Best practices and recommendations for digital inclusion through resilient infrastructure 17th Internet Governance Forum @ Addis Ababa, Ethiopia 28 November 2022

Network in a Box to Provide Health Services in Remote Areas

- Theme: 1. Digital Inclusion Health
- Presenter: Kihong Park, King Abdullah University of Science and Technology

Presentation Outline

- Research team
- Introduction
- Research methodology
- Research findings and outcomes
- Recommendations
- Conclusions

Research team

 Mohamed-Slim Alouini, King Abdullah University of Science and Technology, Kingdom of Saudi Arabia

 Kihong Park, King Abdullah University of Science and Technology, Kingdom of Saudi Arabia

• Yunfei Chen, University of Warwick, UK

Introduction

- Remote areas suffers insufficient network connectivity.
 - Connectivity for health, education, economics applications, etc.
 - Broadband data service
 - Internet-of-Things (IoT) information
- Remote areas require cost-effective networking solutions.
 - Lightweight and portable network solution
 - Fast and easy deployment.
 - Network flexibility
 - Inter-operability
- The potential network solutions support broadband data and IoT data simultaneously.

Introduction

- Network-in-a-box (NIB)
 - Single all-in-one portable device consisting of all software, firmware, and hardware modules supporting service provisioning and backhauling in a network
- Objective : optimal deployment of multi-NIB network for broadband and health IoT service in remote areas

Research methodology

- User Distribution
 - Deterministic
 - Sparsely populated
 - Clustered
 - Gaussian

- User Rate Model
 - Shannon capacity
 - Short packet commun.

Optimization

- Throughput maximization
- Given parameters
 - Block length
 - · Required data rate
 - Tolerable Delay
 - Network bandwidth
- Variables
 - NIB locations
 - User associations
 - Coding rates for packets

Research findings and outcomes

- Iterative Algorithm
 - Local optimality
- Simulation Results in Example

Definition	Parameter value
Number of NIBs (<i>N</i>)	4
Number of IoT user clusters (K)	5
Number of BB user clusters (K)	5
Center location of IoT user cluster (μ_k^{iot})	(0,0), (1.4,1.5), (1.5,-1.6), (-1.6,-1.4), (-1.5, 1.5) [km]
Center location of BB user cluster (μ_k^{bb})	(0,0), (1.1,1.2), (1.3,-1.3), (-1.3,-1.1), (-1.2, 1.2) [km]
Radius of IoT user clusters (<i>R_k</i> ,iot)	0.7, 1.5, 1.5, 1.5, 1.5 [km]
Radius of BB user clusters ($R_{k, bb}$)	0.63, 1.35, 1.35, 1.35, 1.35 [km]
Weight of IoT user density ($\omega_k^{ extsf{iot}}$)	3/7, 1/7, 1/7, 1/7, 1/7
Weight of BB user density (ω_k^{bb})	1/3, 1/6, 1/6, 1/6, 1/6
Variance of IoT user distribution ($\sigma_{k,iot}^2$)	0.0532, 0.244, 0.244, 0.244, 0.244 [km ²]
Variance of BB user distribution ($\sigma_{k,{ m bb}}^2$)	0.0431, 0.198, 0.198, 0.198, 0.198 [km ²]
Processing delay (c_d)	1.5
Latency limit ($ au_{ extsf{th}}$)	10 [ms]
Number of bits in a block (B_n)	256 [bits]
Minimum rate threshold for IoT (R _{th})	5 [Mbps]
Total bandwidth (W_{tot})	40 [MHz]
Individual bandwidth for IoT and BB links	5 [MHz]
Path loss exponent ($lpha$)	2
Reference SNR (eta_0)	80 [dB]

Broadband data rate

NIB deployment

IoT data rate

7

Recommendations

- To alleviate the NIB-based network load in remote areas
 - Limited backhaul capacity Satellite backhaul
 - Network traffic and latency Mobile edge computing and caching
 - Evaluation of age of information
- Further considerations
 - Transport means
 - Coverage mapping
 - Network reconfiguration

Conclusion

- We investigated the feasibility of NIB-based network optimization to support smart health IoT services in rural areas.
 - Mathematical modeling
 - Network deployment problem
 - Proposed iterative algorithm
- Future works
 - Study on coexistence with conventional cellular networks
 - Study on interoperability with sensing, radar, and localization.