essais en CEM

Pourquoi dans le domaine de fréquentiel (Hz)?

- Dans le domaine temporel, l'harmonique causée par la plus haute fréquence va dominer
- On peut distinguer la contributions de chaque harmonique, même la plus faible


Pourquoi l'échelle logarithmique (dB)?

- Les signaux sont composés d'harmoniques d'amplitude haute et basse
- Très grande dynamique (de μV à plusieurs mV)
- échelle logarithmique est demandée

Le spectre Électromagnétique

THE ELECTROMAGNETIC SPECTRUM

fréquences

La fréquence	longueur d'ondes	Métrique la désignation	Actuel la désignation	Abrev	iations
3 kHz à 30 kHz	100 km à 10 km	ondes myriamétriques	Very Low Frequencies	VLF	O.Mm
30 kHz à 300 kHz	10 km à 1 km	Ondes kilométriques	Low Frequencies	LF	O.km
300 kHz à 3 MHz	1 km à 100 m	Ondes hectométrique	Mid Frequencies	MF	O.hm
3 MHz à 30 MHz	100 m à 10 m	Ondes décamétriques	High Frequencies	HF	O.dam
30 MHz 300 MHz	10 m à 1 m	Ondes métrique	Very High Frequencies	VHF	O.m
300 MHz à 3 GHz	1 m à 10 cm	Ondes décimétriques	Ultra High Frequencies	UHF	O.dm
3 GHz à 30 GHz	10 cm à 1 cm	Ondes centimétrique	HyperFrequencies	SHF	O.cm
30 GHz 300 GHz	1 cm par 1 mm	Ondes millimétrique		FHE	O.mm

Propagation d'une onde EM

dans un milieu homogène et isotrope, La propagation de l'onde est modélisé par

```
les équations de Maxwell
```

rot H = E (σ -
$$jω_0ε$$
)
div $εE = ρ$

Rot E =
$$j\omega_0\mu H$$

div $\mu H = 0$

```
H (A/m), Champs Magnétique
E (V / m), Champs électrique
ε (F / m), constante diélectrique (permittivité)
μ (H / m), perméabilité magnétique
\sigma (Ω·m)<sup>-1</sup> conductivité
                                     16
```


Grandeurs physiques

Grandeur	symbole	Unité	symbole
La fréquence	F	Hertz	Hz
longueur d'ondes	λ	Mètre	m
Champs Électrique	E	Volt par mètre	V/m
Champs Magnétique	Н	Ampère par mètre	A/m
Densité de flux magnétique	В	Tesla	Т
La densité de puissance	S	Watt par mètre carré	W/m²
Impédance intrinsèque	Z	Ohm	Ω
Plus grande dimension de l'antenne	D	Mètre	m

Impédance d'onde

A une distance de plusieurs longueurs d'onde
 de l'antenne, l'impédance de l'onde est exprimé comme:

$$Z_0 = \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}}$$

L'Impédance intrinsèque du milieu de propagation (En ohms)

En champs proche

• Pour des distances, inférieure à λ / 2π de la source, nous considérons que nous sommes à des conditions de champs proches.

Dipôle électrique: E varie en 1 / r³,

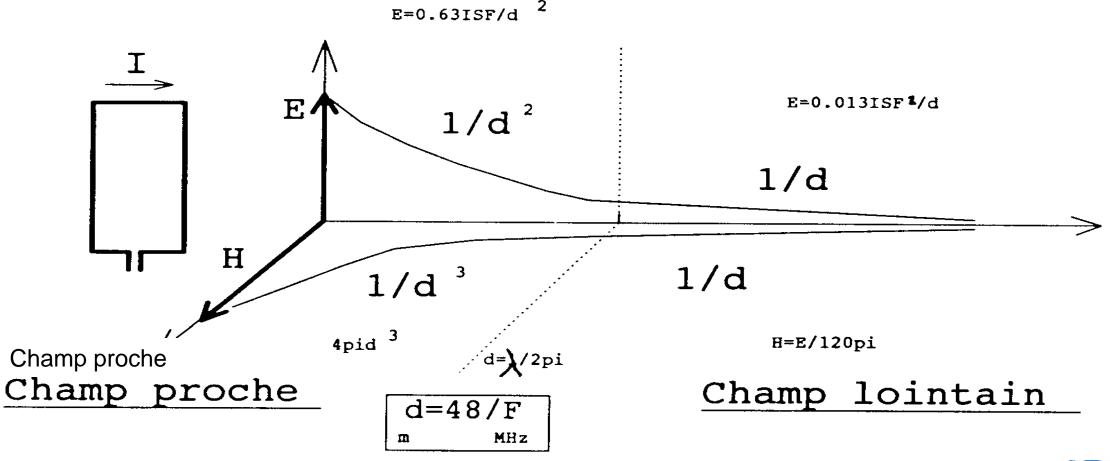
H varie en $1/r^2$, et Z varie en 1/r.

