Privacy in the Internet: threats and challenges

Mohamed Hamdi

Elgazala technopark, Tunisia December 5, 2016

Abundance of security controls

- Many approaches have been developed to address security controls
 - Access control/firewalls
 - Authentication/Authorization
 - Intrusion detection
 - Digital investigation
 - ...

Can security be an obstacle to security?

- Security controls: Typically based on the inspection of data
- New protection mechanisms obfuscate information which is crucial for security analysis

Security requirements may be conflicting

Conflicting security requirements¹

Conflicting security requirements²

Illustrative cases: social networking¹

 80% of Internet users are connected to social networks (UNCTAD Annual Report on ICT)

G. Lotan *et al.*, 'The Revolutions Were Tweeted: Information Flows During the 2011 Tunisian and Egyptian Revolutions,' International Journal of Communication, Vol. 5, pp. 1375–1405, 2011.

Illustrative cases: social networking²

- Users use pseudonyms to build their profiles (~anonymity)
- Privacy violation are difficult to detect
 - Cannot be automated
 - Based on abuse reporting and mediator analysis
- Censorship to social networks have been circumvented during the Arab revolutions

Illustrative cases: cloud computing¹

Illustrative cases: cloud computing²

- Anonymous access to private information should be guaranteed (e.g., patient files)
- Virtualization and anonymity offers new means of steganography (hiding data into storage infrastructures)
- Federated identities may encompass anonymous and nonanonymous accounts

Holistic IoT Scenario

Dieter Uckelmann Mark Harrison Florian Michahelles *Editors*

Architecting the Internet of Things

2 Springer

Architecting the Internet of Things Uckelmann, Dieter; Harrison, Mark; Michahelles, Florian (Eds.)

1st Edition., 2011, SBN: 978-3-642-19156-5,2011.

Basic Components of the IoT

Enabling Building Blocks These technologies directly contribute to the de- velopment of the IoT	Synergistic Technologies These technologies may add value to the IoT
 Machine-to-machine interfaces and protocols of electronic communication Microcontrollers Wireless communication RFID technology Energy harvesting technologies Sensors Actuators Location technology Software 	 Geo-tagging/geo-caching Biometrics Machine vision Robotics Augmented reality Mirror worlds Telepresence and adjustable autonomy Life recorders and personal black boxes Tangible user interfaces Clean technologies

Data lifecycle

Questions...

- Storage
- Retention
- Destruction
- Auditing, monitoring and risk management
- Privacy Breaches
- Who is responsible for protecting privacy?

Madrid resolution (2009)

- Approved by data protection authorities of 50 countries
- Framework for international standards on privacy and data protection
- Defines a set of principles and rights
 - for protecting privacy with regards to processing of personal data and
 - Facilitate international flow of personal data
- Encourages countries to implement proactive measures to promote better compliance with data protection laws and adapt information systems for processing of personal data

Privacy by design¹

- EU review of Data Protection Directive in 2011
 - Principle of privacy by design
 - Implement privacy enhancing technologies (PETs)
 - Privacy by default settings
 - EU rules must apply if personal data is handled abroad by companies active in EU market
- Privacy by design binding for
 - Data controllers
 - Developers
 - Business partners
- Need for standardized privacy protection measures

Privacy by design²

► 7 principles

- Data minimization
- Controllability
- Transparency
- User friendly systems
- Data confidentiality
- Data quality
- Use limitation

Open Problems

Privacy/Lawful interception

Anonymity/Forensics

Pseudonyms/Privacy

Federated identities/anonymity/privacy

Privacy/lawful interception

Anonymity/authentication

Federated identities/anonymity/privacy

Thank you

