Regional Workshop for Africa on Developing the ICT ecosystem to harness Internet-of-Things (IoT) 28-30 June 2017, Mauritius







### Business models of IoT: from suppliers to customer



Dr. Imen BEN CHAABANE Committed to connecting the world



### Old business models

The basic business models that currently exist in the IoT and IIoT space are:

- 1. Retail sales : Equipment or device manufacturer expends its own money or raises financing to build products which are then sold to customers. The equipment or device manufacturer only captures value during that one transaction, the expectation is that there is a positive margin between revenue and expenses and that customers will buy more of the same product or other products.
- 2. **Product lease/Subscription** : Instead of selling the machine/device, the vendor leases the product to the

customer.

<sup>• Can Stock Photo- csp6244473</sup> included to connecting the world



### New models

It's imperative that new businesses and startups should explore new models for value creation and capture. The new business models will stem from the increased interactions afforded by IoT and IIoT (Industrial IoT) devices.



### New models

Capturing value from human factors, analysis and machine interaction

An example will best serve here. Some business models can lie at the intersection of the 03 elements above.

There is a business model where a customer pays for insights drawn from the interactions. In the case of Proxxi the device keeps the technician safe by alerting him/her and the control room when unsafe conditions are detected.

We Call it : pay-per-warning.

Committed to connecting the world



### **Business Model for IoT**

IoT can provide significant innovation in business models

2

Business model innovation will have most impact where the IoT company interacts with the customer

Committed to connecting the world



### Business Model : from suppliers to customer



#### Business Model : from suppliers to customer



### The main business Models

There are 5 main business models enabled by IoT between the IoT company and the customer ...





### The main business Models

...and can be compared in terms of revenue structure and device ownership

| Rusiness models              | Revenue of the IoT company |              |              | Device ownership |              |
|------------------------------|----------------------------|--------------|--------------|------------------|--------------|
| Business models              | Upfront                    | Recurring    | Usage        | User             | IoT company  |
| Revenue-sharing              |                            | $\checkmark$ |              |                  | $\checkmark$ |
| Cost-savings sharing         |                            | $\checkmark$ |              |                  | $\checkmark$ |
| Product-sharing              |                            |              | $\checkmark$ |                  | $\checkmark$ |
| Product-as-a-Service         |                            | $\checkmark$ |              |                  | $\checkmark$ |
| Performance-as-a-<br>Product |                            |              | $\checkmark$ | $\checkmark$     |              |
| Transactional                | $\checkmark$               |              |              | $\checkmark$     |              |

The descriptions above are the most common and variations are possible. For example, transactional may also include device ownership from the IoT company.

Committed to connecting the world



### **Revenue sharing**



| Problem                  | Luggage lost in air transit.                                                                                                                                                                                                                                                |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Traditional<br>solution  | <ul> <li>The airline would try to find the lost luggage using manual processes, which<br/>are costly, time consuming and generate customer dissatisfaction.</li> </ul>                                                                                                      |  |  |
| loT<br>solution          | <ul> <li>A tracking device is placed inside the luggage and transmits its location using<br/>2G. The user can track his luggage using a smartphone app.</li> </ul>                                                                                                          |  |  |
| loT<br>business<br>model | <ul> <li>The airline charges a fee to its customers for using the luggage tracking<br/>service, or offers the service for no charge to premium customers. A share of<br/>the revenue generated is paid to the IoT company, which maintains the IoT<br/>solution.</li> </ul> |  |  |



### **Revenue sharing**



Committed to connecting the world





### **Costs savings sharing**

| Problem                  | Home/building energy consumption.                                                                                                                                                                                                                                                                                      |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Traditional<br>solution  | <ul> <li>The end user pays for the Heating, Ventilating and Air Conditioning (HVAC)<br/>system and its maintenance, and also pays the energy company pays for its<br/>power consumption.</li> </ul>                                                                                                                    |  |  |
| loT<br>solution          | <ul> <li>The end user installs equipment to monitor and control the HVAC system, so it<br/>can automatically adjust to the user's requirements and optimise its energy<br/>consumption.</li> </ul>                                                                                                                     |  |  |
| loT<br>business<br>model | <ul> <li>The IoT company installs the monitoring and control equipment with no up-front fees.</li> <li>The end user pays for the equipment rental from the energy savings generated by the IoT solution. If the savings amount to \$100 and the rental is \$40, the end user keeps \$60 as overall savings.</li> </ul> |  |  |

