

Introduction to Cryptography

By Marcus K. G. Adomey Chief Operations Manager AfricaCERT Email: <u>marcus.adomey@africacert.org</u>

OVERVIEW

- Cryptography
 - **Definition**
 - Terminology
 - □ *History*
 - **Goal and Services**
- Types of Cryptography
 - Symmetric Key Cryptography
 - Asymmetric Key Cryptography
 - Hash Functions

CRYPTOGRAPHY

D Definition

□ Terminology

□ *History*

□ Goal and Services

Definition

Cryptography is the science of using mathematics to encrypt and decrypt data.

Cryptography is the art and science of keeping messages secure.

The art and science of concealing the messages to introduce secrecy in information security is recognized as cryptography.

Bruce Schneier

Phil Zimmermann

Terminologies

A message is **plaintext** (sometimes called **cleartext**). The process of disguising a message in such a way as to hide its substance is **encryption**. An encrypted message is **ciphertext**. The process of turning ciphertext back into plaintext is **decryption**.

A cipher (or cypher) is an

algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure.

Terminology

A **cryptosystem** is an implementation of cryptographic techniques and their accompanying infrastructure to provide information security services. A cryptosystem is also referred to as a cipher system. The various components of a basic cryptosystem are as follows –

- Plaintext
- Encryption Algorithm
- Ciphertext
- Decryption Algorithm
- Encryption Key
- Decryption Key

Terminology

While **cryptography** is the science of securing data, **cryptanalysis** is the science of analyzing and breaking secure communication. Classical cryptanalysis involves an interesting combination of analytical reasoning, application of mathematical tools, pattern finding, patience, determination, and luck. **Cryptanalysts** are also called attackers.

Cryptology embraces both cryptography and cryptanalysis.

History of Cryptography

History of Cryptography

As civilizations evolved, human beings got organized in tribes, groups, and kingdoms.

- This led to the emergence of ideas such as power, battles, supremacy, and politics.
- These ideas further fueled the natural need of people to communicate secretly with selective recipient which in turn ensured the continuous evolution of cryptography as well.

The roots of cryptography are found in Roman and Egyptian civilizations.

Hieroglyph

- The first known evidence of cryptography can be traced to the use of 'hieroglyph'. Some 4000 years ago, the
- Egyptians used to communicate by messages written in hieroglyph.

Caesar Shift Cipher

Caesar Shift Cipher, relies on shifting the letters of a message by an agreed number (three was a common choice), the recipient of this message would then shift the letters back by the same number and obtain the original message.

The Caesar cipher is named after Julius Caesar, who used it with a shift of three to protect messages of military significance.

History of Cryptography

Caesar Shift Cipher

PLAINTEXT : internet society ghana chapter

CYPHERTEXT : Iqwhuqhw vrflhwb jkdqd fkdswhu

Kamasutra Cipher

The Kamasutra cipher is one of the earliest known substitution methods.

- It is described in the Kamasutra around 400 BC.
- The purpose was to teach women how to hide secret messages

from prying eyes.

Kamasutra Cipher

The techniques involves randomly pairing letters of the alphabet, and then substituting each

letter in the original message with its partner.

UPPER HALF	W	Ζ	V	Ρ	0	F	D	Ε	Α	В	R	Μ	Υ
LOWER HALF	Ν	Η	G	X	K	S		С	J	U	Т	Q	L

The key is the permutation of the alphabet.

INTERNET SOCIETY GHANA CHAPTER DWRCTWCR FKEDCRL VZJWJ EZJXRCT

Goal and Services

Goal and Services

Goal: The primary goal of cryptography is to secure important data on the hard disk or as it passes through a medium that may not be secure itself. Usually, that medium is a computer network.

Services: Cryptography can provide the following services:

- •Confidentiality (secrecy)
- •Integrity (anti-tampering)
- Authentication
- •Non-repudiation.

