

ITU-SUDACAD Regional Forum IoT for Development of Smart Sustainable Cities

Khartoum, Sudan 13-14 December 2017

Session 7

RFID & IoT

Adoption for Smart Cities

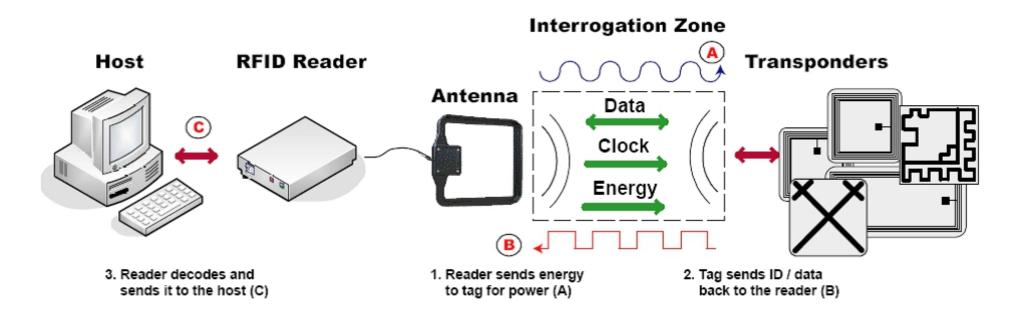
Prof. Mustapha Benjillali INPT, Morocco benjillali@ieee.org

Radio-Frequency Identification (RFID) technologies: opportunities and limitations

- "Identification Friend or Foe" system (IFF) Second World War.
- First paper related to RFID technology was the landmark paper by Harry Stockman, *"Communication by Means of Reflected Power"* in October 1948.
- The first patent on RFID was issued in 1973 for a passive radio transponder with memory.
- 1970s: First commercial RFID application "Electronic Article Surveillance" (EAS) Theft prevention (single bit tags).
- End 70s: applications in agriculture and animal tagging.
- 1980s: Boost to RFID technology Norway and several US states Toll collection on roads (EZ-Pass).
- Later in 90s: Vast number of new applications (*ski passes, gasoline cards, money cards, …*).
- 1999-2003: Auto-ID Center at MIT. Development of a global standard for item-level tagging. Result: Electronic Product Code (EPC). EPCglobal Inc. continues the work.

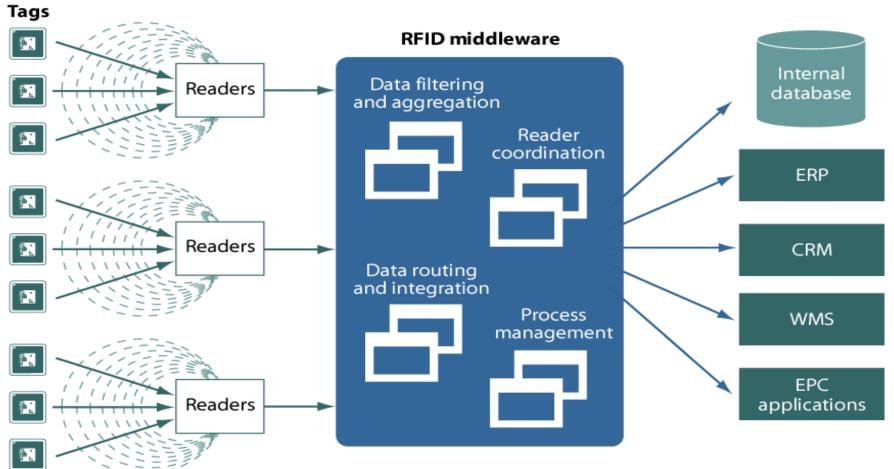
1973 — Mario Cardullo's patented device.

- Passive radio transponder with 16-bit memory.
- Basic patent covers RF, sound and light as transmission media.
- Original business plan:
 - transportation (vehicle identification, toll system, performance monitoring, ...),
 - banking (electronic check book, electronic credit card),
 - security (personnel identification, automatic gates, surveillance),
 - medical (identification, patient history, ...).

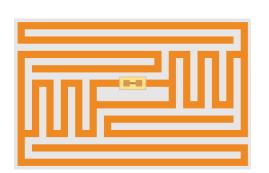

●1973 — Steven Depp, Alfred Koelle, and Robert Frayman, Los Alamos National Laboratory

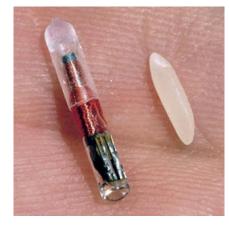
- Reflected power (modulated backscatter) RFID tags, both passive and semi-passive
- Portable system operated at 915 MHz, 12-bit tags.
- Technique used by the majority of today's UHFID and microwave RFID tags.