Committed to connecting the world



### **Costs savings sharing**

Traditional business model

IoT business model



The IoT solution allows end users to save on their energy consumption costs and use part of the savings to pay for the IoT solution

Committed to connecting the world



### **Product - sharing**



#### Committed to connecting the world



### **Product - sharing**

Traditional business model

IoT business model



The IoT business model allows the IoT company to transfer savings from economies of scale to the end user

Committed to connecting the world



### **Product-as-a-Service**



| Problem                  | High investment and maintenance cost of heavy medical equipment.                                                                                                                                                                                                                                                                     |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Traditional<br>solution  | <ul> <li>The user (e.g. hospital) buys the equipment upfront and can face high<br/>maintenance costs. Different suppliers may be involved in selling and<br/>supporting the equipment.</li> </ul>                                                                                                                                    |  |  |
| loT<br>solution          | <ul> <li>The hospital pays for the equipment and maintenance to the IoT company.</li> <li>The equipment is remotely monitored in terms of usage and performance, allowing the IoT company to perform predictive maintenance. As a result, the end user can benefit from reduced or no disruption from equipment downtime.</li> </ul> |  |  |
| loT<br>business<br>model | <ul> <li>The IoT company charges a recurring fee to the hospital. This fee includes the use of the equipment and its maintenance.</li> <li>The equipment is owned by the IoT company, who by actively monitoring it, may pre-empt potentially serious issues resulting in expensive maintenance.</li> </ul>                          |  |  |



### **Product-as-a-Service**

Traditional business model

IoT business model



The IoT solution can perform predictive maintenance, allowing the end user to benefit from lower or no disruption and more affordable cost



### Performance-as-a-product

| Problem                  | Uncertain aircraft engine maintenance cost.                                                                                                                                                                                                                                                                                     |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Traditional solution     | <ul> <li>Airlines would buy the engine from manufacturers such as Rolls-Royce and<br/>take on the risk of the engine becoming inoperable and possible high<br/>maintenance cost.</li> </ul>                                                                                                                                     |  |  |
| loT<br>solution          | <ul> <li>The aircraft engines have embedded sensors that send data back to the engine manufacturer (IoT company).</li> <li>This information is used by the IoT company to identify and fix problems remotely, minimising the risk of engine downtime.</li> </ul>                                                                |  |  |
| loT<br>business<br>model | <ul> <li>Rolls-Royce's TotalCare program is sold to airlines as a solution to make the engine's maintenance costs predictable.</li> <li>Under this program, Rolls-Royce is responsible for the engine's maintenance and only gets paid if the engine is operational. Its revenues equal a fixed fee per flying hour.</li> </ul> |  |  |



### Performance-as-a-product



The IoT solution aligns the interests of the airline with the maintenance provider

Committed to connecting the world



### **Summary : business models**

IoT can provide significant innovation in business models

Business model innovation will mostly impact where the IoT company interacts with the end user

Committed to connecting the world



## Case study 1 : Farm water monitoring



### Case study 1 : Farm water monitoring



Committed to connecting the world



International Telecommunication Union

### Case study 1 : Farm water monitoring

| Feature              | Requirement                                | Comment                                                                                                                                           |
|----------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Network Area         | <ul> <li>Wide</li> </ul>                   | Extended fields in remote locations can require<br>significant signal coverage                                                                    |
| Spectrum             | <ul> <li>Shared /<br/>Dedicated</li> </ul> | Quality of service of transmission is not a crucial factor                                                                                        |
| Battery life         | <ul> <li>Long</li> </ul>                   | The sensors may be placed in remote points of the field and need to have long battery life. Solar panels may contribute to extending battery life |
| Connectivity<br>cost | - Low                                      | Associated to the low bandwidth requirement                                                                                                       |
| Module cost          | <ul> <li>Medium</li> </ul>                 | Price may be an issue in developing countries                                                                                                     |
| Bandwidth            | - Low                                      | Data needed to monitor water level is limited                                                                                                     |