Goal and Services

Confidentiality (secrecy)

- Ensuring that no one can read the message except the intended receiver
- Data is kept secret from those without the proper credentials, even if that data travels through an insecure medium

Integrity (anti-tampering)

• Assuring the receiver that the received message has not been altered in any way from the original.

Goal and Services

Authentication

Cryptography can help establish identity for authentication purposes The process of proving one's identity. (The primary forms of host-to-host authentication on the Internet today are name-based or address-based, both of which are notoriously weak.)

Non-repudiation

A mechanism to prove that the sender really sent this message

- Symmetric Key Cryptography
- Asymmetric Key Cryptography
- Hash Functions

Symmetric Key Cryptography

Also known as Secret Key Cryptography or Conventional Cryptography, Symmetric Key

Cryptography is an encryption system in which the sender and receiver of a message share a single, common key that is used to encrypt and decrypt the message.

The Algorithm use is also known as a secret key algorithm or sometimes called a symmetric algorithm

A key is a piece of information (a parameter) that determines the functional outp cryptographic algorithm or cipher.

Symmetric Key Cryptography

The key for encrypting and decrypting the file had to be known to all the recipients. Else, the message could not be decrypted by conventional means.

Symmetric Key Cryptography - Examples

Data Encryption Standard (DES)

The Data Encryption Standard was published in 1977 by the US National Bureau of Standards.

DES uses a 56 bit key and maps a 64 bit input block of plaintext onto a 64 bit output block of ciphertext. 56 bits is a rather small key for today's computing power.

Triple DES

Triple DES was the answer to many of the shortcomings of DES. Since it is based on the DES algorithm, it is very easy to modify existing software to use Triple DES. It also has the advantage of proven reliability and a longer key length that eliminates many of the shortcut attacks that can be used to reduce the amount of time it takes to break DES.

Symmetric Key Cryptography - Examples

Advanced Encryption Standard (AES)

(RFC3602)

Advanced Encryption Standard (AES) is an encryption standard adopted by the U.S. government. The standard comprises three block ciphers, AES-128, AES-192 and AES-256, adopted from a larger collection originally published as Rijndael.

Each AES cipher has a 128-bit block size, with key sizes of 128, 192 and 256 bits, respectively. The AES ciphers have been analyzed extensively and are now used worldwide, as was the case with its predecessor, the Data Encryption Standard (DES).

Symmetric Key Cryptography

IDEA:- The International Data Encryption Algorithm was developed in 1991.

It uses a 128 bit key to encrypt a 64 bit block of plaintext into a 64 bit block of ciphertext.

IDEA's general structure is very similar to DES, it performs 17 rounds, each round taking 64 bits of

input to produce a 64 bit output, using per-round keys generated from the 128 bit key.

Symmetric Key Cryptography - Examples

Lucifer	-	Madryga
FEAL	-	REDOC
LOKI	-	GOST
CAST	-	Blowfish
Safer	-	Crab
RC5	-	

Problems with Conventional Cryptography

Key Management

Symmetric-key systems are simpler and faster; their main drawback is that the two parties must somehow exchange the key in a secure way and keep it secure after that.

Key Management caused nightmare for the parties using the symmetric key cryptography. They were worried about how to get the keys safely and securely across to all users so that the decryption of the message would be possible. This gave the chance for third parties to intercept the keys in transit to decode the top-secret messages. Thus, if the key was compromised, the entire coding system was compromised and a "Secret" would no longer remain a "Secret".

This is why the "Public Key Cryptography" came into existence.

Asymmetric Key Cryptography

Asymmetric cryptography, also known as Public-key cryptography, refers to a cryptographic algorithm which requires two separate keys, one of which is private and one of which is public. The public key is used to encrypt the message and the private one is used to decrypt the message.

Asymmetric Key Cryptography

Public Key Cryptography is a very advanced form of cryptography.

Officially, it was invented by Whitfield Diffie and Martin Hellman in 1975.

