

ITU-SUDACAD Regional Forum on Internet of Things for Development of Smart and Sustainable Cities

Khartoum, Sudan 13-14 Dec 2017

Smart City Water Management based IoT practical experiences

Mayamiko Nkoloma mnkoloma@poly.ac.mw

Contents

- Background
- Background activities
- Smart water management system based on IoT
- Problem definition
- Architecture of the solution
- Results
- Conclusions

"f you can't measure it = you can't

,,,

Background activities

Extended the feature and supported remote monitoring of several solar farms in Kuwait

All key performance parameters are remotely monitored by engineers to assist them in their Strategic decisions.

Background activities

- Smart irrigation system
 - Irrigate intelligently
 - Save time and money
 - Irrigation only activated according to the soil moisture which is adequate for the crop
 - Can be programmed to run at night when the evaporation is low, and in times of water restrictions
 - Farmer can switch ON/ OFF through SMS
 - Query or get notifications of the irrigation status

IoT based practical experience

Smart City Water Management

Problem definition

- Traditional ways of water level measurements present challenges in managing the resource for distribution
 - Inaccurate measurements
 - Long distance and poor road network between sites
 - Time consuming

Problem definition

- Challenges in monitoring water quality issues across the distribution system
 - Samples taken 3 times a week on selected points in the distribution system
 - But real time monitoring is ideal on all strategic points
- Unable to distribute the water to different locations according demand

- Challenges in reducing non revenue water
 - Difficulties in identifying points where a pipe is broken
 - Illegal connections

ITU conceptual model of water management system with ICT

Key elements to consider for such projects

- From previous discussion on best practices for SWM project
 - What type of sensors to use
 - How to power remote units that capture data
 - How will the data be transmitted from remote sites to engineers/ operators/ decision makers
 - How is the data presented to users to enable quick and accurate strategic decisions
 - Management issues
 - Project capital
 - Mind set of operators

Overall Architecture of the Solution

- Water level monitoring
 - To avoid overflows
 - To manage demand
- Water flow rate monitoring in pipe systems
 - Scheme for detecting pipe bursts
 - Scheme for detecting illegal connections
- Water quality monitoring

Before in 2011

- What type of sensors to use
 - Should be able to survive in harsh environmental conditions
 - Chroline can make metal items to degrade eaten corrode

System Alerts to reduce Non revenue water

Flow rate monitoring

ultrasonic beams

- Electromagnetic flow sensors
 - Optimum for high pressured pipe systen
- Insertion type and cramp on meters
 - Ideal for existing wate distribution systems
 - No need for major excavations to pipe work
- Some already integrated with GSM/ GPRS transmitters
 - Else attach a transmission module through the I/O pins

SNAPSHOT OF THE RESULTS ON A WEB PORTAL

Current Water Level Trends

Wed, 01 November 2017

Clear Water: 63% - 4.98m - 14:32

Kanengo 1: 74% - 3.75m - 13:18

Mtunthama 1: 48% - 3.59m - 14:22

Kanengo 2: 77% - 5.71m - 15:05

Mtunthama 2: 83% - 5.76m - 14:19

Kanengo 3: 77% - 5.76m - 14:57

Mtunthama 3: 40% - 3.14m - 14:40

Snapshots of the results on a web portal

Trends of water levels

Backup battery power trends

Conclusion

- he presented
- he
- he
- he
- he .o.

Thank You