A courte distance un dipôle rayonne principalement en champs E.

dipôle magnétique: E varie en1 / r²,

H varie en 1 / r³ et Z varie comme r

A courte distance une boucle rayonne principalement en champs H.



Champs Iointains

- E et H sont atténués en 1 / r,
 Z =Cte= 377Ω (Impédance du vide)
- Le champs EM a la Caractéristique générale d'une onde plane
- Pour le majorité des essais radio, seulement la composante électrique est mesurée
- Les essais sont considérés être effectués en conditions de mesures de « champs lointain » .

Rapports champs/distance

Champ EM rayonné

Champ rayonné (En V / m)

$$E = \frac{1}{d} \sqrt{30.P.G}$$

d: distance par rapport à l'émetteur (en m)

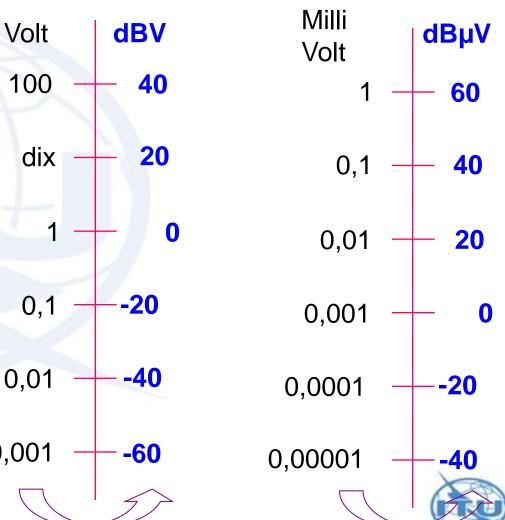
P: puissance de sortie de l'émetteur (en W)

G: gain d'antenne (en dB)

Unités en dB

Unités de tension

Large dynamique de signaux utilisés CEM → de dB (décibel)


Par exemple dBV, dBA:

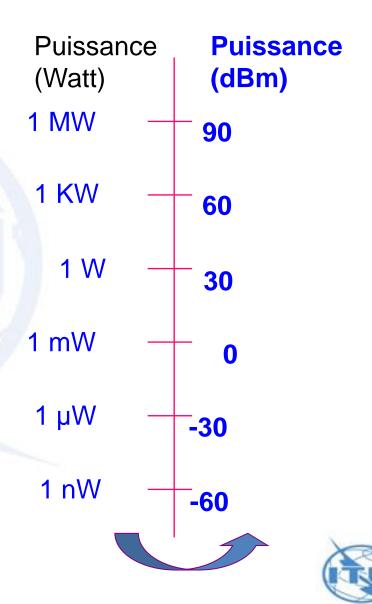
$$dBV = 20 \times \log(V)$$

$$dBA = 20 \times \log(A)$$

L'utilisation de l'unité dBµV

$$V_{dB\mu V} = 20 \times \log\left(\frac{V}{1\mu V}\right) = 20 \times \log(V) + 120$$
0,01 --40
0,001 --60

Unités en dB


Unités de puissance

L'unité de puissance le plus courant est le «dBm»(dB milli-Watt)

$$P_{dBmW} = 10 \times \log \left(\frac{P_W}{1mW}\right) = 10 \times \log(P_W) + 30$$

