Broadband in the Applications Age: Digital Platforms Drivers and Policy Implications

ITU Arab Forum on Future Networks: "Broadband Networks in the Era of App Economy",

Tunis - Tunisia, 21-22 Feb. 2017

crossotto@worldbank.org

Digital technologies – key in today's world. From telecom / ICT to digital development.

The internet remains unavailable, inaccessible, and unaffordable to a majority of the world's population.

Sources: World Bank 2015; Meeker 2015; ITU 2015; GSMA, https://gsmaintelligence.com/; UN Population Division 2014. Data at http://bit.do/WDR2016-FigO 5.

Note: High-speed internet (broadband) includes the total number of fixed-line broadband subscriptions (such as DSL, cable modems, fiber optics), and the total number of 4G/LTE mobile subscriptions, minus a correcting factor to allow for those who have both types of access. 4G = fourth generation; DSL = digital subscriber line; ICT = information and communication technology: LTE = Long Term Evolution.

Source: WDR 2016

Digital infrastructure challenge: new models and competition to sustain broadband investment

Source: World Bank background paper, Nov 2016

- Cost per gigabyte HDDs declined from USD56 in 1998 to USD0.05 in 2012 (OECD)
- Solid state drives accelerated the decline in cost from USD40 in 2007 to USD0.1 in 2012 (OECD)
- China grew from 2% of global ICT exports (2000) to 30% in 2012

- 400 million victims of cyber attacks, and USD110 bn. lost by consumers: 12 victims per second, ~ USD300/victim (Symantec)
- 35.8 million M2M SIM cards in OECD countries in 2014 (8 million each in both Italy and France)

- MEMS 80–90% Price decline in MEMS (microelectromechanical systems) sensors in past 5 years (Mc Kinsey)
- Augmented reality. Video will dominate IP consumer traffic in 2018 (Cisco VNI)
- Internet of Things (IoT). \$36
 trillion Operating costs of key
 affected industries (manufacturing,
 health care, and mining) (Mc
 Kinsey)
- Cloud. 2 billion Global users of cloud-based email services like Gmail, Yahoo and 80% North American firms hosting or planning to host critical applications on the cloud (Mc Kinsey)
- Automation of knowledge work.
 \$9+ trillion Knowledge worker employment costs, 27% of global employment costs (McKinsey); 20% of all work transacted online in 2020 (oDesk)

Broadband in the Applications Age: Digital Platforms Drivers and Policy Implications (7)

Source: Upwork

Digital Platforms: Policy Implications (I)

Massive shift in value towards services and applications

Traditional reform: Privatize telco SOEs, increase competition over the whole value chain

Higher pressures to provide Ultra-Fast Broadband. Telcos have declining margins; CAPEX constraints; traditional telco business model is over

Infrastructure Sharing

- Active Infrastructure (elements managed by operators)
 - Transmission systems, antennas, spectrum, Internet Exchange Points (IXPs) at national/local level
- Passive Infrastructure (elements not necessarily managed by operators after installation)
 - Ducts, Fiber optic cables, Towers, Cabinets containing power supply, air conditioning, Physical space on the ground
- "Dig Once" policy: collaboration with other sectors, especially transport
- Largest cost element (90%*) for deploying broadband is burying fiber optic cables and conduits underground.

Digital platform business model requires: (a) Attention to digital divide and digital inclusion and (b) a redefinition of competition policy in the sector

Universal Access Reform: Access to platforms and not only connectivity

Broadband in the Applications Age: Digital Platforms Drivers and Policy Implications (9)

Digital Platforms: Policy Implications (II) – A New Agenda (OTT)

- Provision of different services over different platforms (e.g., technological neutrality)?
- Service providers allowed to offer multiple services over multiple platforms
- What are the regulatory policies for new technologies and services with regard to numbering, spectrum, universal service, and interconnection?
- Legal framework to support a digital environment (e.g., intellectual property laws, computer crime, electronic transactions, data privacy and security)
- Regulation encourages digital payments allowed
- Tax credit for IT investment; R&D
- OTTs allowed in the connectivity space, to extend network to isolated regions (Loon-X (Google), internet.org (Facebook)) – New LEOs

Regulatory obligation	Traditional operators	OTT player
Licensing	Must purchase license to operate	Often not subject to specific licensing
Accessible Market	Only serve customers within the regulated jurisdiction	Serve any user, anywhere
Taxes	Subject to local and national taxes	Locating operators in low cost locations and tax heavens
Infrastructure /Network	Unbundling, open access to Infrastructure obligations.	no obligations
Privacy	Strict data protection and privacy requirements by Law	Practiced on a limited and generally voluntary basis

Broadband in the Applications Age: Digital Platforms Drivers and Policy Implications (10)

Digital Platforms: Policy Implications (III) – A New Agenda (IOT)

IOT regulatory issues	Good practice regulatory trends
Licensing and Spectrum	Ensure availability of spectrum for short range IoT
management:	communications, foster capacity of backhaul
Ensure spectrum is available for a	networks that connect IoT gateways to the Internet,
wide	roll-out of small cell technology such as 4G.
range of IoT applications, at short	
and long range, in licensed and	
unlicensed bands	
Switching and Roaming:	Mobile network operators develop M2Mspecific
Standard mobile telephony network	business units with appropriate billing and
SIMs and accounts unsuitable for	management.
large M2M users, mobile devices,	Further development and deployment of embedded,
and fixed devices in areas of poor	remotely provisioned SIMs in M2M systems.
reception	
Addressing and Numbering:	Deployment of IPv6 by ISPs, public and
Very large address space needed for	private sector organizations.
globally addressable things	Use of IMSI for M2M applications.

Source: Cisco.

Conclusions

ITU Arab Forum on Future Networks: "Broadband Networks in the Era of App Economy",

Tunis - Tunisia, 21-22 Feb. 2017

crossotto@worldbank.org

linkedin.com/in/carlomariarossotto

openknowledge.worldbank.org/author-page?author=Rossotto%2C+Carlo+Maria