### Farm water monitoring – most likely business models

| Business models          | Revenue of the IoT<br>company | Device ownership |
|--------------------------|-------------------------------|------------------|
| Revenue-sharing          | Recurring                     | IoT company      |
| Cost-savings sharing     | Recurring                     | IoT company      |
| Product-sharing          | Usage                         | IoT company      |
| Product-as-a-Service     | Recurring                     | loT company      |
| Performance-as-a-Product | Usage                         | User             |
| Transactional            | Upfront                       | User             |

Committed to connecting the world



International Telecommunication

### Farm water monitoring



Committed to connecting the world



### Liability

Liability

- Establishing responsibility needs to be clear in the event of damages resulting from the IoT solution
- If the solution fails and animals die because of lack of water, who is to blame:
  - · The local reseller installer?
  - · The IoT technology company?
  - . The network operator?
  - The farmer?



# Case of study 2 : Elderly care monitoring



# Case of study 2 : Elderly care monitoring



# Case of study 2 : Elderly care monitoring

| Tee | h n a l | 0.00 |     |
|-----|---------|------|-----|
| lec | nno     | log  | les |

| Feature              | Requirement                | Comment                                                                                          |
|----------------------|----------------------------|--------------------------------------------------------------------------------------------------|
| Network Area         | - Wide                     | The hub sending data to an application uses cellular connectivity, so requires wide network area |
| Spectrum             | Dedicated                  | The connectivity service should be reliable                                                      |
| Battery life         | • Low                      | The hub is plugged in to an electrical outlet                                                    |
| Connectivity<br>cost | <ul> <li>Medium</li> </ul> | Price sensitivity will vary by person/country. We assume the price will need to be moderate      |
| Module cost          | <ul> <li>Medium</li> </ul> | Again, price sensitivity will vary but we assume it will need to be moderate                     |
| Bandwidth            | - Low                      | The application requires low bandwidth                                                           |
| Technologie          | es: 2G                     | ? ?                                                                                              |

Committed to connecting the world



### Elderly care monitoring-most likely business models

| Business models          | Revenue of the IoT<br>company | Device<br>ownership |
|--------------------------|-------------------------------|---------------------|
| Revenue-sharing          | Recurring                     | IoT company         |
| Cost-savings sharing     | Recurring                     | IoT company         |
| Product-sharing          | Usage                         | IoT company         |
| Product-as-a-Service     | Recurring                     | loT company         |
| Performance-as-a-Product | Usage                         | User                |
| Transactional            | Upfront                       | User                |

Most likely business models

Committed to connecting the world



### **Elderly care monitoring**



Committed to connecting the world



### Privacy and data protection

| Data collection    | <ul> <li>Who collects, shares and uses the individuals'<br/>data and why?</li> </ul>                                            |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| Data<br>protection | <ul> <li>How is the security of individuals' data ensured?</li> <li>How is the privacy of individuals' data ensured?</li> </ul> |  |  |
| Data use           | <ul> <li>How can individuals exercise choice and control<br/>over how their data will be used?</li> </ul>                       |  |  |

Committed to connecting the world



# Case study 3 : smart public garbage bin



Committed to connecting the world



## Case study 3 : smart public garbage bin



# Case study 3 : smart public garbage bin

#### Technologies

| Feature           | Requirement                                | Comment                                                                                                                                               |
|-------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Network Area      | <ul> <li>Wide</li> </ul>                   | The bins are located community-wide or city-wide                                                                                                      |
| Spectrum          | <ul> <li>Shared /<br/>Dedicated</li> </ul> | Quality of service (timeliness) of transmission is not a<br>crucial factor                                                                            |
| Battery life      | <ul> <li>Long</li> </ul>                   | Battery life has to be long, but use of solar panels may help widen the battery life                                                                  |
| Connectivity cost | <ul> <li>Low</li> </ul>                    | Expected to be low and in line with bandwidth requirements                                                                                            |
| Module cost       | <ul> <li>Low</li> </ul>                    | The cost per bin needs to be low so it is feasible to deploy across all bins in a given community/city. Bins are exposed and easily subject to theft. |
| Bandwidth         | <ul> <li>Low</li> </ul>                    | The application requires low bandwidth                                                                                                                |
| Technologies      | LPWA                                       | 2G ?                                                                                                                                                  |
|                   | Comm                                       | itted to connecting the world                                                                                                                         |