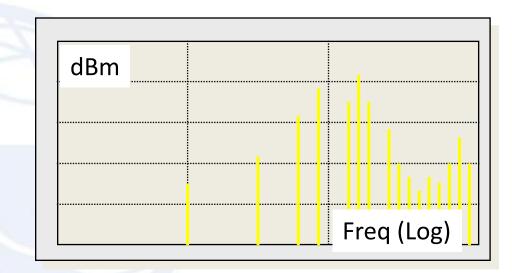
Exercice: unités spécifiques

1 mV = ____ dB
$$\mu$$
V 1 W = ____ dBm

dB	Voltage or current ratio	Power ratio	dBm (50Ω,
			column 1 in dBμV)
-20	0.1	0.01	-127
-10	0.3162	0.1	-117
-6	0.501	0.251	-113
-3	0.708	0.501	-110
0	1.000	1.000	-107
0.5	1.059	1.122	-106.5
1	1.122	1.259	-106
2	1.259	1.585	-105
3	1.413	1.995	-104
4	1.585	2.512	-103
5	1.778	3.162	-102
6	1.995	3.981	-101
7	2.239	5.012	-100
8	2.512	6.310	-99
10	2.818 3.162	7.943 10.000	-98 -97
12	3.981	15.849	-95
14	5.012	25.120	-93
16	6.310	39.811	-91
18	7.943	63.096	-89
20	10.000	100.00	-87
25	17.783	316.2	-82
30	31.62	1000	-77
35	56.23	3162	-72
40	100	10,000	-67
45	177.8	31,623	-62
50	316.2	10 ⁵	-57
55	562.3	3.162 . 10 ⁵	-52
60	1000	10 ⁶	-47
65	1778	3.162 . 10 ⁶	-42
70	3162	10 ⁷	-37
75	5623	3.162 . 10 ⁷	-32 -37
80	10,000	10 ⁸	-27 -22
85	17,783	3.162 . 10 ⁸ 10 ⁹	-22 -17
90 95	31,623 56,234	3.162 . 10 ⁹	-12
100	10 ⁵	1010	-7
110	3.162 . 10 ⁵	1011	3
120	10 ⁶	10 ¹²	13
120	10	10	

Conversion

	Amplitude	Puissance
3 dB	x 1,41	x 2
6 dB	x 2	x 4
10 dB	x 3,16	x 10
20 dB	x 10	x 100


Exemple:

46 dB
$$\mu$$
V = 20 + 20 6 dB μ V
(eqvlt dans μ V) = 10 x 10 x 2 uV
= 200 mV

Temporel / fréquentiel

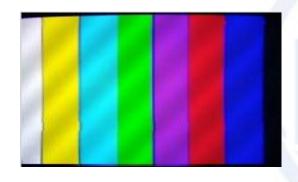
Mesure de domaine temporel

Oscilloscope

transformée de Fourier

Inverser la transformée de Fourier

Mesure de la fréquence


Analyseur de spectre

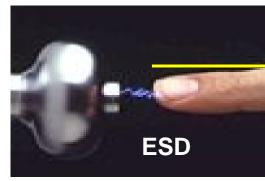
CEM Compatibilité Électromagnétique


Exemple de perturbation

Signal vidéo analogique

- ✓ Moiré
- ✓ perte de luminance, le contraste
- √perte de la couleur
- ✓ perte de synchronisation

