Rec. ITU-T G.9701 Amendment 1 (11/2019) Fast access to subscriber terminals (G.fast) – Physical layer specificationAmendment 1 Summary History FOREWORD Table of Contents 1 Scope 2 References 3 Definitions 3.1 Terms defined elsewhere 3.2 Terms defined in this Recommendation 4 Abbreviations and acronyms 5 Reference models and system requirements 5.1 System reference models 5.2 Application reference models 5.3 FTU protocol reference model 5.4 FTU functional model 5.5 INP system requirements 6 Profiles 6.1 Definition 6.2 Profile compliance 7 Transmission medium interface characteristics 7.1 Duplexing method 7.2 Frequency band 7.3 Power spectral density 7.3.1 Transmit PSD mask 7.3.1.1 MIBPSDMASK construction 7.3.1.1.1 Overview 7.3.1.1.2 Definition of breakpoints 7.3.1.1.2.1 Definition of breakpoints for PSD shaping other than LESM 7.3.1.1.2.2 Definition of the breakpoints for the LESM 7.3.1.1.2.2.1 One-slope steep upward shape 7.3.1.1.2.3 Definition of breakpoints at the edge of a band 7.3.1.2 Notching of specific frequency bands 7.3.1.3 Subcarrier masking 7.3.1.4 Upstream power back-off (UPBO) 7.3.1.4.1 UPBO mechanism 7.3.1.4.2 UPBO PSD mask 7.3.1.4.2.1 Electrical length estimation 7.3.1.4.2.2 Computation of UPBOMASK 7.3.1.5 LPM classes 7.3.2 PSD and PSD mask summary 7.4 Out-of-band PSD limit 7.5 Termination impedance 7.6 Maximum aggregate transmit power 7.6.1 Maximum aggregate transmit power 8 Transport protocol specific transmission convergence (TPS-TC) function 8.1 Functional reference model 8.1.1 γ reference point 8.1.2 α reference point 8.1.3 TPS-TC_MGMT interface 8.2 Generic DTU format 8.2.1 DTU header 8.2.1.1 Sequence identifier (SID) field 8.2.1.2 Time stamp (TS) field 8.2.1.3 Auxiliary field 8.2.2 DTU payload 8.2.3 Error check sequence (ECS) 8.3 Packet-based TPS-TC (PTM-TC) 8.3.1 PTM-TC DTU format 8.4 Network timing reference (NTR) 8.4.1 NTR transport 8.4.1.1 NTR frequency synchronization 8.5 Time-of-day (ToD) 8.5.1 Time-of-day distribution operational overview 8.5.2 ToD frequency synchronization 8.5.2.1 Computation of ToD phase difference 8.5.3 ToD time synchronization 9 Physical media specific transmission convergence (PMS-TC) sub-layer 9.1 Functional reference model 9.1.1 δ reference point 9.1.2 PMS-TC_MGMT interface 9.2 DTU scrambler 9.3 DTU encoder 9.4 Interleaver 9.5 Data frame multiplexer 9.6 RMC 9.6.1 RMC frame format 9.6.2 RMC scrambler 9.6.3 RMC encoder 9.6.4 RMC message fields 9.7 Acknowledgement 9.8 Retransmission function 9.8.1 Acknowledgement and retransmission latency requirements 9.8.2 Retransmission control parameters 9.8.2.1 Primary parameters 9.8.2.2 Valid configurations 9.8.2.3 Mandatory configurations 9.8.2.4 Derived parameters 9.8.3 Performance related parameters 9.8.3.1 Definition of mean time between error events (MTBE) 9.8.3.1.1 Definition of MTBE_min 9.8.3.1.2 Accelerated testing of MTBE 9.8.3.2 Definition of signal-to-noise ratio margin (SNRM) 9.8.3.2.1 Accelerated testing of SNRM 9.8.3.2.2 SNRM_MODE = 1 9.8.3.3 Impulse noise protection 9.8.3.4 Definition of signal-to-noise ratio margin for RMC (SNRM_RMC) 10 Physical media dependent (PMD) function 10.1 PMD functional reference model 10.1.1 U interface 10.1.2 PMD_MGMT interface 10.1.2.1 Vectoring interfaces 10.2 Symbol encoder 10.2.1 Data symbol