The basic technique of public key cryptography was first discovered in 1973 by the British Clifford Cocks of Communications-Electronics Security Group (CESG) of (Government Communications Headquarters - GCHQ) but this was a secret until 1997.

Asymmetric Key Cryptography - Examples

Digital Signature Standard (DSS)

Digital Signature Standard (DSS) is the digital signature algorithm (DSA) developed by the U.S. National Security Agency (NSA) to generate a digital signature for the authentication of electronic documents. DSS was put forth by the National Institute of Standards and Technology (NIST) in 1994, and has become the United States government standard for authentication of electronic documents. DSS is specified in Federal Information Processing Standard (FIPS) 186.

Asymmetric Key Cryptography - Examples Algorithm - RSA

RSA (Rivest, Shamir and Adleman who first publicly described it in 1977) is an algorithm for public-key cryptography. It is the first algorithm known to be suitable for signing as well as encryption, and one of the first great advances in public key cryptography.

RSA is widely used in electronic commerce protocols, and is believed to be secure given sufficiently long keys and the use of up-to-date implementations.

Asymmetric Key Cryptography - Examples

RSA Cryptanalysis

Rivest, Shamir, and Adelman placed a challenge in Martin Gardner's column in Scientific American (journal) in which the readers were invited to crack.

C=114,381,625,757,888,867,669,235,779,976,146,612,010,218,296,721,242,362,562,561,842,935,706,935,245,733,897,830,597,123,563,958,705,058,989,075,147,599,290,026,879,543,541

Asymmetric Key Cryptography - Examples RSA Cryptanalysis

This was solved in April 26, 1994, cracked by an international effort via the internet with the use of **1600**

workstations, mainframes, and supercomputers attacked the number for eight months before finding its Public key and its private key.

- Encryption key = 9007
- The message "first solver wins one hundred dollars".
- Of course, the **RSA** algorithm is safe, as it would be incredibly difficult to gather up such international participation to commit malicious acts
- participation to commit malicious acts.

Asymmetric Key Cryptography - Examples

ElGamal

- ElGamal is a public key method that is used in both encryption and digital signing.
- The encryption algorithm is similar in nature to the Diffie-Hellman key agreement protocol
- It is used in many applications and uses discrete logarithms.
- ElGamal encryption is used in the free GNU Privacy Guard software

Hash Functions

What is a Hash Function

A cryptographic hash function is a hash function that takes an arbitrary block of data and returns a fixed-size bit string, the cryptographic hash value, such that any (accidental or intentional) change to the data will (with very high probability) change the hash value. The data to be encoded are often called the message, and the hash value is sometimes called the message digest or simply digest.

What is a Hash Function

The ideal cryptographic hash function has four main properties:

- it is easy to compute the hash value for any given message
- it is infeasible to generate a message that has a given hash
- it is infeasible to modify a message without changing the hash
- it is infeasible to find two different messages with the same hash.

Hash Functions

Hash Function - Examples

Snefru		Ralph Merkle		
N-Hash		Nippon T.T.		
Message Digest	MD2	(RFC 1115)	B. Kaliski	
	MD4	(RFC1320)	Ron Rivest	
	MD5	(RFC 1321)	Ron Rivest	
	MD6			
SHA1				

SHA2

DATA INPUT = MD5 HASH VALUE

"Superman"

= 527D60CD4715DB174AD56CDA34AB2DCE

"A mind needs books as a sword needs a whetstone, ______ if it is to keep its edge." (Game of Thrones)

7CE452645B7DF2549C02AECD26CA7E67

= B5DA1ACF7885741738508ABC704E519F

Collusion Discovery

In March 2005 Xiaoyun Wang and Hongbo Yu of Shandong University in China created a pair of files that share the same MD5 checksum hence prove that there is a collusion when using MD5