Signal vidéo numérique


- ✓effet de bloc
- ✓ cessation du mouvement
- Îcran noir

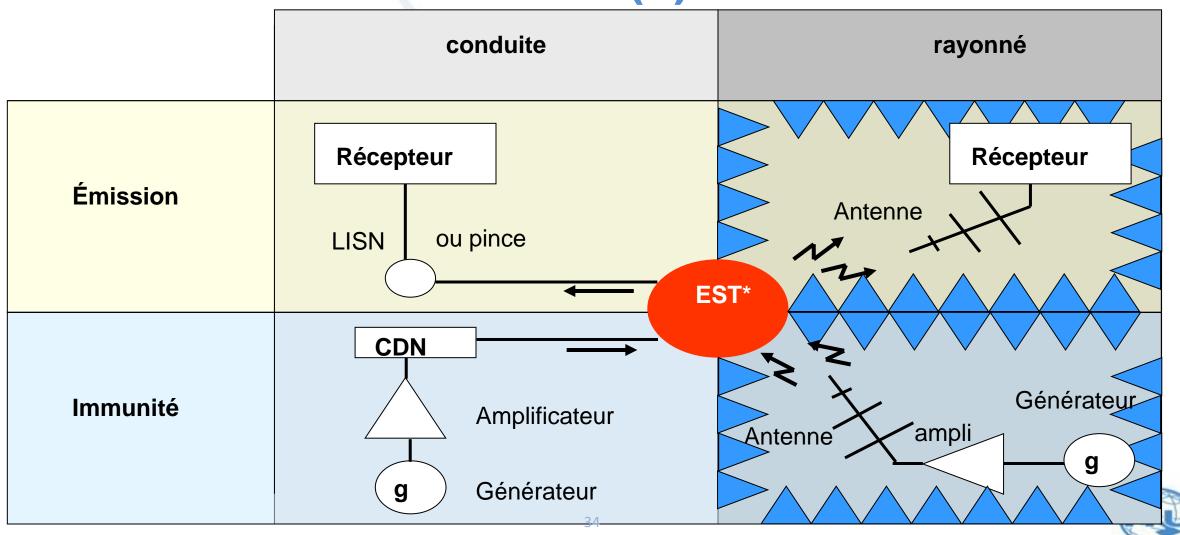
Les sources de perturbation

émetteurs RF

- impacts externes
- impacts internes
- impacts humains

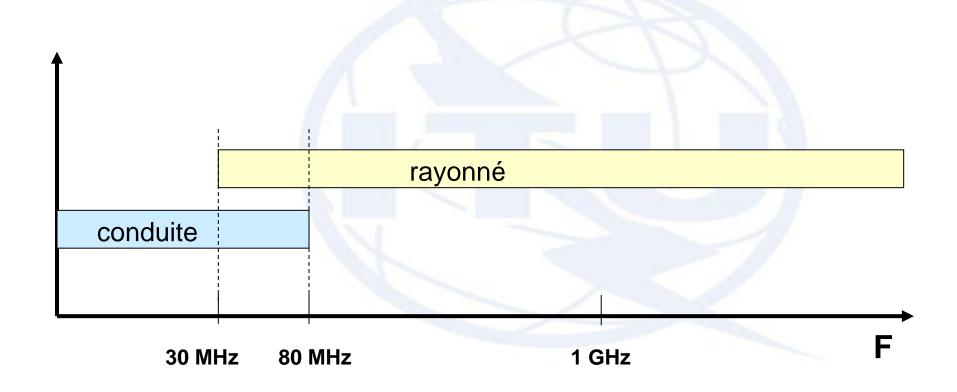
Téléphones portables

CEM (1)


Un équipement électronique peut être:

- 1. Victime de son environnement:
 - ✓ Mauvais fonctionnement
 - √ dysfonctionnement temporaire ou permanent

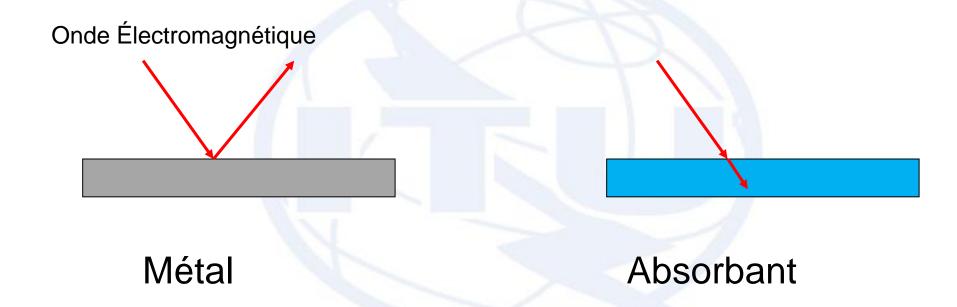
2. Source de perturbation dans son environnement



CEM (2)

*EST = Equipement Sous test

conduite/rayonné (2)