encoder 10.2.1.1 Bytes to bits padding 10.2.1.2 Tone ordering 10.2.1.3 Trellis coding 10.2.1.3.1 Bit extraction 10.2.1.3.1.1 Data symbols 10.2.1.3.1.2 RMC symbols 10.2.1.3.2 Bit conversion 10.2.1.3.3 Coset partitioning and trellis diagram (informative) 10.2.1.4 Constellation mapper 10.2.1.4.1 Bit extraction 10.2.1.4.2 Constellations 10.2.1.4.2.1 Even values of b 10.2.1.4.2.2 Odd values of b 10.2.1.5 Constellation point scaling 10.2.1.5.1 Power normalization 10.2.1.5.2 Gain adjuster 10.2.1.5.3 Frequency-domain transmit spectrum shaping (tssi) 10.2.1.5.4 Summary of the subcarrier constellation mapping and constellation point scaling 10.2.1.6 Quiet symbol encoding 10.2.1.7 Idle symbol encoding 10.2.2 Symbol encoders for sync symbols, initialization symbols and pilot symbols 10.2.2.1 Sync symbol encoder 10.2.2.2 Initialization symbol encoder 10.2.2.2.1 Bit mapping of SOC symbols 10.2.2.2.2 Identification sequence (IDS) modulation 10.2.2.2.3 SOC symbol repetition 10.2.2.3 Pilot symbol encoder 10.2.2.4 Quadrant scrambler 10.2.2.4.1 Reset mode 10.2.2.4.2 Free-running mode 10.3 Precoder (downstream vectoring) 10.3.1 Overview 10.3.2 Vectoring feedback channel 10.3.2.1 Definition of normalized error sample 10.3.2.2 Definition of DFT output samples 10.3.2.3 Reporting of vectoring feedback (VF) samples 10.3.2.3.1 Control parameters for vectoring feedback reporting 10.3.2.3.2 Grouping of VF samples 10.3.2.3.2.1 Grouping of VF samples in case of error samples reporting 10.3.2.3.2.2 Grouping of VF samples in case of DFT output sample reporting 10.3.2.3.2.3 Calculation of N_block 10.3.2.4 Vectoring feedback channel format 10.3.2.4.1 Format of the VFRB 10.3.2.4.2 Format of the VF block 10.3.2.4.3 Vectoring feedback channel data rate (informative) 10.3.2.5 Identification of the VFRB 10.3.2.5.1 Frequency identification control parameters 10.3.2.5.2 Time identification control parameters 10.4 Modulation 10.4.1 Data subcarriers 10.4.2 Subcarrier spacing 10.4.3 Inverse discrete Fourier transform (IDFT) 10.4.4 Cyclic extension and windowing 10.4.5 Synchronization 10.4.5.1 Pilot symbols 10.5 TDD frame structure 10.5.1 RMC symbol position 10.5.2 Data symbol positions 10.6 Superframe structure 10.7 Normal and discontinuous operation intervals 10.8 Alignment of transmissions in vectored group 11 Operation and maintenance (OAM) 11.1 OAM functional model 11.1.1 γ_MGMT interface 11.2 Management functions and procedures over eoc 11.2.1 eoc transmission method 11.2.1.1 eoc packet format 11.2.1.2 eoc message format 11.2.1.3 eoc transmission protocol 11.2.2 eoc commands and responses 11.2.2.1 General 11.2.2.2 Command and response types 11.2.2.3 Segmentation of eoc messages 11.2.2.4 Transparent eoc commands and responses 11.2.2.4.1 Clear eoc commands and responses 11.2.2.4.2 Datagram eoc command 11.2.2.5 OLR commands and responses 11.2.2.6 Diagnostic commands and responses 11.2.2.6.1 Perform self-test 11.2.2.6.2 Update test parameters 11.2.2.6.3 Start/end RTX_TESTMODE 11.2.2.6.4 Start/end TPS_TESTMODE 11.2.2.7 NTR frequency synchronization command 11.2.2.8 ToD frequency synchronization command 11.2.2.9 Time synchronization command and responses 11.2.2.10 Inventory commands and responses 11.2.2.11 Management counter read commands and responses 11.2.2.12 L3 link state