Multi-service infrastructure for smart sustainable cities in new-development areas

David Faulkner, Ziqin Sang, N.S. Deepu Flavio Cucchietti, R. M. Agarwal, ITU-T Focus Group on Smart Sustainable Cities (FG SSC)

Contents

- Objective
- What utilities do we need?
- Utility Corridors and Trenching
- Utility Tunnels
- Network Resilience
- Powering the sensor layer network
- Opportunities for Sharing the application platform
- Conclusion

Objective

- This document focuses on answering the question, "How should ICT infrastructure be planned for a new city given that it has to be both 'smart' and 'sustainable'?"
 - The approach taken assumes that no infrastructure exists and the city or urban development area is to be built from new

A key problem to be solved

Can new infrastructure be to be shared to save costs, be smarter and more sustainable?

Source: ITU-T FG-SSC Multi-service infrastructure for smart sustainable cities in new-development areas Nilesh Puery: Presentation "Gujarat International Finance Tec-City" made at ITU Training Event "Leveraging ICTs for Smart Sustainable Cities for Asia-Pacific Region", Delhi, March 24-26, 2015.

4

- but ICT's can add intelligence to all other services
 - Sensors to warn of faults
 - Control systems to shut down and activate services
 - Special cables are needed
 - A sensor layer network is needed
- Don't miss anything
 - It could be expensive to add it later!
 - e.g. pipes for solid waste disposal?

Sources: ITU-T FG-SSC deliverable "Multi-service infrastructure for smart sustainable cities in new-development areas" and 5 Standard of Ministry of Construction of China CJJ 61-2003, Technical specifications for detecting and surveying underground pipelines and cables in city (2003), in Chinese.

Surface and above ground utilities

- Roadways
- Footpaths
- Tramways
- Street lighting
- Wireless networks
- Corridors for trees (e.g., to provide cooling and absorb polluting gases (NOx and CO₂)
- Arrangement of solid waste collection facilities/bins

Typical Utility Corridor

- Inter-agency coordination is needed to
 - Reduce road maintenance costs
 - Provide smoother roads with fewer closures for maintenance
 - Be cost-effective to suit local conditions
 - Eliminate disputes among stakeholders
 - Expedite project delivery

Sources: ITU-T FG-SSC deliverable "Multi-service infrastructure for smart sustainable cities in newdevelopment areas" and 7 Abu Dhabi Urban Planning Council, "Abu Dhabi Utility Corridors Design Manual" Version 1 http://www.upc.gov.ae/template/upc/pdf/UCDM Version-1-En.pdf

Advantages of Trenching

- Initial costs may be lower because of the avoidance of the cost of the utility duct and subsequent installation of the cables into such duct
- Planning time needed among stakeholders is minimized
- Maintenance workers can focus their expertise on one utility
- No central authority is needed to manage the stakeholders.

Disadvantages of Trenching

- Maintenance costs are higher
 - damage risk to other utilities
- Location records are poorly kept
- Lack of coordination results in crossed paths/chaotic routing
- Road surfaces can be seriously damaged by frequent trenching
- Without common utility tunnels or ducts, new types of networks require new trenches which are costly to build

Trench Sharing Example from United Kingdom 1/2

Source http://www.njug.org.uk/wp-content/uploads/V1-Positioning-Colour-Coding-Issue-8.pdf

Trench Sharing Example from United Kingdom 2/2

- Reduces disruption to both vehicular and pedestrian traffic
- Offers cost savings in construction and reinstatement
- Maximizes available space in the highway

• It is essential that early consultation takes place with representatives from relevant authorities and all other interested parties ..etc.

Source: http://www.njug.org.uk/wp-content/uploads/V1-Positioning-Colour-Coding-Issue-8.pdf

Utility Tunnel

- A utility tunnel is considered an optimal solution to avoid underground crowding of utilities in narrow right-of-ways
- Shared infrastructure can save significant costs, especially when provision is made for maintenance, upgrade and growth over the lifecycle
- Requires cooperation among stakeholders

Sources: ITU-T FG-SSC deliverable "Multi-service infrastructure for smart sustainable cities in newdevelopment areas" and Abu Dhabi Urban Planning Council, "Abu Dhabi Utility Corridors Design Manual" Version 1 http://www.upc.gov.ae/template/upc/pdf/UCDM Version-1-En.pdf