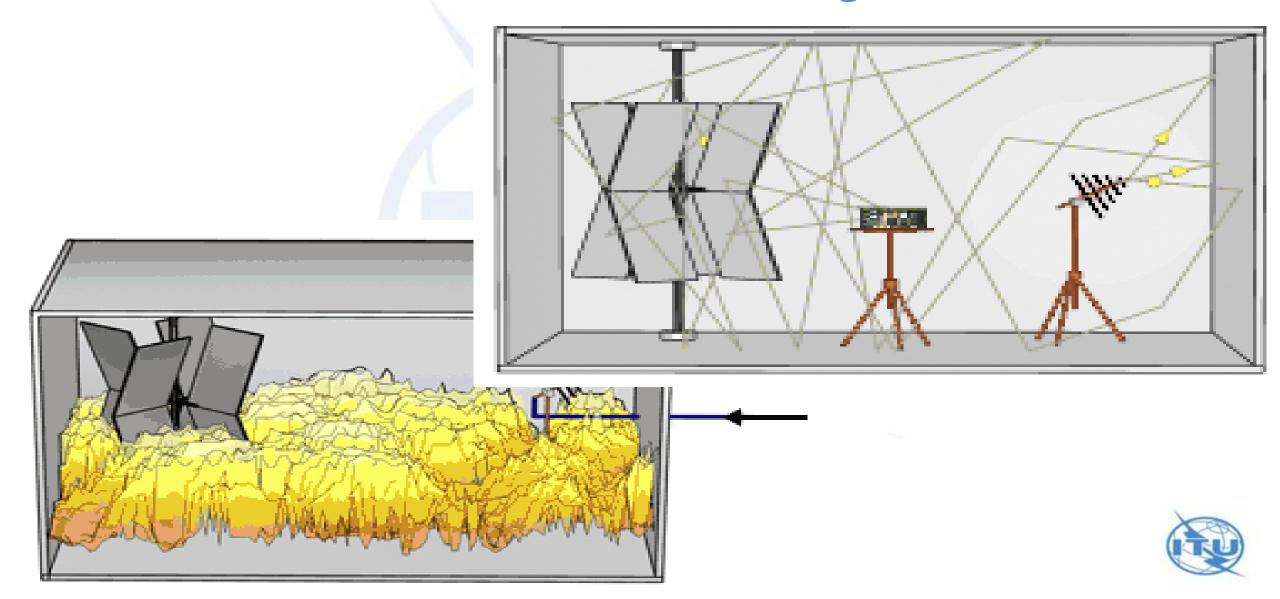
sites d'essai

réflectivité

Semi anéchoïque chambre SAC (1)

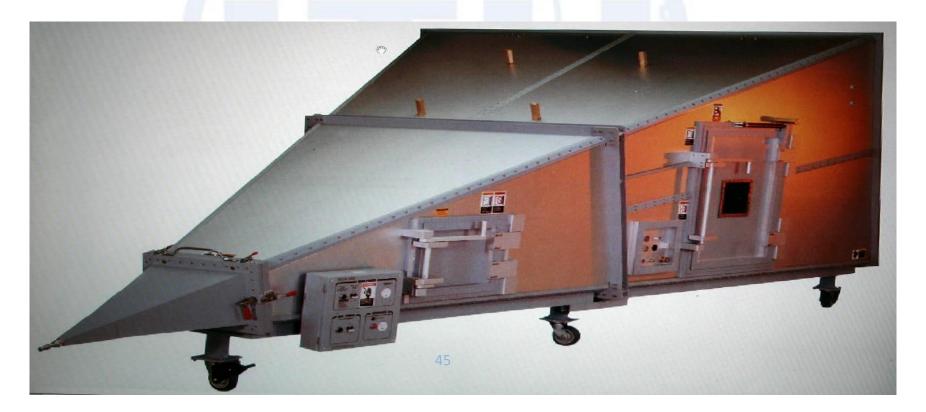
Chambre fully anéchoique

- enceinte entièrement blindée et recouverte d'absorbants sur sa toute la surface intérieure
- Les mesures d'émission de rayonnement direct, des mesures radio.
- Conforme aux normes ETSI



Chambre réverbérante à brassage de modes

- •enceinte blindée, paroi simple ou double, avec un mélangeur métallique
- •Mesure de l'immunité et l'émission rayonnées
- •EN 61000-4-21.



Chambnre réverbérante à brassage de modes

Cellules TEM

- •Cellule fermée chargé sur une impédance caractéristique
- •Mesures rayonnées en émission et l'immunité.
- •EN61000-4-20

sites de mesure en espace libre

- le site d'essai de référence CISPR
- Essai d'émission rayonnée
- Distance de mesures (10 m 30 m).