RFID system:


- Tags, or labels (attached to the objects to be identified),
- Two-way radio interrogators or readers (transceivers sending a signal to the tag and reading its response),
- Host/network (for data processing and exploitation).

RFID Architecture





Sources: www.perfectrfid.com and Wikimedia.

Three types:

- Active: has an on-board battery and periodically transmits its ID signal.
- Battery-assisted passive (BAP) or semi-passive: has a small battery on board and is activated when in the presence of an RFID reader.
- Passive: cheaper and smaller because it has no battery. Uses the radio energy transmitted by the reader. Must be illuminated with a power level 1000x stronger than signal transmission (interference and in exposure to radiation).

Capabilities:

- Read-only: a factory-assigned serial number that is used as a key into a database.
- Read/Write: object-specific data can be written into the tag by the system user.
 Field programmable tags may be write-once, read-multiple;
 "blank" tags may be written with an electronic product code by the user.

◎ <u>Three parts:</u>

- Integrated circuit for storing and processing information that modulates and demodulates RF signals. The tag information is stored in a non-volatile memory, fixed or programmable logic for processing;
- Power collector/harvester for collecting DC power from the incident reader signal;
- Antenna for receiving and transmitting the signal.
- Capabilities:
 - RFID reader transmits an encoded radio signal to *interrogate* the tag.
 - RFID tag receives the message and then responds with its identification and other information: unique tag serial number, or product-related information (e.g. stock number, lot/batch number, production date, ...)
 - Tags have individual serial numbers. RFID system design can discriminate among several tags within the range of the RFID reader and read them simultaneously.

Source: www.perfectrfid.com

Three types:

- Passive Reader Active Tag (PRAT) system has a passive reader which only receives radio signals from active tags (battery operated, transmit only). The reception range of a PRAT system reader can be adjusted from 1–2,000 feet (0–600 m,) allowing flexibility in applications such as asset protection and supervision.
- Active Reader Passive Tag (ARPT) system has an active reader, which transmits interrogator signals and also receives authentication replies from passive tags.
- Active Reader Active Tag (ARAT) system uses active tags awoken with an interrogator signal from the active reader. A variation of this system could also use a Battery-Assisted Passive (BAP) tag which acts like a passive tag but has a small battery to power the tag's return reporting signal.

Capabilities:

- Fixed readers are set up to create a specific interrogation zone which can be tightly controlled. This allows a highly defined reading area for when tags go in and out of the interrogation zone.
- Mobile readers may be hand-held or mounted on carts or vehicles.

Operational Parameters

Frequency Ranges	LF 125 KHz	HF 13.56 MHz	UHF 868 - 915 MHz	Microwave 2.45 GHz & 5.8 GHz	
Typical Max Read Range (Passive Tags)	Shortest 1"-12"	Short 2"-24"	Medium 1'-10'	Longest 1'-15'	
Tag Power Source	Tag PowerGenerally passive tags only using		Active tags with integral battery or passive tags using capacitive storage, E-field coupling	Active tags with integral battery or passive tags using capacitive storage, E-field coupling	
Data Rate	Data RateSlower		Fast	Faster	
Ability to read near metal or wet surfaces	near netal or wet Better		Poor	Worse	
Applications	Access Control & Security Identifying widgets through manufacturing		supply chain tracking Highway toll Tags	Highway toll Tags Identification of private vehicle fleets in/out of a yard or facility Asset tracking	

Adoption and Applications

Three driving factors:

- decreased cost of equipment and tags,
- increased performance/reliability of 99.9%,
- stable international standard around UHF passive RFID¹
- Institutions: Hospitals and healthcare, Libraries, Museums, Schools and Universities, Sports

Applications:

- Commerce (retail, access control, advertising, promotion tracking, ...)
- Transportation and logistics (access management, transportation payments, toll collection and contactless payment, tracking of goods/persons/animals, waste management, timing sporting events, ...)
- Passports
- Infrastructure management and protection
- Telemetry
- Human implantation

RFID in action

Photos credit: www.perfectrfid.com

Many organizations have set standards for RFID:

- International Organization for Standardization (ISO)
- International Electrotechnical Commission(IEC)
- ASTM International
- DASH7 Alliance
- EPCglobal.
- ...

Several specific industries that have set guidelines:

- Financial Services Technology Consortium (FSTC): tracking IT Assets with RFID,
- Computer Technology Industry Association (CompTIA): certifying RFID engineers,
- International Airlines Transport Association (IATA): tagging guidelines for luggage in airports.