transition commands and responses 11.2.2.12.1 L3 Request by FTU-R 11.2.2.12.2 L3 Request by FTU-O 11.2.2.13 PMD test parameter read commands and responses 11.2.2.14 Vectoring feedback command and responses 11.2.2.15 Probe sequence update commands and responses 11.2.2.16 L2 transition control 11.2.2.17 DRR configuration commands and responses 11.2.2.18 Fast startup training sequence parameters command and response 11.2.2.19 Non-standard facility commands and responses 11.2.2.20 INM facility commands and responses 11.2.2.21 Update backup RTSBL 11.3 OAM primitives 11.3.1 Line-related primitives 11.3.1.1 Near-end anomalies 11.3.1.2 Far-end anomalies 11.3.1.3 Near-end defects 11.3.1.4 Far-end defects 11.3.1.5 Initialization primitives 11.3.1.6 Near-end OLR/FRA primitives 11.3.1.7 Far-end OLR/FRA primitives 11.3.1.8 Synchronous access network transient anomaly (SANTA) 11.3.2 Path-related primitives 11.3.3 Power-related primitives 11.3.3.1 Near-end primitives 11.3.3.2 Far-end primitives 11.3.4 INM primitives 11.3.4.1 Near-end primitives 11.3.4.2 Far-end primitives 11.4 OAM parameters 11.4.1 Test and status parameters 11.4.1.1 Status parameters 11.4.1.1.1 Net data rate (NDR) 11.4.1.1.2 Attainable net data rate (ATTNDR) 11.4.1.1.3 Expected throughput (ETR) 11.4.1.1.4 Attainable expected throughput (ATTETR) 11.4.1.1.5 Error-free throughput (EFTR) parameter 11.4.1.1.6 Minimum error-free throughput (EFTR_min) parameter 11.4.1.1.7 Actual INP against SHINE (INP_act_shine) 11.4.1.1.8 Actual INP against REIN (INP_act_rein) 11.4.1.1.9 Error-free bits counter 11.4.1.1.10 Signal-to-noise ratio margin parameter (SNRM) 11.4.1.1.11 Signal-to-noise ratio margin for the RMC (SNRM_RMC) 11.4.1.1.12 Net data rate in L2.1 (L2.1_NDR) 11.4.1.1.13 Net data rate in L2.2 (L2.2_NDR) 11.4.1.1.14 Expected throughput (L2.1_ETR) 11.4.1.1.15 Expected throughput (L2.2_ETR) 11.4.1.1.16 DTU FEC codeword size (NFEC) 11.4.1.1.17 DTU FEC redundancy (RFEC) 11.4.1.1.18 FEC codewords per DTU (Q) 11.4.1.1.19 Bit Allocation on data subcarriers (bi) 11.4.1.1.20 Bit Allocation on RMC subcarriers (bRMCi) 11.4.1.1.21 All NOI with Data symbols EFTR (ANDEFTR) parameter 11.4.1.1.22 Minimum All NOI with Data symbols EFTR (ANDEFTR_min) parameter 11.4.1.1.23 Maximum All NOI with Data symbols EFTR (ANDEFTR_max) parameter 11.4.1.1.24 Sum All NOI with Data symbols EFTR (ANDEFTR_sum) parameter 11.4.1.1.25 All NOI with Data symbols EFTR defined second (ANDEFTRDS) 11.4.1.2 Test parameters 11.4.1.2.1 Hlog-psg 11.4.1.2.2 Signal-to-noise ratio per subcarrier (SNR-ps) 11.4.1.2.3 Quiet line noise PSD per subcarrier group (QLN-psg) 11.4.1.2.4 Active line noise PSD per subcarrier group (ALN-psg) 11.4.1.2.5 Actual transmit PSD reference per subcarrier (ACTPSDREF-ps) 11.4.1.2.6 Actual aggregate transmit power (ACTATP) 11.4.1.2.7 Signal attenuation (SATN) 11.4.1.2.7.1 Downstream signal attenuation (SATN_DS) 11.4.1.2.7.2 Upstream signal attenuation (SATN_US) 11.4.1.2.8 Actual transmit PSD per subcarrier (ACTPSD-ps) 11.4.1.2.9 FEXT downstream coupling coefficients (Xlogpsds) 11.4.1.2.9.1 Definition 11.4.1.2.9.1.1 FEXT coupling coefficient from line into line 11.4.1.2.9.1.2 Direct channel insertion gain transfer function of line 11.4.1.2.9.1.3 FEXT insertion gain transfer function from line into line 