Advantages of Utility Tunnels

- Easier accessibility to utilities for maintenance and upgrading
- Environmental impacts are minimized: such as traffic disruption
- Location information is made more accessible
- Utility ducts greatly reduce surface area occupied
- An adequate airflow in ducts allows better heat transmission from electricity cables than in direct trenched/buried situations

Disadvantages of Utility Tunnels

- High initial construction cost as compared to traditional open excavation methods
- The issue of compatibility between the utilities housed in the tunnel. A defect in one system may adversely affect the other systems.
- The concerns of people entering the tunnels to maintain one service when they are not experienced in dealing with other types of services (and associated risks) of other utilities

Utility Tunnel Specifications

- Wet utilities should be in a separate compartment from dry
- An adequate head-height and width is needed to allow for removal and replacement of equipment
- Lighting should be designed to a minimum level of 150 LUX
- Fire detection and alarm systems are needed
- Firewalls may be required to isolate sections of the tunnel during a fire
- Tunnels should include an emergency escape
- Wet utilities tunnels should include floor drains draining into a sump
- Tunnels should include a closed-circuit TV system
- Tunnels should be equipped with a gantry for lifting heavy equipment, such as valves.

Sources: ITU-T FG-SSC deliverable "Multi-service infrastructure for smart sustainable cities in new-development areas" and Abu Dhabi Urban Planning Council, "Abu Dhabi Utility Corridors Design Manual" Version 1 http://www.upc.gov.ae/template/upc/pdf/UCDM_Version-1-En.pdf ITU-T Recommendation L.11 "Joint use of tunnels by pipelines and telecommunication cables, and the standardization of underground duct plan", 1988. http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=1415

Utility Tunnel Examples

- T Telecommunication duct area (exposed cables)
- E Power duct area
- G Gas duct area
- O Water duct area
- C District heating duct area
- A Waste water duct area

Abu Dhabi Urban Planning Council, "Abu Dhabi Utility Corridors Design Manual" Version 1 http://www.upc.gov.ae/template/upc/pdf/UCDM Version-1-En.pdf

16

Source: ITU-T FG-SSC deliverable "Multi-service infrastructure for smart sustainable cities in new-development areas"

Powering the sensor layer network

- Batteries for remote radio sensors have a limited life and may be expensive to locate and replace
 Greater than 10 year life is needed
- Wired networks can avoid this problem
 - ADSL (telecommunications cable)
 - Power over Ethernet (4 twisted pairs)
 - HomePlug Powerline Alliance (electricity cable)
 - USB (computer cable)
- Be sure to allow space for the wires!

Opportunities for ICT to support other utilities

- Sensors can facilitate better monitoring and control and give advance warning of failure or blockages
- Possible examples include:
 - Flood detection sensors in utility ducts
 - Fire detection sensors in utility ducts
 - Temperature sensors in electric cables
 - Gas leakage detectors
 - Traffic flow monitoring
 - Street lamp control
 - Street lighting control
 - Water utility...

SMART Water Infrastructure

19

Nilesh Puery: Presentation "Gujarat International Finance Tec-City" made at ITU Training Event "Leveraging ICTs for Smart Sustainable Cities for Asia-Pacific Region", Delhi, March 24-26, 2015.

Opportunities for sharing the Application Platform

- A wide range of service applications are envisaged
- Each requires termination onto a server, data storage, a smart processor and connection to personal devices, sensors and controllers
- Most existing cities have a multiplicity of platforms to support these services because expertise for managing the services resides in silos
- When building a new SSC planners have the option to select a service platform which can handle the bulk of the software functions required by application developers on a single platform

- FIWARE was funded by the European Union in a \$100M R&D Programme
- Provides an open, public and royaltyfree managed service architecture for smart cities
- Offers a set of open APIs that allow developers to avoid getting tied to any specific vendor, therefore protecting application developers' investments
- http://www.fiware.org/contact-us/

• Example...

Conclusions

- A SSC is a concept which can be applied to a range of construction projects with focus on cities
 - May be applied in both new-build and in new development areas
- Resource sharing at all stages and level of construction can offer significant advantages
 - such as cost reduction when maintenance is taken into account
 - A wide range of stakeholders need to cooperate to get the best result
- New construction techniques are needed to obtain a rapid and comprehensive result
- ICT needs to be central to all stages of the planning and operation of a SSC