Collusion Discovery

file1.dat

0000000 d1 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c 00000010 2f ca b5 87 12 46 7e ab 40 04 58 3e b8 fb 7f 89 00000020 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 71 41 5a 00000030 08 51 25 e8 f7 cd c9 9f d9 1d bd f2 80 37 3c 5b 00000040 96 0b 1d d1 dc 41 7b 9c e4 d8 97 f4 5a 65 55 d5 00000050 35 73 9a **c7** f0 eb fd 0c 30 29 f1 66 d1 09 b1 8f 00000060 75 27 7f 79 30 d5 5c eb 22 e8 ad ba 79 cc 15 5c 00000070 ed 74 cb dd 5f c5 d3 6d b1 9b 0a d8 35 cc a7 e3

file2.dat

0000000 d1 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c 00000010 2f ca b5 07 12 46 7e ab 40 04 58 3e b8 fb 7f 89 00000020 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 f1 41 5a 00000030 08 51 25 e8 f7 cd c9 9f d9 1d bd 72 80 37 3c 5b 00000040 96 0b 1d d1 dc 41 7b 9c e4 d8 97 f4 5a 65 55 d5 00000050 35 73 9a 47 f0 eb fd 0c 30 29 f1 66 d1 09 b1 8f 00000060 75 27 7f 79 30 d5 5c eb 22 e8 ad ba 79 4c 15 5c 00000070 ed 74 cb dd 5f c5 d3 6d b1 9b 0a 58 35 cc a7 e3

Hash Functions

Collusion Discovery

file1.dat

file2.dat

0000000 d1 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c 00000010 2f ca b5 **87** 12 46 7e ab 40 04 58 3e b8 fb 7f 89 00000020 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 **71** 41 5a 00000030 08 51 25 e8 f7 cd c9 9f d9 1d bd **f2** 80 37 3c 5b 00000040 96 0b 1d d1 dc 41 7b 9c e4 d8 97 f4 5a 65 55 d5 00000050 35 73 9a **c7** f0 eb fd 0c 30 29 f1 66 d1 09 b1 8f 00000060 75 27 7f 79 30 d5 5c eb 22 e8 ad ba 79 **cc** 15 5c 00000070 ed 74 cb dd 5f c5 d3 6d b1 9b 0a **d8** 35 cc a7 e3

0000000 d1 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c 00000010 2f ca b5 **07** 12 46 7e ab 40 04 58 3e b8 fb 7f 89 00000020 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 **f1** 41 5a 00000030 08 51 25 e8 f7 cd c9 9f d9 1d bd **72** 80 37 3c 5b 00000040 96 0b 1d d1 dc 41 7b 9c e4 d8 97 f4 5a 65 55 d5 00000050 35 73 9a **47** f0 eb fd 0c 30 29 f1 66 d1 09 b1 8f 00000060 75 27 7f 79 30 d5 5c eb 22 e8 ad ba 79 **4c** 15 5c 00000070 ed 74 cb dd 5f c5 d3 6d b1 9b 0a **58** 35 cc a7 e3

Hash Functions

Collusion Discovery

Checking

\$ md5sum file1.dat
MD5 Sum = a4c0d35c95a63a805915367dcfe6b751
\$ md5sum file2.dat
MD5 Sum = a4c0d35c95a63a805915367dcfe6b751

By Xiaoyun Wang and Hongbo Yu of Shandong University in China - March 2005

Visit the following websites for more information

http://www.mscs.dal.ca/~selinger/md5collision/ http://www.x-ways.net/md5collision.html

Examples of Hash Function

SHA

The Secure Hash Algorithm (SHA) hash functions are a set of cryptographic hash functions designed by the National Security Agency (NSA) and published by the NIST as a U.S. Federal Information Processing Standard.

- SHA stands for Secure Hash Algorithm.
- Because of the successful attacks on MD5, SHA-0 and theoretical attacks on SHA-1, NIST perceived a need for an alternative, dissimilar cryptographic hash, which became SHA-3.
- In October 2012, the National Institute of Standards and Technology (NIST) chose the **Keccak** algorithm as the new SHA-3 standard.

