

Spectrum Management Issues in Emergency Telecommunications

Srdjan Mihaljevic CTO TAS

Emergency Spectrum bands

Band	Sub-band	Frequency	Wavelength
HF		3-30 MHz	decametric waves
VHF		30-300 MHz	metric waves
	Low Band VHF	30-50 MHz	
	Mid band VHF	72-75 MHz	
	High Band VHF	138-174 MHz	
	220 MHz	216-220 MHz	
UHF		300-3000 MHz	decimetric waves
	450 MHz	420-470 MHz	
		758-768, 788-798 MHz IMT	
	700 MHz	769-775 , 799-805 MHz NB	
		806-824 MHz	
	800 MHz	851-869 MHz	
SHF		3-30 GHz	centimetric waves
	4.9 GHz	4 940-4 990 MHz	

HF Propagation

Ground-Wave PropagationSky-Wave Propagation

HF Ground-Wave Propagation

HF Sky-Wave Propagation

HF NEAR-VERTICAL INCIDENCE SKY-WAVE EFFECT

ANTENNA

Wavelength and Frequency

Resonance

Polarization

Classification

POLARIZATION

V,H & C POLARIZATION

ANTENNA CLASSIFICATION

Figure 3-3. Solid radiation patterns from quarter-wave, half-wave, and vertical half-rhombic antennas.

ANTENNA GROUND EFFECTS

HF band (3 155 kHz -30.01 MHz)

- Short Wave SW (100 m 10 m)
- oil pipeline, public safety, airlines
- 30 km low-powered, man-pack
- 100 km high-powered vehicle
- thousands in cases of skip
- one day may work and not the next

HF band

- 11- year sunspot cycle
- peak year 2012 interference high
- limited number of manufacturers
- cost premiums
- similar equipment on both sides
- minimum power to maintain comm.

HF band - antenna

- antenna systems are large
- ¹⁄₄ wavelength radiator 50 m
- Marconi antenna very tall
- Hertz antenna extend many m
- not easy to move
- 250,000 \$ multi-frequency rotatable

HF band - concerns

- Low loss of transmission lines
- Power-handling capability of line
- RFI can travel over very great distances
- link budget no prediction
- No formula for propagation daily
- Coverage is spotty day-to-day basis
- Noise floor will and can be heard 1000

HF band - conclusion

- Licensing few restrictions
- No data and non-voice comm.
- Only available medium for tragedies
- Predominant among first responders
- Price are now decreasing
- Size of equipment limitations
- Best range few sites backup for all

Low band VHF (30-50 MHz)

- Coverage of very large geographic area
- A minimum use of tower sites
- Limited equipment availability
- Signal can travel up to 200 km and still be useful
- Skip => 1000 km stronger signal than 20 km away
- Power range 100-watt
- No walkie-talkie radios
- Antennas ~3 m long or loading coil to shorten
- Little loss in transmission lines => smaller lines

Low band VHF concerns

- RF interference \rightarrow impulse-type noise
- Electrical contacts making or breaking arcing
- Automotive distributors and spark plugs
- Thunderstorms within 200 km from a system
- Radio planning without problems except intrf.
- Very few new low-band systems
- Data and non-voice comm. are limited
- Licensing is usually very easy

Mid band VHF 72-75MHz

- Generally used to connect fixed up to 200 km
- only base stations allowed no subscribers
- Restricted TV channels 4 and 5 are neighbors
- The ERP levels from 25 100 W
- The antennas are Omni directional or directional
- Large antenna but slightly shorter than LB VHF
- Little loss in transmission lines => smaller lines
- Backhaul link between stations and other FX

Mid band VHF concerns

- Limited number of users protection TV
- RF interference little except skip
- Link budget predictable
- It is intended for distance 120-200 km
- Noise floor is low
- Licensing is relatively easy low demand
- Data and non-voice comm. are allowed
- Mainly use for voice traffic

High Band VHF (148-172 MHz)

- The most popular band for LMR use
- Excellent range, propagation characteristics
- Availability of low cost equipment
- Ideal for urban and rural environments
- Predominant band for public safety
- Trunking, data and other non-voice traffic
- All power levels
- All types of antenna configurations and rather large
- The signal loss in the transmission lines is acceptable

High Band VHF Concerns

- The potential for RF interference is big problem
- Lightning, static discharge, and man-made issues
- The very large number of VHF stations high NF
- Almost every electrical device -> interference
- The electrical noise found on many building tops
- The licensing of VHF systems is difficult
- Long coverage range and crowding
- Narowbanding 25 kHz to 12.5 kHz and 6.25 kHz.

220 MHz (216-220 MHz)

- Unpopular for most users
- There are power, height, and other restrictions
- The lack of low-priced equipment
- Similar to HF band
- No base antennas above 150 m
- Marketplace's reluctance peripheral equipment
- Antennas are large
- Mobile & portable not available
- Primarily for telemetry by the utility
- Also for transportation industries.

