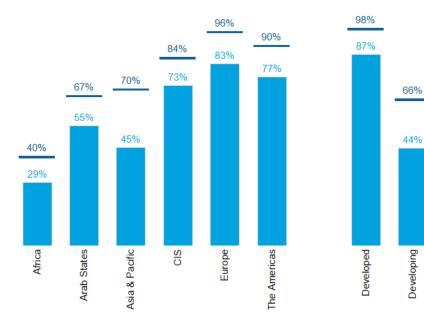
Emerging technology for connectivity

Accelerating digital transformation in LDCs, LLDCs and SIDS


An Overview of Emerging Technology for Connectivity

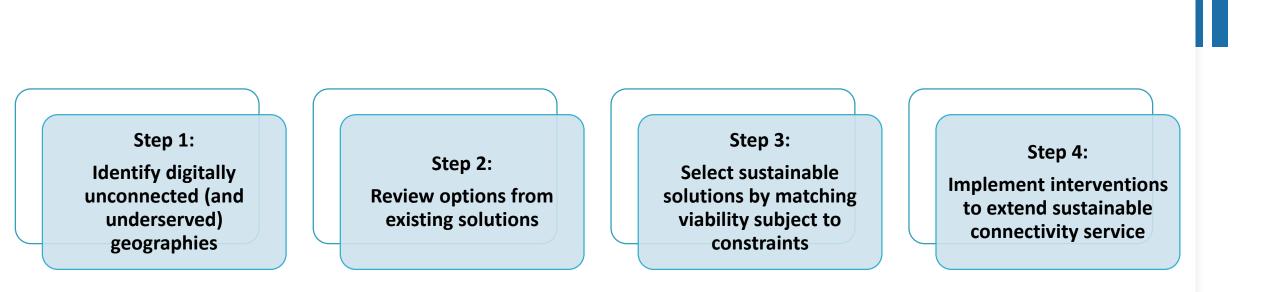
Aminata A. Garba Senior Coordinator (Technology), BDT, ITU

Introduction

- About half of world's population offline
- Concentrated in least developed countries
 - 19 % online in LDCs
 - 29% online Africa
 - 45% online Asia-Pacific

lividuals using the Internet, 2019*

27%


LLDCs

19%

LDCs

old individuals using the Internet as a percentage of the total population aged 15 to 24 years.

Connecting the Unconnected

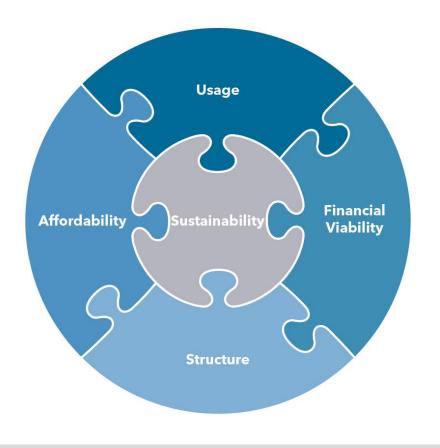
Connectivity Mapping

Demand mapping	Infrastructure mapping	Investment mapping	Service mapping
 Demand for bandwidth Quality of service Willingness to pay Required services 	 Telecommunication structure Other relevant infrastructure (utilities) Construction works (roads, buildings) 	 Segmenting infrastructure by investment sources Private / funded Planned / realized 	 Bandwidth & Access Technology (level of service availability) Provider Data volume usage, take-up Price

Wireless Technology for Connectivity

Technology	Potential throughput / QoS	Range	Capital expenditure to deploy new network	Operating expenses	Infrastructure required	Suitability for rural deployments	Spectrum licensing requirement	Access device type
Wi-Fi: 802.11	2 Mbit/s (a) to 10 Gbit/s (802.11ax)	100s of m	Low	Low	Wi-Fi routers	Yes, but backhaul required (satellite, microwave or fibre)	No specific licence but compliance with technical specifications via "blanket licence" under non- interference/non- protection regime	Wi-Fi enabled smartphones, tablets, computers
Mobile cellular (2G, 3G, 4G, 5G)	0.1 – 1000 Mbit/s	5 to 15 km	Medium to high	Medium to high	Towers and radio equipment	Yes, but backhaul required (satellite, microwave or fibre)	Yes	Cellular mobile phones, laptops, personal computers (via dongles)
Fixed wireless access (4G/ 5G)	20 – 1 000 Mbit/s	Up to 10 km	Low to medium	Low	Towers and radio equipment	Maybe, depending on financial viability and demand	Depends on country regulations	Consumer premises modems to Ethernet or Wi-Fi
Satellite (HTS GEO and MEO)	5 – 150 Mbit/s	1 000s of km	High (for new satellite deployment); low (for end-user terminals)	Low	Earth station, satellite, very-small- aperture terminal	Yes	Yes	Very-small-aperture terminal, consumer premises modems to Ethernet or Wi-Fi