Regulation and Standardization (2/3)

- Countries can set own rules for Industrial Scientific and Medical (ISM) frequency bands allocation. Not all bands available in all countries.
- Low-frequency (LowFID) [125–134.2 kHz 140–148.5 kHz] and high-frequency (HighFID) [13.56 MHz] tags <u>can be</u> used globally without a license.
- Ultra-high-frequency (UHFID) [865–928 MHz] tags cannot be used globally, no single global standard.
- A site license may be needed income countries. Applied for at the local authorities, and can be revoked.
- Examples of standards:
 - ISO 11784/11785: Animal identification.
 - ISO/IEC 14443: popular for HighFIDs, basis of RFID-enabled passports under ICAO 9303.
 - ISO/IEC 15693: popular for HighFIDs, non-contact smart payment and credit cards.
 - ISO 18185: industry standard for electronic seals (e-seals), tracking cargo containers at 433 MHz and 2.4 GHz.
 - ISO 28560-2: encoding standards and data model for libraries.
 - EPC Gen2: EPCglobal UHF Class 1 Generation 2.

• Other standards for conformance, performance, and interoperability tests — ensure global interoperability.

Problems and Limitations

- Propagation phenomena (Friis equation) and range;
- Access and collision (tree, memoryless, contactless, I-code, ...);
- Data flooding;
- Global standardization;
- Health;
- Exploitation;
- Shielding;
- Other issues:
 - Privacy;
 - Security concerns;
 - Government control.

Strengths	Weaknesses		
 Advanced technology Small size and easy to use (no LOS required) High memory capacity EPC (96 bits) 	 Multitude of industry/application standards Cost/unit and integration costs Weak market understanding of the benefits 		
Opportunities	Threats		
 Could replace bar code 	 Ethical threats concerning privacy 		