## Smart public garbage bin-Most likely business models

| Business models          | Revenue of the IoT<br>company | Device ownership          |
|--------------------------|-------------------------------|---------------------------|
| Revenue-sharing          | Recurring                     | loT company               |
| Cost-savings sharing     | Recurring                     | loT company               |
| Product-sharing          | Usage                         | loT company               |
| Product-as-a-Service     | Recurring                     | loT company               |
| Performance-as-a-Product | Usage                         | User                      |
| Transactional            | Upfront                       | User                      |
|                          | Mo                            | st likelv business models |

Committed to connecting the world



### Smart public garbage bin



Committed to connecting the world



Telecommunication

### Smart public garbage bin

#### **Privacy**

Data collection

- Regulators should support and encourage measures by which industry can identify and mitigate risks to privacy, and through which they can demonstrate accountability.
- This objective can be achieved through privacy enhancing technologies and tools that help consumers to manage their privacy and control how their data are used.
- In 2013, the City of London fitted devices in recycling bins to collect data on footfall.
- The data was collected by logging the media access control (MAC) of passing phones and done without the knowledge of those individuals.
- European Union regulation forbids mining personal data using 'cookies', which involves installing a monitoring device on individuals' phones or computers. However, tracking MAC codes leaves no trace on phones.

#### Committed to connecting the world







| Feature Requirement Comment |                                            |                                                                                                             |  |  |
|-----------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Network Area                | • Wide                                     | The area to be covered is indoors and needs to operate<br>without fixed line                                |  |  |
| Spectrum                    | <ul><li>Dedicated</li><li>Shared</li></ul> | Ideally, the service would have some quality guarantee, but<br>it could also work in shared spectrum        |  |  |
| Battery life                | <ul> <li>Short</li> </ul>                  | Battery life can be short as the alarm can be connected to a local power source                             |  |  |
| Connectivity<br>cost        | <ul> <li>Low</li> </ul>                    | The cost is expected to account for a relatively low amount<br>of the security alarm system's recurring fee |  |  |
| Module cost                 | <ul> <li>Medium</li> </ul>                 | The cost is expected to account for a relatively low amount of the security alarm system's cost             |  |  |
| Denslaufski                 | = Low                                      | The application requires low bandwidth                                                                      |  |  |



## Security alarms-Most likely business models

| Business models          | Revenue of the IoT<br>company | Device ownership |
|--------------------------|-------------------------------|------------------|
| Revenue-sharing          | Recurring                     | IoT company      |
| Cost-savings sharing     | Recurring                     | IoT company      |
| Product-sharing          | Usage                         | loT company      |
| Product-as-a-Service     | Recurring                     | loT company      |
| Performance-as-a-Product | Usage                         | User             |
| Transactional            | Upfront                       | User             |

Committed to connecting the world

Most likely business mod

International Telecommunication 42 Union



Committed to connecting the world



### **Traffic Management**



Committed to connecting the world



#### **Example of commercial Model**

| Society                                | Radio<br>Protocol                                                                                                                                                                                                                                                       | Coverage                                                                                                                                                                                                                                                                                                     | Customer Target                                                                                                                                                                                                                                                    | Network<br>Flow                                                                                                                                                                                                                     | Price /<br>Commercial<br>Model                                                                                                                                                                                                                                                                              |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIGFOX<br>One network A billion dreams | UNB (Ultra Narrow<br>Band) with<br>proprietary radio<br>communication<br>protocol layer.<br>Objects can be<br>addressed with<br>standard protocols<br>from the Internet:<br>HTTP (S) and MOU<br>as well as the<br>ability to create IP<br>addresses for each<br>object. | Five countries<br>covered (France,<br>Spain, United<br>Kingdom, Portugal,<br>Netherlands) and<br>seven countries in<br>the process of<br>deployment<br>(Belgium,<br>Denmark,<br>Luxembourg,<br>Czech Republic,<br>Italy, Ireland and<br>the United States).<br>Target of 60<br>countries covered<br>by 2017. | Sigfox offers to<br>any company,<br>from start-up to<br>large account,<br>who wants to<br>develop<br>connected B2C or<br>B2B solutions.<br>Business sectors:<br>emergency and<br>security services,<br>intelligent<br>buildings,<br>automotive,<br>transportation. | 100 bits per<br>second -<br>Upstream: Each<br>device can send<br>between zero and<br>140 messages per<br>day and each<br>message can<br>contain up to 12<br>bytes of data -<br>Downlink: up to 4<br>messages per day<br>per object. | Offer by<br>subscription<br>integrating<br>communications<br>and additional<br>services including<br>consulting and<br>development.<br>Price: from 1 to 8<br>E / object per<br>year, depending<br>on the volume of<br>messages<br>exchanged by the<br>devices and the<br>number of<br>connected<br>devices. |