Wireline Technology for Connectivity


Technology	Potential throughput / QoS	Range	Capital expenditure to deploy new network	Operating expenses	Infrastructure required	Suitability for rural deployments	Additional regulatory issues	Access device type	
Fibre	ibre 100 – 1 000 Mbit/s	100s of	Overhead cabling: low to medium	Medium	Tower, poles, cabinets, active network equipment	In some cases, with sufficient purchasing power and population densities	Pole attachment	Fibre modem to Ethernet-enabled devices or to Wi-Fi	
		km	Below ground: medium to high (new excavation)	Low to medium	Subterranean duct work, cabinets, active network equipment	No	Right of way		
Coax (cable)	Up to 200 Mbit/s	Up to 100 km	Low to medium	Low to medium	Tower, poles, cabinets, active network equipment	In some cases, with sufficient purchasing power and population densities	Pole attachment	Cable modem to Ethernet- enabled devices or to Wi-Fi	
Copper	0 to 24 Mbit/s (for ADSL, ADSL 2, ADSL 2+); 100 Mbit/s (for VDSL, VDSL2, Vectoring); 1 Gbit/s (G.Fast)	0.1 to 5 km	Low to medium	Low to medium	Tower, poles, cabinets, active network equipment	In some cases, with sufficient purchasing power and population densities	Pole attachment	Modem to Ethernet- enabled devices or to Wi-Fi	

Emerging Technology for Connectivity

Technology	Wired or wireless	Potential throughput / QoS	Range	Infrastructure required	Suitability for rural deployments	Spectrum licensing requirement	Backhaul suitability	Access device type
HAPS		Up to 30 Mbit/s	1 000s of km	High altitude balloons, autonomous drones	Yes	Yes	Could work for both backhaul and access	Cellular devices in last- mile cases (such as Google Loon)
LEO satellite		Up to 100 Mbit/s	1 000s of km	LEO satellites (for new network deployments)	Yes	Yes	Could work for both backhaul and access	To be determined
Millimeter wave		Up to 20 Gbit/s	1 to 10 km	Towers and radio equipment, fibre backhaul	No	Yes for certain bands, some unlicensed / licence-exempt	Local backhaul	To be determined
Free-space optical communication	Wireless	10s to 100s of Gbit/s	1 to 10 km	Specialized equipment using light to transmit high-speed data	Yes, but requires line-of-sight data transmission	No	Local backhaul	Used for backhaul
TV White Space		5 – 150 Mbit/s	10 to 25 km	Towers and radio equipment	Yes, especially for non-line of sight	Authorization of use required under the opportunistic use principle	Could work for both backhaul and access	Consumer premises modem to Ethernet or Wi-Fi
Long range		Up to 50 Kbit/s	10s of km	Towers and radio equipment	Yes (though very low throughput)	No (utilizes licence-free industrial, scientific and medical bands)		Long-range radios to IoT devices / applications
Power line communications: fibre via overhead medium-voltage distribution lines	Wired	100 – 1 000 Mbit/s	100s of km	Tower, poles, cabinets, active network equipment	Yes (eight times longer than high voltage lines)	No	Yes	Fibre modem to Ethernet-enabled devices or to Wi-Fi

Sustainable Connectivity

- Affordability Ensuring that connectivity service user pricing falls within a given affordability threshold, such as the 2 per cent of monthly GNI per capita for 1GB of mobile broadband data discussed above
- Usage Identifying the applications and services that need to be available to the locality, and the level of QoS that those applications and services require
- Financial viability Measuring the economic viability for private investment of the connectivity service, based on estimates of ARPU, availability of backhaul / middle-mile connectivity, options for different local access technologies and the potential level of the service's QoS
- **Structure** Articulating the service delivery business model and identifying any regulatory constraints on the model and technologies utilized
- **Sustainability** Understanding of the service's revenue model and of any potential subsidy

Conclusion

Thanks!