Site de mesure en espace libre

Comparaison de setups d'essais

	Cage de Faraday simple	site de mesure en espace libre	Chambre semi ou fully anéchoique
avantages	isoler EST du bruit EM	Mesures correctes en absence de signaux ambiants	Mesures correctes
inconvénients	Des réflexions sur les paroisMesure champ proche	Bruit ambiant	 La dégradation des performances des absorbants coût élevé

Normes fondamentales

- Ce sont des normes ou des lignes directrices qui définissent les exigences générales pour les « CEM » (phénomènes, essais ...).
- s'appliquent à tous les produits et sont utilisées comme références pour élaborer des normes spécifiques.
- Elles comprennent:
 - ✓ la description des phénomènes électromagnétiques
 - ✓ les caractéristiques des instruments de mesure et de génération de signaux d'essais
 - ✓ la mise en œuvre des essais
 - ✓ les recommandations des niveaux de gravité
 - ✓ critères généraux pour le bon fonctionnement.

Normes fondamentales

EN 61000.4.2	Décharges électrostatiques	
EN 61000.4.3	Immunité rayonnée aux champs RF	
EN 61000.4.4	Immunité aux transitoires rapides en salves	
EN 61000.4.5	Immunité aux ondes de choc	
EN 61000.4.6	L'immunité aux perturbations conduites, induites par les champs radioélectriques	
EN 61000.4.8	Immunité aux champs magnétiques à la fréquence du réseau	
EN 61000.4.11	Immunité aux Creux de tension, coupures brèves et variations de tension tests d'immunité	
EN 61000-3-2 et EN 61000-3-3		

Les normes produits

EN 55022	équipements de technologie de l'information - Caractéristiques des perturbations radioélectriques - Limites et méthodes de mesure	
EN 55032	2 Exigences d'émission pour les équipements multimédias	
EN 55024	équipement technologie de l'information - Caractéristiques d'immunité - Limites et méthodes de mesure.	
EN 55035	Exigences d'immunité pour les équipements multimédias	
ETSI EN 301 489-17	EN 301 489-17 Exigences CEM pour les équipements Radioélectriques , ex : WLAN (Wifi, bluetooth, etc)	

- Ces normes produit définissent, pour les produits ou familles de produits, la configuration d'essais, méthodes et niveaux d'essai.
- Le cas échéant, ces normes prennent préséance sur les normes génériques.
- Ils utilisent les normes fondamentales.
- Ils définissent:
 - ✓ Essais à effectuer
 - √ niveaux de gravité des essais
 - √ les critères de fonctionnement

Normes génériques

- Ces normes définissent les exigences essentielles en termes de niveau à maintenir par type d'essais
- En l'absence de normes produit ou de famille de produits, elles s'appliquent aux produits installés dans un environnement défini (industriel, résidentiel).
- Elles utilisent les normes fondamentales.
- Elles définissent:
 - √ l'environnement (résidentiel, industriel ...)
 - ✓ Essais à effectuer
 - √ niveaux de gravité des essais
 - ✓ les critères de performance

Normes génériques

EN 61000-6-1	Immunité pour les secteurs résidentiel, commercial et industriel léger environnements
EN 61000-6-2	Immunité pour les environnements industriels
EN 61000-6-3	Norme d'émission pour les environnements résidentiels, commerciaux et de l'industrie légère
EN 61000-6-4	Norme d'émission pour les environnements industriels

Normes CISPR 16

OLD CISPR 16

NEW CISPR 16

CISPR 16-1	Radio disturbance and immunity measuring apparatus
CISPR 16-2	Methods of measurement of disturbances and immunity
CISPR 16-3	Reports and recommendations of CISPR
CISPR 16-4	Uncertainty in EMC measurements

	CISPR 16-1-1	Measuring apparatus
	CISPR 16-1-2	Ancillary eqpt – conducted disturbances
	CISPR 16-1-3	Ancillary eqpt – Disturbance power
	CISPR 16-1-4	Ancillary eqpt – Radiated disturbances
۲	CISPR 16-1-5	Antenna calibration test sites 30MHz - 1000MHz
\triangleright	CISPR 16-2-1	Conducted disturbance power
	CISPR 16-2-2	Measurement of disturbance power
3	CISPR 16-2-3	Radiated disturbance measurements
٩	CISPR 16-2-4	Immunity measurements
	CISPR 16-3	CISPR technical reports
4	CISPR 16-4-1	Uncertainties in standardised EMC tests
	CISPR 16-4-2	Measurement instrumentation uncertainty
\ \	CISPR 16-4-3	Statistical considerations in the determination of EMC compliance of mass –produce products
¥	CISPR 16-4-4 56	Statistics of complaints and a model for the calculation of limits