| Society | Radio<br>Protocol                                                                                                                                                                                                                                                                       | Coverage                                                                                                                                                                                                                     | Customer Target                                                                                                                                                                                                                           | Network<br>Flow                                                                                                                                                                                                                           | Price /<br>Commercial<br>Model                                                                                                                                                                                                                                                              |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| orange™ | LoRaWAN with<br>Live Objects, a<br>data management<br>platform<br>integrating an<br>H11P type API<br>(object<br>registration,<br>sending of<br>commands, etc.)<br>and an MQTT-type<br>API (receiving<br>messages from<br>connected objects<br>to the client<br>application server<br>). | 17 agglomerations<br>in the first quarter<br>of 2016 (Angers,<br>Avignon,<br>Bordeaux, Douai<br>and Lens,<br>Grenoble, Lille,<br>Lyon, Marseille,<br>Montpellier,<br>Nantes, Nice,<br>Paris, Rennes, Of<br>French territory. | Companies of all<br>sizes, ranging from<br>start-ups to SMEs,<br>to large<br>companies. The<br>main sectors or<br>sectors concerned<br>are: smart cities<br>(including smart<br>buildings), energy,<br>industry, logistics<br>and health. | Companies of all<br>sizes, ranging from<br>start-ups to SMEs,<br>to large<br>companies. The<br>main sectors or<br>sectors concerned<br>are: smart cities<br>(including smart<br>buildings), energy,<br>industry, logistics<br>and health. | In addition to its<br>offerings of<br>Machine to<br>Machine<br>connectivity,<br>Orange will offer<br>LoRa connectivity<br>offers whose prices<br>will depend on the<br>number of objects<br>to be connected,<br>the associated<br>services and, with<br>a subscription<br>model per object. |

Committed to connecting the world



| Society                           | Radio<br>Protocol                                                                                                                                                                                                                                 | Coverage                                                                                                                                                                               | Customer Target                                                                                                                                                                                                                                                                                                           | Network<br>Flow                                                                                                                                                                      | Price /<br>Commercial<br>Model                                                                                                                                                            |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | LoRaWAN<br>with data<br>management<br>platform with<br>standard-<br>compliant<br>architecture<br>OneM2M<br>integrates<br>several<br>protocols for<br>the transfer<br>of data<br>including the<br>MOU protocol<br>as well as<br>REST-type<br>APIs. | The<br>network<br>deployed by<br>Bouygues<br>Telecom will<br>cover 50%<br>of the<br>population<br>in the<br>summer of<br>2016 and<br>the entire<br>territory at<br>the end of<br>2016. | Large<br>accounts,<br>SMEs, start-<br>ups or<br>administratio<br>ns. All types<br>of B2C<br>projects like<br>B2B, from the<br>simple<br>request of<br>connectivity<br>to the<br>complete<br>project with<br>storage and<br>processing of<br>the data for a<br>business use<br>(energy,<br>transport,<br>localization<br>) | Network<br>based on<br>LoRaWAN<br>technology<br>that allows<br>variable<br>data rates<br>ranging<br>from 0.3<br>kbps to 50<br>kbps in<br>both uplink<br>and<br>downlink<br>channels. | Subscriptio<br>n per object<br>connected<br>to the<br>network<br>with a price<br>ranging<br>from 1 €<br>per month<br>to 1 € per<br>year<br>depending<br>on the<br>quantity of<br>objects. |
| Committed to connecting the world |                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                      | International<br>Telecommunication<br>Union                                                                                                                                               |