The Last-mile Internet Connectivity Solutions Guide https://www.itu.int/pub/D-TND-01-2020

The Last-mile Internet Connectivity Solutions Guide

Sustainable connectivity options for unconnected sites 2020



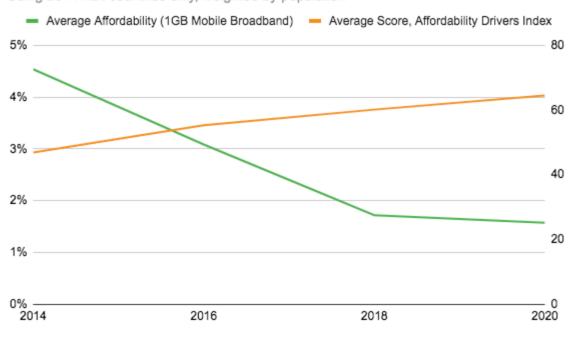
Foundations for an Emerging Digital Economy Affordable & Meaningful Connectivity among LDCs

Teddy Woodhouse, Research Analyst & Advocate <teddy.woodhouse@webfoundation.org>

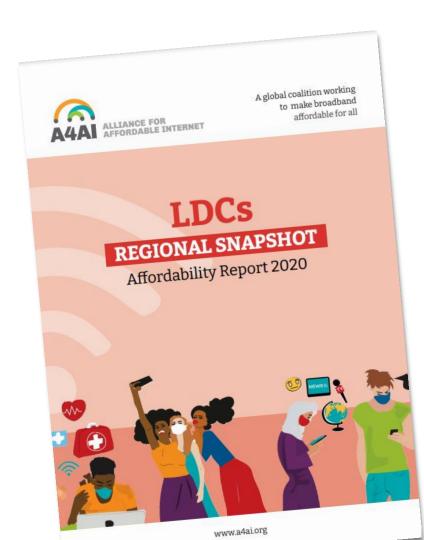
WE ARE THE WORLD'S BROADEST TECHNOLOGY SECTOR ALLIANCE

WORKING TO DRIVE DOWN THE PRICE OF BROADBAND

All have endorsed one set of **best practices**

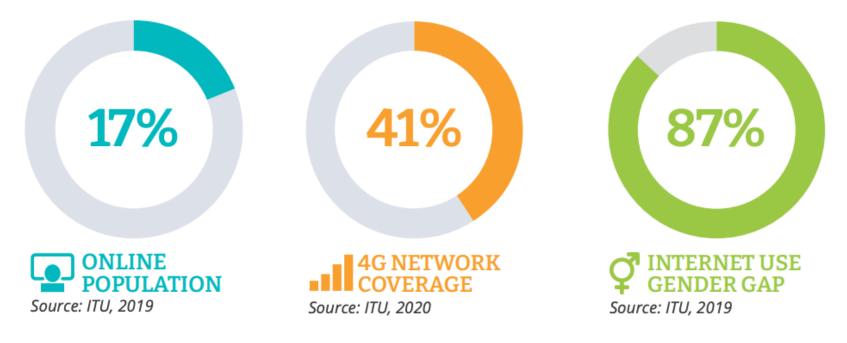

- grounded on the principles of internet freedom and the fundamental rights of expression, assembly, and association online -

for making affordable broadband internet a reality.


Average affordability and ADI scores over time

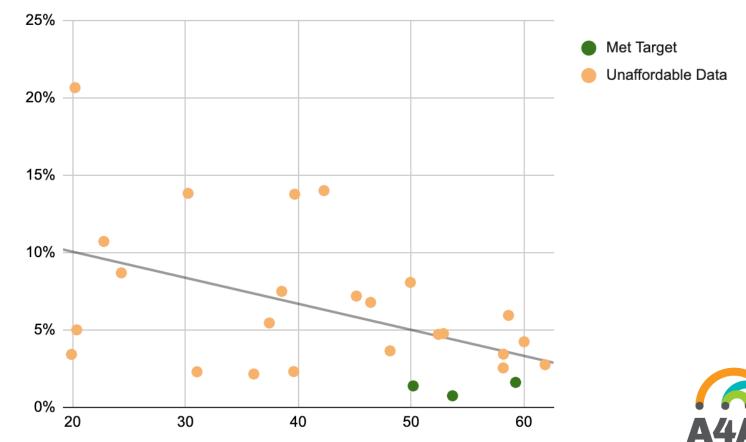
Using 2014 ADI countries only, weighted by population

Source: Alliance for Affordable Internet



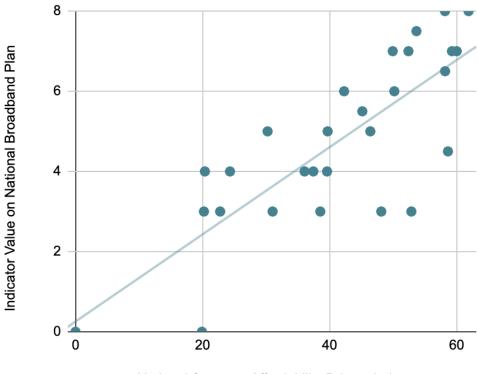
Available at https://a4ai.org/affordability-report/

Among Least Developed Countries...