11.4.1.2.9.2 Reporting of downstream FEXT coupling coefficients (Xlogpsds) 11.4.2 Retransmission configuration parameters 11.4.2.1 Minimum expected throughput (ETR_min) 11.4.2.2 Maximum net data rate (NDR_max) 11.4.2.3 Maximum delay (delay_max) 11.4.2.4 Minimum impulse noise protection against SHINE (INP_min_shine) 11.4.2.5 SHINEratio 11.4.2.6 Minimum impulse noise protection against REIN (INP_min_rein) 11.4.2.7 REIN Inter-arrival time for retransmission (iat_rein_flag) 11.4.2.8 Minimum RFEC/NFEC ratio (rnratio_min) 11.4.3 Vectoring configuration parameters 11.4.3.1 FEXT cancellation enable/disable (FEXT_TO_CANCEL_ENABLE) 11.4.3.2 Downstream requested Xlog subcarrier group size (XLOGGREQds) 11.4.3.3 Downstream requested Xlog disturber line (XLOGDREQds) 11.4.4 Line performance monitoring parameters 11.4.4.1 Errored second (ES) 11.4.4.2 Severely errored second (SES) 11.4.4.3 Los second (LOSS) 11.4.4.4 Lor second (LORS) 11.4.4.5 Unavailable second (UAS) 11.4.4.6 Inhibiting performance monitoring parameters 11.4.4.7 Impulse noise monitoring facility procedure and parameters 11.4.4.7.1 INM procedure 11.4.4.7.2 INM configuration parameters 11.4.4.7.2.1 Definition of parameter INMIATO 11.4.4.7.2.2 Definition of parameter INMIATS 11.4.4.7.2.3 Definition of parameter INMCC 11.4.4.7.2.4 Definition of parameter INM_INPEQ_FORMAT 11.4.4.7.2.5 Definition of parameter BRGN 11.4.4.7.2.6 Definition of parameter INPEQ scaling factor (INPEQ_SF) 11.4.4.7.2.7 Definition of parameter IAT scaling factor (IAT_SF) 11.4.4.7.3 INM reporting parameters and primitives 11.4.4.7.3.1 INM INPEQ histogram primitives 11.4.4.7.3.2 INM total measurement count primitive 11.4.4.7.3.3 INM inter-arrival time histogram primitives 11.4.4.7.3.4 INM blank logical frame count primitive 11.4.4.8 Low ANDEFTR second (LANDEFTRS) 11.4.5 Low power link state parameters 11.4.6 Inventory parameters 11.4.6.1 Vectoring specific inventory parameters 11.4.6.1.1 VCE ID (VCE_ID) 11.4.6.1.2 VCE port index (VCE_port_index) 12 Link activation methods and procedures 12.1 Overview 12.1.1 Link states and link-state diagram 12.1.1.1 Link-state diagram 12.1.1.2 L3 – Idle state 12.1.1.3 L0 – Normal operation state 12.1.1.4 Low power link state L2.1 12.1.1.5 Low power link state L2.2 12.1.1.6 Transitions between link states 12.1.1.7 Configuration and status reporting of the link state 12.1.1.7.1 Link state forced 12.1.1.7.2 Link state enabling 12.1.1.7.3 Link state status reporting 12.1.2 Transceiver states and transceiver state diagram 12.1.3 Initialization procedures 12.1.4 Deactivation, reinitialization, persistent link defects and high_BER events 12.1.4.1 Deactivation 12.1.4.2 Fast retrain 12.1.4.3 Persistent link defects and high_BER events 12.1.4.3.1 Persistent near-end los defect 12.1.4.3.2 Persistent near-end lom defect 12.1.4.3.3 Persistent near-end lor defect 12.1.4.3.4 High_BER event 12.2 Special operations channel (SOC) 12.2.1 Message format 12.2.1.1 Byte stuffing 12.2.2 Communication protocol 12.2.2.1 Automatic repeat (AR) mode 12.2.2.2 Repeat request (RQ) mode 12.2.2.3 Non-repeat (NR) mode 12.2.3 SOC IDLE (O-IDLE, R-IDLE) 12.2.4 SOC messages 12.2.4.1 Message codes 12.2.4.2 O/R-REPEAT_REQUEST 12.2.4.3 O/R-ACK-SEG 12.2.4.4 FTU-O and FTU-R messages 12.2.4.5 Mapping of SOC data 12.2.4.6 