| Society | Radio Protocol                                                                                                                                                              | Coverage                                                                                                                                                                                                                                                                                                                       | Customer<br>Target                                                                                                                                                                                                | Network Flow                          | Price /<br>Commercial<br>Model        |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|
|         | UNB-LoRa<br>bi-mode<br>network,<br>with<br>proprietary<br>radio<br>communica<br>tion<br>protocol<br>layer on<br>the UNB<br>part. No<br>further<br>information<br>available. | 18 private<br>networks<br>deployed<br>around the<br>world. The<br>first public<br>network to<br>be deployed<br>in France on<br>TDF's<br>infrastructur<br>e (10,000<br>sites for<br>radio<br>equipment<br>and<br>television).<br>Objective: to<br>cover 100%<br>of cities with<br>more than<br>10000<br>inhabitants<br>by 2016. | Future:<br>any<br>company<br>that wishes<br>to add<br>value to its<br>customers<br>by taking<br>advantage<br>of the lot<br>But<br>initially:<br>positioning<br>mainly on<br>SME<br>projects<br>and start-<br>ups. | No<br>information<br>at this<br>time. | No<br>information<br>at this<br>time. |

| Society                           | Radio<br>Protocol                       | Coverage                                                                                                                  | Customer Target                                                             | Network<br>Flow                                                                                                                                                                | Price /<br>Commercial<br>Model                                                                 |
|-----------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| RCHOS<br>Entertainment yww.way    | LoRaWAN<br>with HTTP<br>(S) and<br>MOTT | Several<br>European<br>cities from<br>September<br>and the<br>main<br>European<br>cities<br>before the<br>end of<br>2016. | Companies<br>and<br>individuals.<br>No further<br>information<br>available. | Network<br>based on<br>LoRaqui<br>technology<br>allows<br>variable<br>data rates<br>ranging<br>from 0.3<br>kbps to<br>50kbps in<br>both uplink<br>and<br>downlink<br>channels. | Prices not<br>finalized.<br>Starting at<br>50 cents<br>per<br>connected<br>object per<br>year. |
| Committed to connecting the world |                                         |                                                                                                                           |                                                                             |                                                                                                                                                                                |                                                                                                |

- IoT has opened up limitless possibilities for businesses and brands as they seek to build novel connections to their customers
- 2. While Business-to-Consumer (B2C) use cases seem to corner most of the attention, mass adoption of IoT in the B2C arena has run into its own set of challenges. Affordability is a concern.
- 3. B2B use cases are already popular and growing more so by the day. Companies are using IoT to connect to their customers, suppliers and vendors in a big way.
- 4. Be it B2B, B2C or B2B2C, the main challenge facing IoT adoption is in finding successful use case studies that can be replicated by the industry.
- 5. Moving the IoT industry from early adopters to mass market will depend on applications of the technology, rather than the technology itself.



#### THE INTERNET OF THINGS REQUIRES A MINDSET SHIFT

Because you'll create and capture value differently.

|                   |                           | TRADITIONAL PRODUCT MINDSET                                            | INTERNET OF THINGS MINDSET                                                                     |
|-------------------|---------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| VALUE<br>CREATION | Customer<br>needs         | Solve for existing needs<br>and lifestyle in a reactive<br>manner      | Address real-time and<br>emergent needs<br>in a predictive manner                              |
|                   | Offering                  | Stand alone product<br>that becomes obsolete<br>over time              | Product refreshes through<br>over-the-air updates and<br>has synergy value                     |
|                   | Role<br>of data           | Single point data is<br>used for future product<br>requirements        | Information convergence creates<br>the experience for current<br>products and enables services |
| VALUE<br>CAPTURE  | Path<br>to profit         | Sell the next product<br>or device                                     | Enable recurring revenue                                                                       |
|                   | Control<br>points         | Potentially includes<br>commodity advantages,<br>IP ownership, & brand | Adds personalization and<br>context; network effects<br>between products                       |
|                   | Capability<br>development | Leverage core<br>competencies, existing<br>resources & processes       | Understand how other<br>ecosystem partners<br>make money                                       |
| SOURCE SMART      | DESIGN                    |                                                                        | HBR.ORG                                                                                        |

Committed to connecting the world



### conclusion

- While the personal connected device/IoT market seems to be struggling right now, there is some value to be created and captured as the industry matures and better use cases are defined.
- 2. On the other hand, the IIoT space is seeing a convergence in interest from the customers and clear use cases that provide value.



### Thanks for your attention

Imen BEN CHAABANE Email : benchaab@ties.itu.int