Thank You

ITU-SUDACAD Regional Forum IoT for Development of Smart Sustainable Cities

Khartoum, Sudan 13-14 December 2017

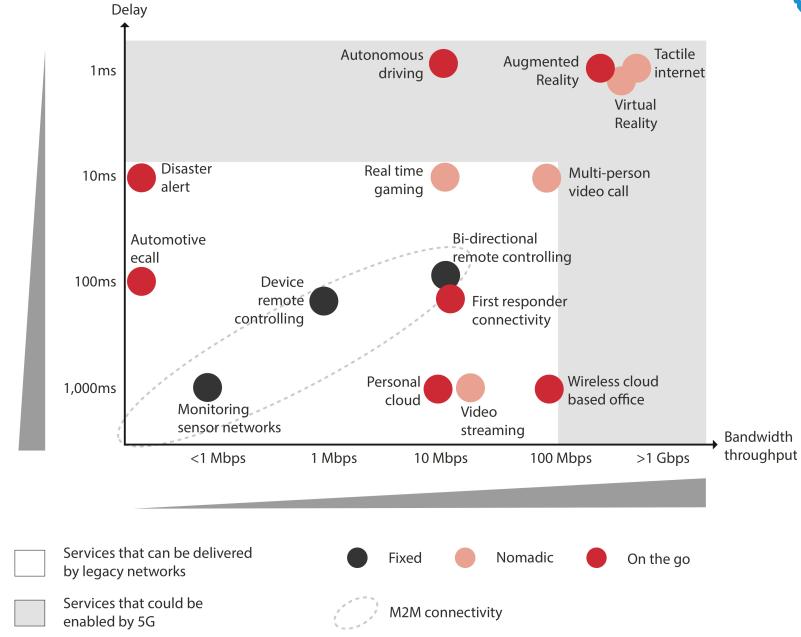
Session 7

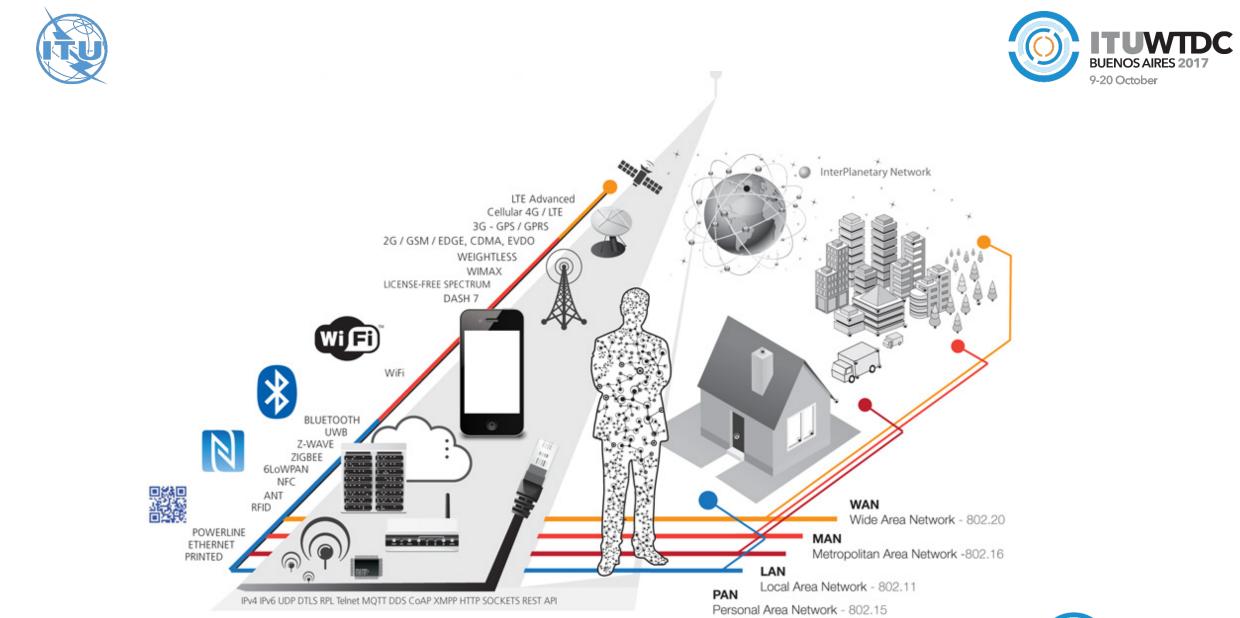
RFID & IoT

Adoption for Smart Cities

Prof. Mustapha Benjillali INPT, Morocco benjillali@ieee.org

Alternative and/or complementary solutions (5G, WSN, LPWAN, ...)

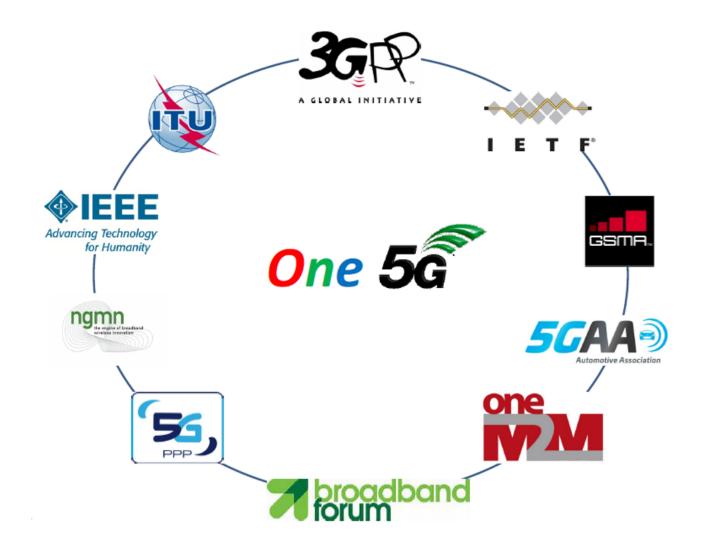


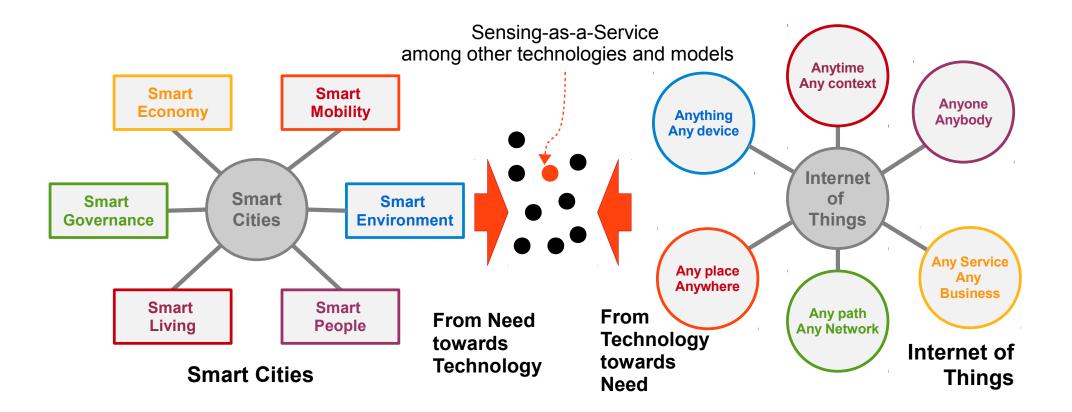

CELEBRATING

OF ACHIEVEMENTS

25

іт<u>и-р</u> 1992 2017





Sensing and Access/Network Requirements

- Enablers (mmWave, OWC, ...)
- Bottleneck (bandwidth, power, weight, ...)
- Evolution (2G, 3G, LTE, NB-IoT...) vs. Revolution (5G, molecular comms., ...)