Segmentation of SOC messages 12.3 Initialization procedure 12.3.1 Overview 12.3.2 ITU-T G.994.1 handshake phase 12.3.2.1 Handshake – FTU-O 12.3.2.1.1 CL messages 12.3.2.1.1.1 Short CL messages 12.3.2.1.2 MS messages 12.3.2.2 Handshake – FTU-R 12.3.2.2.1 CLR messages 12.3.2.2.1.1 Short CLR messages 12.3.2.2.2 MS messages 12.3.3 Channel discovery phase 12.3.3.1 Overview 12.3.3.1.1 O-VECTOR 1 stage 12.3.3.1.2 CHANNEL DISCOVERY 1-1 stage 12.3.3.1.3 CHANNEL DISCOVERY 1 stage 12.3.3.1.4 R-VECTOR 1 stage 12.3.3.1.5 CHANNEL DISCOVERY 2 stage 12.3.3.1.6 R-VECTOR 1.1 stage 12.3.3.1.7 VECTOR 2 stage 12.3.3.1.8 PARAMETER UPDATE stage 12.3.3.2 SOC messages transmitted during channel discovery phase 12.3.3.2.1 O-SIGNATURE 12.3.3.2.2 O-TG-UPDATE 12.3.3.2.3 R-MSG 1 12.3.3.2.4 O-UPDATE 12.3.3.2.5 R-UPDATE 12.3.3.2.6 O-VECTOR-FEEDBACK 12.3.3.2.7 R-ACK 12.3.3.2.8 R-VECTOR-FEEDBACK 12.3.3.2.9 O-SNR 12.3.3.2.10 R-SNR 12.3.3.2.11 O-PRM 12.3.3.2.12 R-PRM 12.3.3.3 Signals transmitted during channel discovery phase 12.3.3.3.1 Signals during QUIET 1 stage 12.3.3.3.1.1 O-P-QUIET 1 12.3.3.3.1.2 R-P-QUIET 1 12.3.3.3.2 Signals during O-VECTOR 1 stage 12.3.3.3.2.1 O-P-VECTOR 1 12.3.3.3.2.2 R-P-QUIET 1 12.3.3.3.3 Signals during CHANNEL DISCOVERY 1-1 stage 12.3.3.3.3.1 O-P-CHANNEL-DISCOVERY 1-1 12.3.3.3.3.2 O-P-SYNCHRO 1-1 12.3.3.3.3.3 R-P-QUIET 1 12.3.3.3.4 Signals during CHANNEL DISCOVERY 1 stage 12.3.3.3.4.1 O-P-CHANNEL-DISCOVERY 1 12.3.3.3.4.2 R-P-VECTOR 1 12.3.3.3.4.3 O-P-SYNCHRO 1 12.3.3.3.5 Signals during CHANNEL DISCOVERY 2 stage 12.3.3.3.5.1 O-P-CHANNEL-DISCOVERY 2 12.3.3.3.5.2 R-P-CHANNEL-DISCOVERY 2 12.3.3.3.5.3 O-P-SYNCHRO 2 12.3.3.3.6 Signals during R-VECTOR 1.1 stage 12.3.3.3.6.1 O-P-VECTOR 1-1 12.3.3.3.6.2 R-P-VECTOR 1-1 12.3.3.3.6.3 O-P-SYNCHRO 3 12.3.3.3.7 Signals during VECTOR 2 stage 12.3.3.3.7.1 O-P-VECTOR 2 12.3.3.3.7.2 O-P-VECTOR 2-1 12.3.3.3.7.3 R-P-VECTOR 2 12.3.3.3.7.4 R-P-VECTOR 2-1 12.3.3.3.7.5 O-P-SYNCHRO 3-1 12.3.3.3.7.6 O-P-SYNCHRO 4 12.3.3.3.8 Signals during PARAMETER UPDATE stage 12.3.3.3.8.1 O-P-PRM-UPDATE 1 12.3.3.3.8.2 O-P-PRM-UPDATE 2 12.3.3.3.8.3 R-P-PRM-UPDATE 1 12.3.3.3.8.4 R-P-PRM-UPDATE 2 12.3.3.3.8.5 O-P-SYNCHRO 4-1 12.3.3.3.8.6 O-P-SYNCHRO 5 12.3.4 Channel analysis and exchange phase 12.3.4.1 Overview 12.3.4.2 SOC messages exchanged during channel analysis and exchange phase 12.3.4.2.1 O-MSG 1 12.3.4.2.2 R-MSG 2 12.3.4.2.3 O-TPS 12.3.4.2.4 R-ACK 1 12.3.4.2.5 O-PMS 12.3.4.2.6 R-PMS 12.3.4.2.7 O-PMD 12.3.4.2.8 R-PMD 12.3.4.2.9 O-ACK 12.3.4.3 Signals transmitted during the channel analysis and exchange phase 12.3.4.3.1 O-P-MEDLEY 12.3.4.3.2 O-P-SYNCHRO 6 12.3.4.3.3 R-P-MEDLEY 12.3.5 Transition to showtime 12.3.5.1 Establishment of DOI 12.3.6 Alignment of initialization procedures of multiple joining lines (Informative) 12.3.6.1 Joining group and waiting group (Informative) 12.3.6.2 Alignment of the initialization procedures of multiple joining lines (Informative) 12.3.6.3 Alignment of the parameters of multiple joining lines (Informative) 12.3.7 Channel initialization policies 12.4 Loop diagnostics mode 13 Online reconfiguration (OLR) 13.1 Overview 13.1.1 Types of online reconfiguration 13.1.2 Types of bit-loading tables 13.1.3 Summary of OLR types 13.2 Eoc-based procedures 13.2.1 Receiver initiated procedures 13.2.1.1 SRA