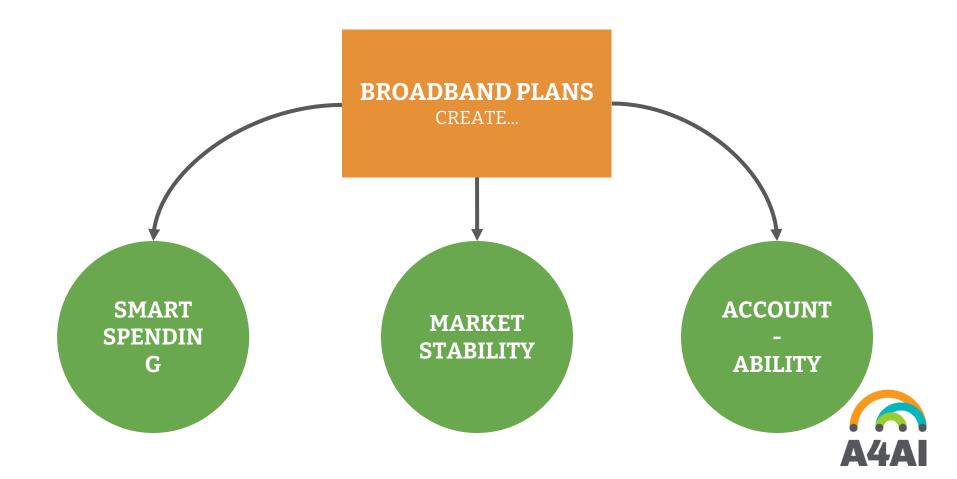


10 Highest-Scoring Countries, among LDCs

		Country	Access Score	Infrastructure Score	Index Score (/100)
1st	25th	Senegal	62.94	54.67	61.89
2	27	Benin	57.56	56.51	60.02
3	29	Cambodia	66.37	46.26	59.27
4	31	Uganda	57.25	54.19	58.64
5	32	Rwanda	63.99	46.59	58.19
6	33	Nepal	55.97	54.58	58.17
7	38	Myanmar	51.70	50.31	53.68
8	41	Tanzania	46.63	53.86	52.88
9	42	Mali	53.27	46.35	52.42
10th	45th	Bangladesh	48.48	46.91	50.19


ADI score, compared to affordability of 1GB mobile broadband (LDC countries)

- On **average**, prices in low- and middle-income countries have become more affordable, moving from 4.54% of average monthly income in 2015 to 1.58% in 2019.
- Countries like **Rwanda**, **Ecuador**, and **India** have seen the cost of 1GB mobile broadband come down by more than 60% during this time period.
- In the case of **Rwanda**, the price of 1GB as a fraction of the average monthly income in that country has decreased from **20.16% to 3.39%** between 2015 and 2019.



National broadband plans affect quality of policy environment, and in turn, affordability.

National Score on Affordability Drivers Index

» Report Policy Recommendations

A plan must have **inputs from a diverse and representative set of players across the private sector, public sector and civil society** before publication.

2

A plan must have **targets that address a country's most critical gaps, have a clear measurement and a time limit**, and at least one target for network coverage and data affordability each.

A plan must come with **funding commitments** and a stated plan for transparent **assessment and review** that occurs at least every other year.

Teddy Woodhouse, Research Analyst & Advocate <reddy.woodhouse@webfoundation.org>

Internet Para Todos was born in Perú to connect more than 6 million people

who do not have internet access in the rural areas of the country, to provide the same opportunities and promote their development

