Role of Satellite Technologies in Disaster Mitigation

ITU Central African Sub-Regional Workshop on the Role of Telecommunications/ICT in Disaster Management Yaounde, Cameroon 30th May-1st June 2007

Tai Ogunderu

Disaster: Communications Requirements

- Wireless mobility and easy terminal setup
- Voice, data and Internet capabilities
- Assistance at every stage of Disaster Life Cycle
- GPS Navigation & Location info. and Maps

 Coverage beyond currently available terrestrial black spots and uneconomic coverage areas

 Social calling, information centre, group alerts for relief workers and affected public (last mile)

30/05-01.06/07

The Right Technology - satellite functionality

 Exempt by location from terrestrial-based disasters

 Gateway only, is land-based

• Orbit:

- geo-stationary orbit provides stable configuration for disaster communications
- Elliptical orbit useful for remote polar area access
- 'wirelessly' uninterruptible communications:
 - Toll & broadcast quality voice
 - Low to broadband data rates

- Steer-able spot beams can selectively direct higher power on disaster-affected area
- It can support each stage of the disaster life cycle:
 - preparedness, mitigation, relief & reconstruction
- Interoperability with radio of public protection services:
 - Military, Police, Fire Dept.
 Ambulance & Civil Defense
- 99.99% System network availability

The Right Technology - satellite capability

- Remote Sensing
- Navigation
 - GPS co-ordinate info.
 - Distress, Search & Rescue
 - GLONASS, GMDSS, Cospas-Sarsat
- Broadcasting
- L-band frequency satellites unaffected by adverse weather / propagation conditions
- Instant communication
- Reliable high quality access to information less downtime risk
- Simple to use terminals

- Mobile terminal
 - Pedestrian and vehicular
- Dynamic capacity assignment and random access
 - Demand assignment
 - Leased services
- Low forward terminal power
 - Battery conservation

Satellite Technology Applications

- Remote Sensing Satellites
 - Earth Observations
 - Weather Monitoring
- Early warning systems
 - Satellite activated audiovisual warning alarm beacons & buoys
- GPS Navigation satellites
 - coordinate observations
 - location
- Satellite Broadcasting

- Cellular backhaul over satellite
- Satellite phones with voice and broadband data communication capability
- Telemedicine / health applications
- Asset tracking and tracing
- Distress & safety
 - Maritime safety (GMDSS)
 - Air safety (GLONASS)

 An example of an early warning beach system in Thailand

Courtesy of Kemilinks Int'l, Singapore

Typical Satellite Communications System Configurations

Mobile to Rural

useful when •PSTN is un-served •Service delivery is to Thin-route, Wide-area

Mobile to Mobile

useful when •PSTN is congested •PSTN is destroyed •PSTN is unavailable

Mobile to Fixed

useful when •No PSTN services is available in disasteraffected area •Communicating with other areas

Applicability to Disaster Life Cycle

- Preparedness
 - GIS, Remote Sensing, Broadcasting, telemetry
- Mitigation
 - Early alarm warning systems for Floods, Cyclones, Tsunamis, Sea Level Monitoring, Earthquakes, Surface Current & Wave detection, Tidal wave
- Reconstruction:
 - voice and data communications to specified hubs
 - Last mile phone services
 - National & regional inventories

Relief

- Voice & Data Communications
- Can replace air-interface between cellular's BTS & BSC or TRAU & MSC
- Amateur satellite service,
- Mobile land-, aero- & sea satellite communications
- Satellite geo-maps
- Multi-purpose information tele-centres
- Broadcasting

Satellite Operator's services

Satellite Communications Operators' Product and Services

	Iridium	Inmarsat	Thuraya	AceS (now Inmarsat)	VSAT
Global Coverage	Yes	Yes	Regional	Regional	Typically Regional
Accessible Countries	n/a	180+	EMEA	7+	Regional
Voice kbps	4.8	4.8 - 64	4.8	4.8	4.8 - 16
Data kbps	2.4	2.4 - 432	Up to 64	2.4	0.3 – 8k
Messaging	Yes	Yes	Yes	No	No
Battery Talk time	2 hrs	4 hrs	2.4 hrs	2.4 hrs	Mains
Battery Standby	20 hrs	70 hrs	34 hrs	42 hrs	Mains

30/05-01.06/07

Satellite Technology Tool: - the satellite phone

- Technical Specification
 - Internet IP modem
 - High-speed data communications
 - up to 64 kbps
 - Secure communications
 - Plug and play capability
 - Standard interfaces and protocol (USB, ethernet, bluetooth)
 - Lightweight <> 2kg
 - Battery life similar to notebook PC
 - Robust to environment

Technical Applications

- Voice communications for social and administrative use
- Internet access & browsing
- E-mail messaging
- File transfer
- Digital image transfer
- Database queries
- Store and Forward video
- Remote IT support
- Telemedicine

Case Study...(Pakistan Earthquake)

- 55 ITU-loaned satellite terminals; 15 Inmarsat GAN terminals for voice and 40 RBGAN data terminals
- Equipment training given to 45 designated government officials, including Doctors

- Terminals sent by government helicopters to needy inaccessible areas for:
 - coordination, social calling, resource inventory update, logistical survey
- Health relief by Doctors using telemedicine
 - Digital image transfer
 - Remote patient diagnosis
 - Essential data transfer
- Solid effort by Ministry

Constraints

- Interoperability issues
- Non-uniform peripheral standards
 - Non-availability of DECT sets in certain regions
- Airtime costs
- Independent power supply
 - Battery recharge from solar panels, small generators or vehicular batteries

- Lack of national resource inventory & disaster plan
- Satellite Operator's Single Network Access Code:
 In PTT International switch
- Regulatory and political barriers
 - For example, warringdivide areas
 - Delayed clearance of relief satellite equipment

Few Thoughts...

- Renewed emphasis on portable independent battery/power supply development
- A dedicated disaster management satellite
 - PPP-based DiMaSat
 - operated by new/old private satellite operators and used by ITU
 - The new dedicated DiMaSat would have builtin intelligent switching networks (small scale gateway)

- Disaster global problem; centralized management
- Mandatory national disaster communications equipment training
- Express 'tag' passage for ITU relief equipment
- Develop robust PDA- or computer-integrated satellite phones
 - Instant messaging
 - Rapid data transfer

Summary

Remember to keep it simple

- Take advantage of satellite communications to manage early window of opportunity during disaster wisely in order to save lives
- Simple satellite phones can save lives
 Equipment training and regular retraining is
- Equipment training and regular retraining is key!

Thank You!