procedures 13.2.1.1.1 Parameters controlled by the SRA procedures 13.2.1.1.1.1 Parameters controlled by autonomous SRA in downstream 13.2.1.1.1.2 Parameters controlled by autonomous SRA in upstream 13.2.1.1.2 Parameters controlling the SRA procedures 13.2.1.1.3 SRA downshift procedure 13.2.1.1.4 SRA upshift procedure 13.2.1.1.5 Timing and synchronization for SRA 13.2.1.1.6 Retransmission of DTUs across SRA transitions 13.2.1.2 Bit swapping procedure 13.2.1.2.1 Parameters controlled by bit swapping procedure 13.2.1.2.2 Bit swapping procedure 13.2.1.2.3 Timing and synchronization for bit swapping 13.2.1.3 RPA procedure 13.2.1.3.1 Parameters controlling the RPA procedures 13.2.1.3.2 Parameters controlled by the RPA procedure 13.2.1.3.3 Timing and synchronization for RPA 13.2.1.4 L2TSA procedure 13.2.1.4.1 Parameters controlling the L2TSA procedures 13.2.1.4.2 Parameters controlled by the L2TSA procedure 13.2.1.4.3 Timing and synchronization for L2TSA 13.2.2 Transmitter initiated procedures 13.2.2.1 TIGA procedure 13.2.2.1.1 Parameters controlled by the TIGA procedure 13.2.2.1.1.1 Parameters controlled by the TIGA request 13.2.2.1.1.2 Parameters controlled by the TIGA response 13.2.2.1.2 Timing and synchronization for TIGA 13.3 RMC-based procedures 13.3.1 Receiver initiated procedures 13.3.1.1 FRA procedure 13.3.1.1.1 Parameters controlling the FRA procedure 13.3.1.1.1.1 FRA time window (fra-time) 13.3.1.1.1.2 Minimum percentage of degraded tones (fra-ntones) 13.3.1.1.1.3 Minimum number of rtx-uc anomalies (fra-rtx-uc) 13.3.1.1.1.4 Vendor discretionary criteria (fra-vendisc) 13.3.1.1.1.5 FRA triggering criteria 13.3.1.1.2 Parameters controlled by the FRA procedure 13.3.1.1.3 Timing and synchronization for receiver initiated FRA 13.3.1.1.4 Aligning FRA with SRA and L2-TRNS 13.3.1.2 RMCR procedure 13.3.1.2.1 RMCR triggering criteria 13.3.1.2.2 RMCR recovery criteria 13.3.1.2.3 Parameters controlling the RMCR procedure 13.3.1.2.4 Parameters controlled by the RMCR procedure 13.3.1.2.5 Timing and synchronization of RMCR 13.3.2 Transmitter initiated procedures 13.3.2.1 FRA procedures 13.4 Low power link states 13.4.1 Low power link state L2.1 13.4.1.1 L2.1 transmission format 13.4.1.2 L2.1 entry procedure 13.4.1.2.1 L2.1 entry policy 13.4.1.3 Operation during L2.1 13.4.1.3.1 L2.1 operation policy 13.4.1.3.2 L2.1 operation procedures 13.4.1.4 L2.1 exit procedure 13.4.1.4.1 Procedures at exit of L2.1 13.4.1.4.2 L2.1 exit policy 13.4.1.4.3 Procedures after entry into L0 13.4.1.4.4 Aligning L2.1 exit and TIGA 13.4.1.5 L2.1 control parameters 13.4.1.5.1 Minimum expected throughput in L2.1 (L2.1_ETR_min) 13.4.1.5.2 Maximum Net Data Rate in L2.1 (L2.1_NDR_max) 13.4.1.5.3 Target SNR margin in L2 (L2_TARSNRM) 13.4.1.5.4 Maximum SNR margin in L2.1 (L2.1_MAXSNRM) 13.4.1.5.5 Maximum PSD reduction in L2 (L2_PSDR_max) 13.4.1.5.6 Minimum expected ETR upon returning from the L2.1 link state to the L0 link state (L2.1_Exit_ETR_min) 13.4.1.5.7 Rate adaptation upshift & downshift SNR margin (L2.1_RA_USNRM & L2.1_RA_DSNRM) 13.4.1.5.8 Expected ETR upon returning from the L2.1 link state to the L0 link state (L2.1_Exit_ETR) 13.4.2 Low power link state L2.2 13.4.2.1 L2.2 transmission format 13.4.2.2 L2.2 Entry procedure 13.4.2.2.1 L2.2 entry policy 13.4.2.3 