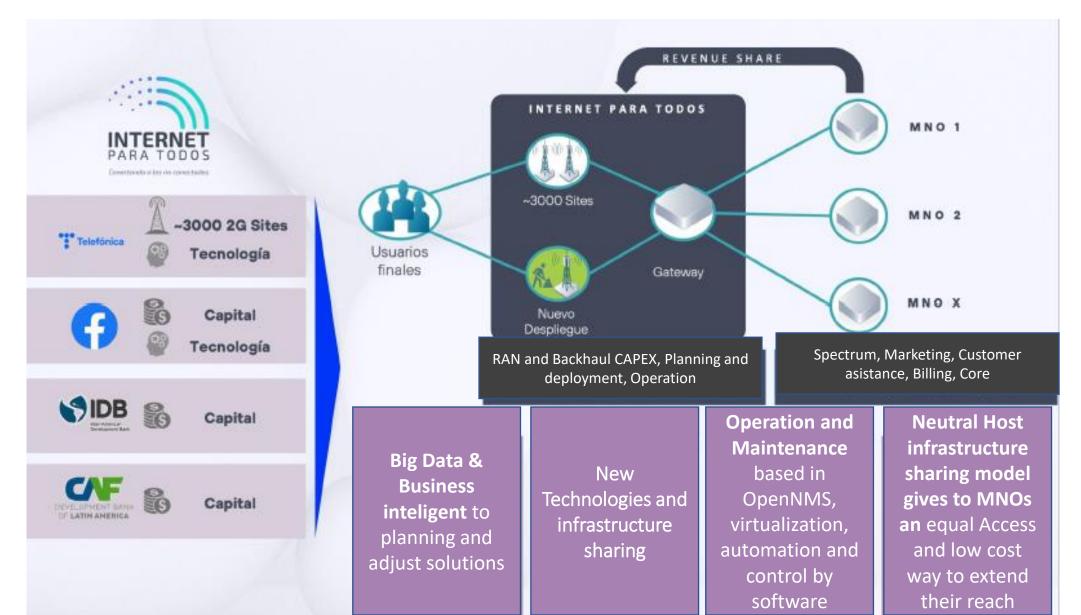
Internet para Todos started operations in Perú in 2019, a country with significant challenges and opportunities.

CHALLENGES FOR RURAL CONECTIVITY

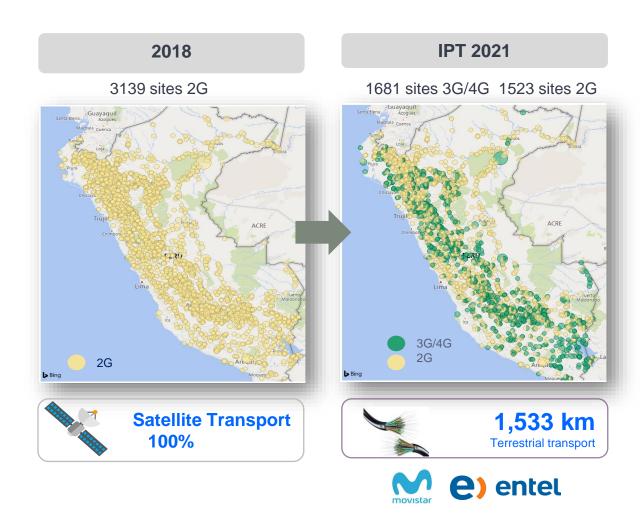
- Complicated geography
- Low income level+ low population density
- Mobile operators focus on urban área due to high traffic demand.
- Poor basic infrastructure
- Tecnology designed for urban market

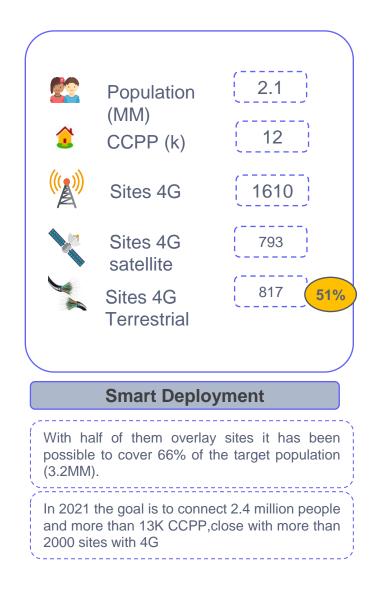
<u>Áreas Rurales en Perú</u>

- 8 millones de personas.
- Costa, montaña, selva.
- La movilización es vía fluvial, aérea y terrestre.
- 5,000 metros sobre el nivel del mar.
- 3 días de viaje desde la ciudad principal.


OPPORTUNITIES

Rural Mobile Infrastructure Operator (OIMR) Unique model in the world that seeks to increase mobile coverage in rural areas


A **neutral-host NaaS infrastructure sharing** model paves the way to connect more people



Internet para Todos has **connected more than 2.1MM people** with a deployment of 1600 4G sites

Cañicuto is a clear example of our **commitment** to build a more inclusive society

Children from Cañicuto (Puno region) had to walk about 10 km to receive classes in the middle of the pandemic.

Puno: Escolares suben a la cima de un cerro para captar internet y cumplir con sus clases virtuales

Por ello no podíamos quedarnos de brazos cruzados cuando conocimos las historias y testimonios de esos resueltos estudiantes. De este modo, priorizamos y adelantamos el despliegue de 4G en Villa Hermosa Cañicuto a través de Internet Para Todos.