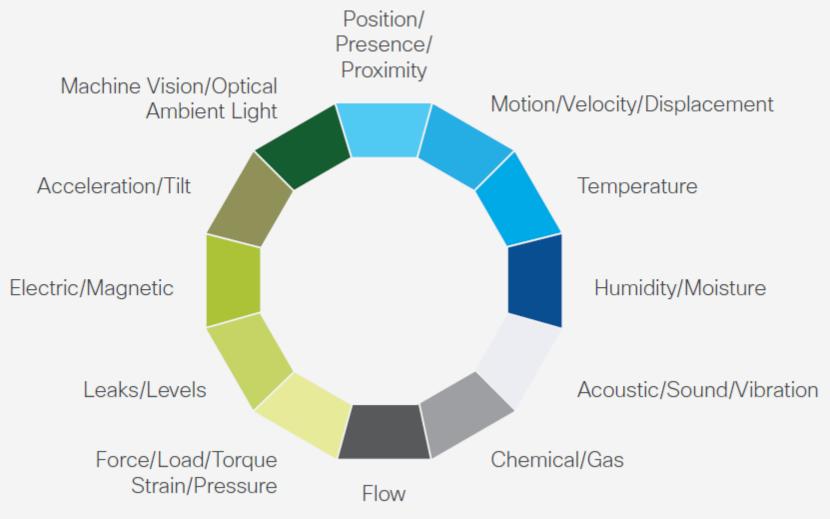
Low device cost: under USD 5 per module

Extended coverage: 20dB better than GPRS

Long battery life: more than 10 years Report uplink latency: less than 10 seconds

⊠♪₽₽₽₽

Capacity:

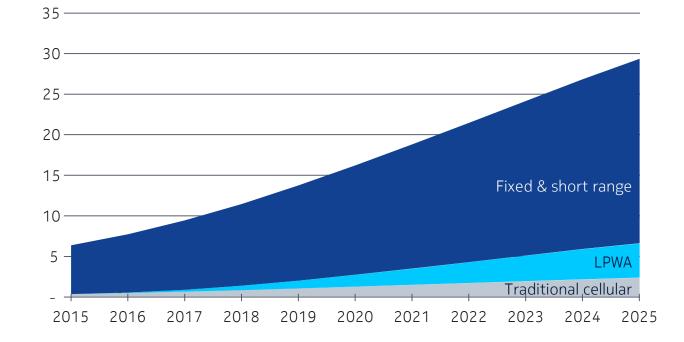

40 devices per household

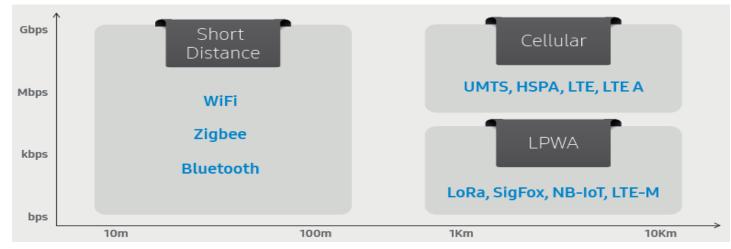
Source: Ericsson, Apr. 2016

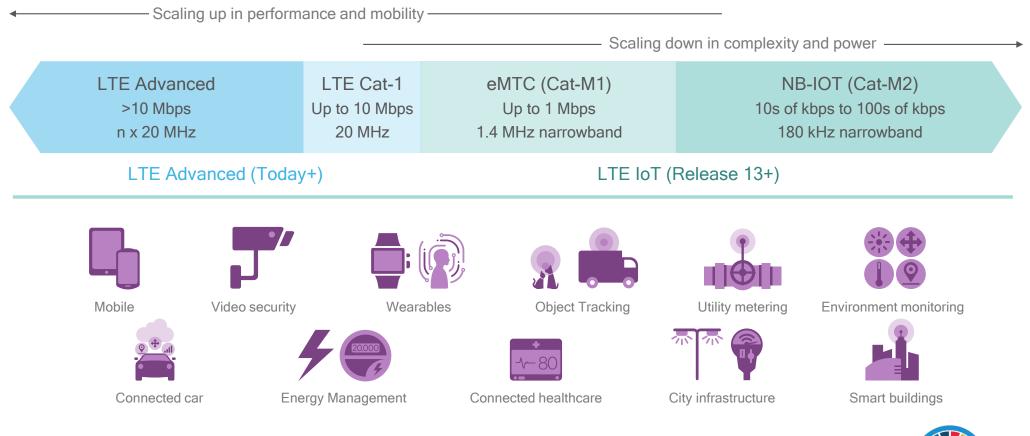
Sensor categories

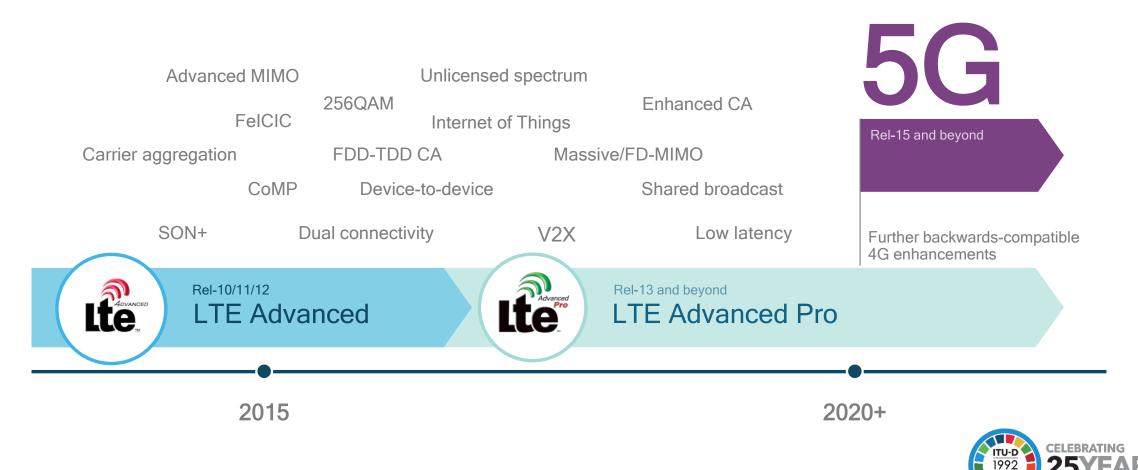
CELEBRATING

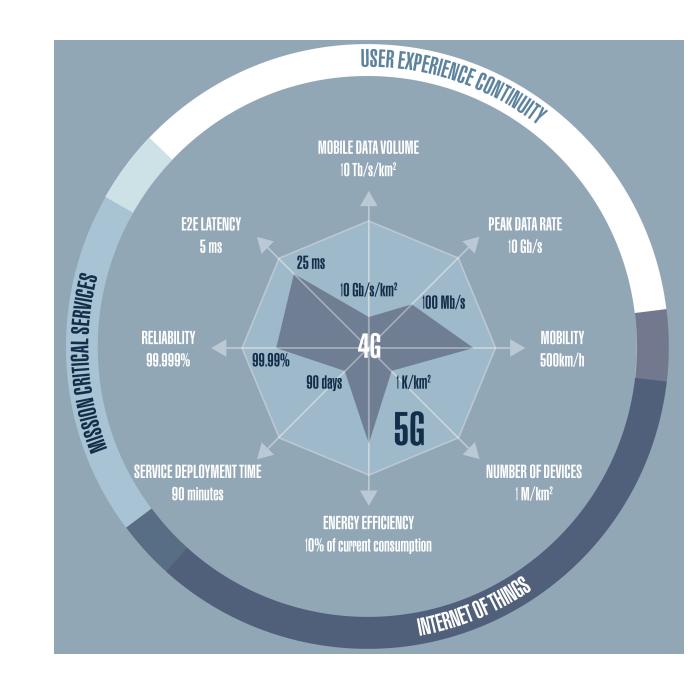
OF ACHIEVEMENTS


<u>ITU-D</u> 1992 2017

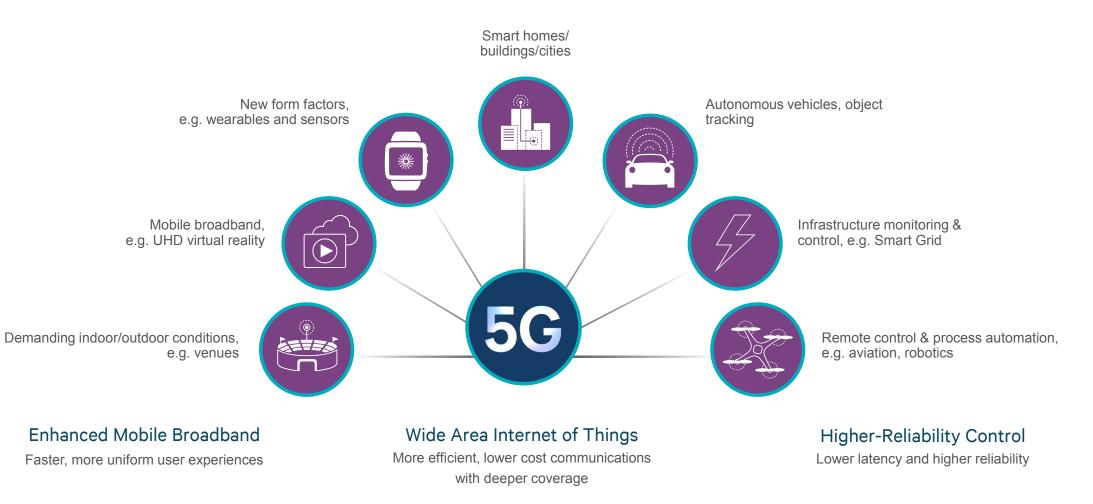

	Sensor Type	
\$150-\$1000+	 Long-term install/deployment Industrial scale deployment Extreme accuracy/precision Typically large enterprises Ease of solution interoperability 	 Chemical/Gas Electrical/Capacitive Pressure/Load/Weight Proximity/Position
\$50-\$150	 Residential/commercial Advanced development kits Consumer-based support Cloud partnership capability Fast deployment Medium infrastructure required Low-Medium accuracy/Precision 	 Water Treatment/Flow Weather/Temperature Motion/Velocity Acoustic/Sound/Vibration Light/Imaging Proximity/Position Flex/Force/Strain
\$0 - \$50	 Single function DIY/Prototyping often needed Limited without other hardware Requires basic equipment Geared towards amateurs Singular functionality No infrastructure required 	 Water Treatment/Flow Weather/Temperature Motion/Velocity Acoustic/Sound/Vibration Light/Imaging
	Lowest	Cost