Operation during L2.2 13.4.2.3.1 L2.2 operation policy 13.4.2.3.2 L2.2 operation procedures 13.4.2.4 L2.2 Exit procedure 13.4.2.4.1 Procedures at exit of L2.2 13.4.2.4.2 L2.2 exit policy 13.4.2.5 L2.2 control parameters 13.4.2.5.1 Minimum expected throughput in L2.2 (L2.2_ETR_min) 13.4.2.5.2 Maximum Net Data Rate in L2.2 (L2.2_NDR_max) 13.4.3 Transition between L2.1N and L2.1B 13.4.4 Low power link state control parameters 13.4.4.1 Primary control parameters 13.4.4.2 Derived framing parameters 14 Electrical requirements 14.1 Balance 14.1.1 Longitudinal conversion loss 14.1.2 Common mode port impedance 14.2 Differential port impedance Annex A to Annex C Annex D Operation with Dynamic Time Assignment in a crosstalk environment D.1 Scope D.2 Definitions D.3 Abbreviations and acronyms D.4 Reference model(s) D.5 Coordinated Dynamic time assignment (cDTA) D.5.1 cDTA-related primitives at the γO reference point D.5.2 The cDTA procedure D.5.3 Valid values of Mds for cDTA D.5.4 The TDD frame prior to and after a cDTA update D.5.4.1 Performance during transitions D.5.5 Superframe structure for cDTA D.5.6 Timing and synchronization for cDTA D.5.6.1 One-step procedure D.5.6.2 Two-step procedure D.5.6.3 General requirements to increase robustness D.5.6.4 Logical frame parameter in cDTA D.5.7 Transceiver related cDTA control parameters D.5.7.1 Annex D operation mode (Annex_D_mode) D.5.7.2 cDTA allowed (cDTA_allowed) D.5.7.3 Minimum Mds for DTA (DTA_min_Mds) D.5.7.4 Maximum Mds for DTA (DTA_max_Mds) D.5.7.5 Maximum net data rate for DTA (DTA_NDR_max) D.5.7.6 Maximum net data rate (NDR_max) D.5.7.7 Minimum expected throughput (ETR_min) D.5.8 Transceiver related DTA status parameters D.5.8.1 Annex D operation enabled (Annex_D_enabled) D.5.8.2 cDTA procedure actual type (cDTA_proc_act) D.5.8.3 Data rate reporting if cDTA is enabled D.5.8.3.1 Net data rate (NDR) D.5.8.3.2 Attainable net data rate (ATTNDR) D.5.8.3.3 Expected throughput (ETR) D.5.8.3.4 Attainable expected throughput (ATTETR) D.5.9 Channel initialization policy for cDTA D.5.10 High_BER event for cDTA D.5.11 RMC commands D.5.12 eoc commands D.5.12.1 Update 'min used initial DTAFDC' D.6 Initialization messages D.6.1 ITU-T G.994.1 Handshake phase D.6.1.1 Handshake – FTU-O D.6.1.1.1 CL messages D.6.1.1.2 MS messages D.6.1.2 Handshake – FTU-R D.6.1.2.1 CLR messages D.6.1.2.2 MS messages D.6.2 Channel analysis and exchange phase D.6.2.1 O-PMS D.6.2.2 R-MSG 2 D.6.2.3 O-MSG 1 Annex E to Annex Q Annex R Showtime reconfiguration R.1 Scope R.2 Overview R.2.1 Reconfiguration of the line R.2.2 Modification of configuration parameters R.3 Showtime reconfiguration procedures R.3.1 Local showtime reconfiguration (SREC-L) procedure R.3.2 Remote showtime reconfiguration procedure R.3.3 Transition time period R.4 Management of the showtime reconfiguration protocol R.5 Showtime reconfiguration request eoc commands R.6 Near-end anomalies Annex S NT software upgrade S.1 Scope S.2 References S.3 Reference model S.4 Software image management process S.4.1 Fundamental usage S.4.1.1 Software images attributes for fundamental usage S.4.1.2 Actions supporting the software upgrade process S.4.2 Vendor-specific usage S.4.2.1 File attributes for the vendor-specific usage S.4.2.2 Actions for vendor-specific usage and