

ICTs in Japan for Climate Change Issues

Eiji Ishida

Ministry of Internal Affairs and Communications, Japan January 28, 2016

Climate Change Issues in Global Frameworks

Sendai Framework

Seven Global Targets

- Reduce mortality, direct disaster economic loss
- Increase countries with DRR strategies etc.
- Priorities for Action
 - Understanding disaster risk
 - Strengthening disaster risk governance
 - Investing in DRR for resilience
 - Enhancing disaster preparedness / Building back better in recovery

Including countermeasures for climate change

Global Frameworks

- 2030 Agenda for Sustainable Development
 - Adopted at the UN GA in September 2015
 - Focuses on DRR and mitigation and adaptation to climate change among targets

Paris Agreement

- Adopted at the COP21 in December 2015
- Prioritizes DRR as an important element in mitigation and adaptation to climate change

Roles of ICT for Climate Change

rescue and evacuation

Long-Term Trend of Heavy Rainfall in Japan

- 4
- An analysis using AMeDAS* data shows the long-term trend of the heavy rainfall in Japan (* Automated Meteorological Data Acquisition System)
- Frequency of an hour rainfall over 50 mm shows increment in 40 years, indicating significance at 95% confidence level

(Source: Japan Meteorological Agency website)

Phased Array Weather Radar

(Source: "Vertical Motion an Growth of Precipitation Measured by Dual Phased Array Weather Radar Every 30 Seconds", Shinsuke Satoh et al, AMS 37th Conference on Radar Meteorology @Normal OK, Sep 14, 2015)

A solid-state weather radar

has characteristics of high-accurate observation, reduction of life cycle cost, stable operation and effective usage of radio spectrum

Electron tube	Semiconductor
Requires high voltage	Not require high voltage
Requires many raw data for high accuracy	Requires less raw data for high accuracy
Short designed life (~ 2 yrs)	Long designed life (> 10 yrs)
High running cost	Low running cost
	TGI8596-50 QA1A 777

Seismic & Tsunami Sensor Node with Submarine Communication Capability Dedicated design for seismic and tsunami observation & data collection compatible with ITU-T* Green Repeater

<u>Note</u>

- *: International Telecommunication Union Telecommunication Standardization Sector
- **: Joint development with Marine seismology group, Earthquake Research Institute (ERI), the University of Tokyo

Sensor Node**

Real time observation with the following features:

- Network configuration with TCP/IP → Fault tolerant observation
- Atomic clock and IEEE1588
- Remote control and software upgrade

 → Flexible operation
- PoE (Power over Ethernet) port
- Sensors exchangeable
- Use of commercial components
- Cost effective observation

(Source: Fujitsu Limited)

ITU-T Activity for Climate Monitoring and Disaster Reduction

(Source: Fujitsu Limited)

Seismic/Tsunami Observation and Communication System

A flood simulator

- predicts river flooding and inundation;
- > enables intuitive and easy user interface and flexible configuration;
- > allows high-speed and high-accuracy simulation.

Sample image of flood simulation

Result of simulation

Thank You

Ministry of Internal Affairs and Communications, JAPAN