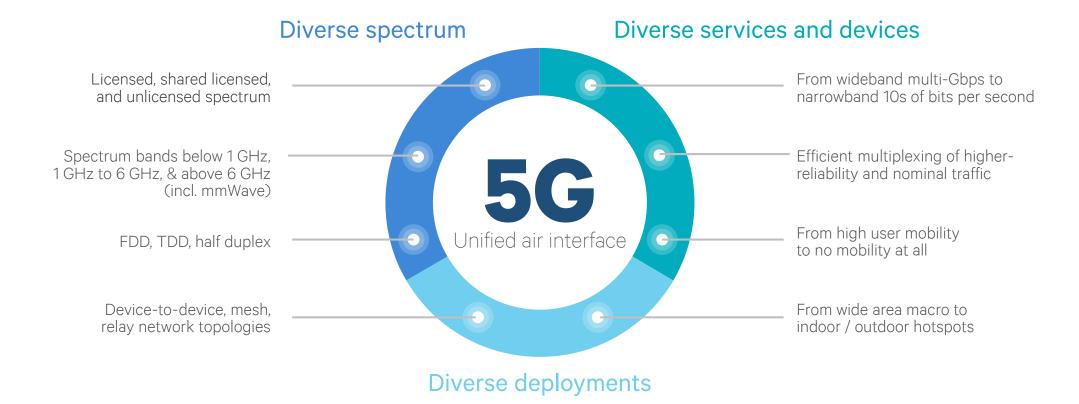


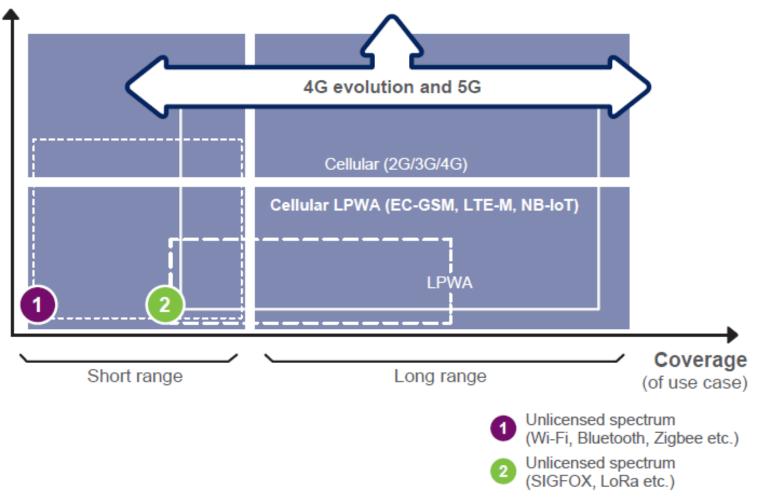




2017



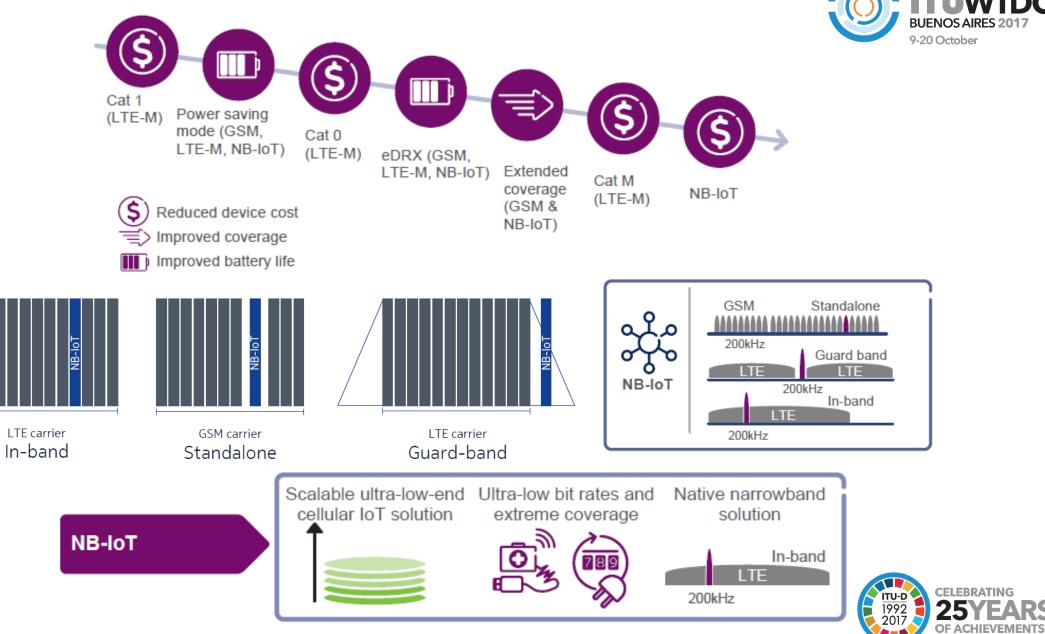



New access cand LTE evolution car	udidates LTE-M: LTE for M			
5G below 6 GHz	5G cmWave	50	G mmWave	
LTE-A/LTE-M/LAA LTE and their evolution				
1 GHz 2 GHz 6 Within WRC2015 scope	GHz 10 GHz 20 C Expecte	H GHz 30 GHz d to be within WRC2019 scop	60 GHz	100 GHz

Performance

	Personal Area Networks (WPAN)			Wireline	
	ANT+, Bluetooth, 4.0 LE RFID, NFC 802.11.4, ZigBee	Wi-Fi	LoRa, Weightless, Dash 7 WiMax, 2G, 3G 4G/LTE, Satellite	Copper/DSL Coaxial Fiber	
Range short to long		•			
Bandwidth narrow to broad				•	
Battery Life short to long				•	

	LPWA (Low Power Wide Area)						
		Cellular IoT (30	GPP Standard-b	ased) Non-Cellular Io		llular IoT	
	LTE-M			ND IsT			
	Cat1 (Rel.8)	Cat 0 (Rel.12)	Cat M (Rel.12)	NB-IoT (Rel.13)	LoRa	SigFox	
Coverage*	Same as LTE coverage (Cat-M : Deeper Penetration)			+ 20dB than LTE (<22km)	<14km	<17km	
Spectrum	LTE In-band Only			LTE In-band Guard band Standalone	Un-licensed Band		
Signal BW	20 MHz	1.4 MHz	1.08 MHz	180 kHz	125 kHz	0.1 kHz	
Data Rate	10Mbps	1Mbps	1Mbps	200kbps	10kbps	100bps	
Battery Life	10years			10years	10y	ears	



	LoRa	GSM (Rel.8)	EC-GSM- loT (Rel.13)	LTE (Rel.8)	eMTC (Rel.13)	NB-IoT (Rel.13)
LTE user equipment category	N/A	N/A	N/A	Cat.1	Cat.M1	Cat.NB1
Range Max. coupling loss	<15km 155dB	<35km 144dB	<35km 164dB	<100km 144dB	<100km 156dB	<35km 164dB
Spectrum	Unlicensed <1GHz	Licensed GSM bands	Licensed GSM bands	Licensed LTE bands In-band	Licensed LTE bands in-band	Licensed LTE in- band guard-band stand-alone
Bandwidth	<500kHz	200kHz	200kHz	LTE carrier bandwidth (1.4 – 20MHz)	1.08MHz (1.4MHz carrier bandwidth)	180kHz (200kHz carrier bandwidth)
Max. data rate*	<50kbps (DL/UL)	<500kbps (DL/UL)	<140kbps (DL/UL)	<10Mbps(DL) <5Mbps(UL)	<1Mbps (DL/UL)	< 170kbps (DL) < 250kbps (UL)

Thank You