UHF band (380-470 MHz)

- Represent best of both world
- Absolutely perfect for use in urban environments,
- Conventional, trunking and networked systems
- Very large areas of communication coverage
- The variety of equipment and the good range
- Well-suited for almost every application
- very broad range of choices for antennas
- range of transmission lines and other design

UHF band - concerns

- RFI from other systems
- Link budget and coverage are very accurate
- building penetration exceptional
- Signal is mostly LOS but also more
- The narrowbanding is requirement
- Intermodulation is concern
- Trunked system intermodulation pairings
- Mitigation by proper filtering

UHF band trunking

- South America for European TETRA (TDMA)
- 380-385 MHz and 390-395 MHz emergency sys.
- 385-390 MHz and 395-400 MHz civil systems
- 410-430 MHz and 450-460 MHz civil systems
- GOTA systems which is based on CDMA 450

700 MHz

- 15 years for public safety
- Digital dividend
- RF coverage in this band is excellent
- There are two separate types of channels for 700
- Broadband allocation of 20 MHz for IMT
- Narrowband allocation of 12 MHz (6.25kHz)
- 769-775 and 799-805 MHz
- Abundance of equipment with advanced features

800 MHz & 900 MHz

Line of sight – urban and suburban areas
Rural rarely – many towers
Wideband conventional and trunking systems
900 MHz extension of 800 MHz
all band can be mixed to accommodate fleet

4.9 GHz

- public safety
- Base, mobile or portable operations anywhere
- there are no regulated individual channels
- co-ordination obligatory between users
- video and high-bandwidth data
- backhaul
- Utilities

IMT A TRANSITION IS UNDERWAY IN EMEREGENCY COMMUNICATIONS

Emergency respondersEnhanced awarenesPPDR industry

IMT STANDARD NETWORK COMPONENTS

IMT TERMINALS

Car modem

Embedded modules

Handheld computers

IMT NETWORK AVAILABILITY AND MONITORING

IMT SOLUTION IN PRACTICE

IMT APPLICATIONS

IMT SERVICES

IMT for PPDR questions:

- Application range
- Role of video in UL and DL
- Type of terminals
- Profile of users
- Sharing of network
- QoS

Resolution 646 (Rev. WRC-12) Public protection and disaster relief

ΙΤυ			
Region 1 380-385 390 -395			
Region 2		746-806	5 806-869 4940-4990
Region 3	406.1-430	440-470	806-824 4940-4990 5850-5925

BAND FOR IMT APPLICATION Rec. ITU-R M.1036-4 (03/12)

Band (MHz)	Footnotes identifying the band for IMT					
450-470	5.286AA					
698-960	5.313A, 5.317A					
1 710-2 025	5.384A, 5.388					
2 110-2 200	5.388					
2 300-2 400	5.384A					
2 500-2 690	5.384A					
3 400-3 600	5.430A, 5.432A, 5.432B, 5.433A					

Frequency arrangement for PPDR using IMT

 PPDR Systems are outside of scope of Rec. ITU-R M.1036-4
 Large coverage area and possible interoperabilities 700/800

Frequency arrangements in the band 698-960 MHz

Frequency arrangemen ts		Un-paired arrangeme			
	Mobile station transmitter (MHz)	Centre gap (MHz)	Base station transmitte r (MHz)	Duplex separation (MHz)	nts (e.g. for TDD) (MHz)
A4	698-716	12	728-746	30	716-728
	776-793	13	746-763	30	
A5	703-748	10	758-803	55	None
A6	None	None	None		698-806

IMT Arrangement in Region 2

M.1036-03-A4

Mexico – No any reservation for Public Safety

M.1036-03-A5

IMT Arrangement in USA & Region 2

698	702	710	110	01/	77/	97/	134	/40	7E 76	/ 27	80/	764	770	9//	782	788	794	006 806
	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
(ITEL P	CC II Re	ec. 18															
				A	dvanced	Wireles	s Syster	ns				Pf	PDR		nced Wi System		PP	DR
I	JS 700	MHz pla	n															
	А	В	С	D	E	А	В	С	С	A	D	Public	safety <mark>E</mark>	B (C A	D	Public s	afety <mark>B</mark>
		AT	&T				AT	&T	Veriz	on	Unav	varded		Veri	zon	Unaw	arded	
	Upl	ink (18M	IHz)			Dowr	nlink (18	MHz)	Down (12M					Upl (12№	ink (Hz)			
ļ	Region 3 option																	
				Uplink	(45MHz)			10M band	1Hz gap			D	ownlink	(45MHz	z)		

IMT Arrangement in Mexico and Ecuador

	Uplink (45MHz)		Downlink(45MHz)	
698	703 74	.8	758	803 806MHz

Worldwide Research Programs

Public Safety Communications Research – PSCR – US Department of Commerce & Boulder Laboratories Public Safety Communication Europe Forum – PSCE – EU funded

Gracias

Srdjan Mihaljevic CTO TAS