download process S.4.3 OAM data for software management S.4.3.1 Transaction correlation identifier S.4.3.2 Message type field S.4.3.3 Get software image and get software image response messages S.5 Message set S.5.1 Get software image S.5.2 Get software image response S.5.3 Start software download S.5.4 Start software download response S.5.5 Download section S.5.6 Download section response S.5.7 End software download S.5.8 End software download response S.5.9 Activate image S.5.10 Activate image response S.5.11 Commit image S.5.12 Commit image response S.6 Software upgrade (informative) S.6.1 Overview S.6.2 Software image download S.6.3 Software image activate and commit Annex T Dynamic time assignment (DTA) – higher-layer control aspects T.1 Scope T.2 DTA control parameters T.2.1 Annex X operation mode (Annex_X_mode) T.2.2 Annex D operation mode (Annex_D_mode) T.2.3 iDTA allowed according to Annex X (iDTA_allowed) T.2.4 cDTA allowed according to Annex D (cDTA_allowed) T.2.5 Handshake Mds (hs_Mds) T.2.6 Preferred Mds for DTA (DTA_pref_Mds) T.2.7 Maximum step size for DTA changes (DTA_SMax) T.2.8 Minimum Mds for DTA (DTA_min_Mds) T.2.9 Maximum Mds for DTA (DTA_max_Mds) T.2.10 Minimum expected throughput for DTA (DTA_ETR_min) T.2.11 Maximum net data rate for DTA (DTA_NDR_max) T.2.12 cDTA procedure control (cDTA_proc_ctrl) T.2.13 Minimum time between DTA updates (DTA_Min_Time) T.3 Coordination between the link state request and the DTA request Annex U to Annex W Annex X Operation without multi-line coordination intended for a crosstalk-free environment X.1 Scope X.2 Definitions X.3 Abbreviations and acronyms X.4 Reference model(s) X.5 Profiles X.5.1 Annex X profiles 106c and 212c for operation over coaxial cables in a crosstalk-free environment X.5.2 Profiles for operation over twisted-pair cables in a crosstalk-free environment X.5.3 Profile compliance X.6 Independent dynamic time assignment (iDTA) X.6.1 iDTA-related primitives at the γO reference point X.6.2 The iDTA procedure X.6.3 Valid values of Mds for DTA X.6.4 The TDD frame prior to and after an iDTA update X.6.4.1 Performance during transitions X.6.5 Superframe structure for iDTA X.6.6 Timing and synchronization for iDTA X.6.7 Transceiver related iDTA control parameters X.6.7.1 Annex X operation mode (Annex_X_mode) X.6.7.2 iDTA allowed (iDTA_allowed) X.6.7.3 Minimum Mds for DTA (DTA_min_Mds) X.6.7.4 Maximum Mds for DTA (DTA_max_Mds) X.6.7.5 Maximum net data rate for DTA (DTA_NDR_max) X.6.7.6 Maximum net data rate (NDR_max) X.6.7.7 Minimum expected throughput (ETR_min) X.6.8 Transceiver related iDTA status parameters X.6.8.1 Annex X operation enabled (Annex_X_enabled) X.6.8.2 iDTA enabled (iDTA_enabled) X.6.8.3 Data rate reporting if iDTA is enabled X.6.8.3.1 Net data rate (NDR) X.6.8.3.2 Attainable net data rate (ATTNDR) X.6.8.3.3 Expected throughput (ETR) X.6.8.3.4 Attainable expected throughput (ATTETR) X.6.9 Channel initialization policy for iDTA X.6.10 High_BER event for iDTA X.6.11 RMC commands X.7 Initialization messages X.7.1 ITU-T G.994.1 Handshake phase X.7.1.1 Handshake – FTU-O X.7.1.1.1 CL messages X.7.1.1.2 MS messages X.7.1.2 Handshake – FTU-R X.7.1.2.1 CLR messages X.7.1.2.2 MS messages X.7.2 Channel analysis and exchange phase X.7.2.1 O-MSG 1 X.7.2.2 R-MSG 2 X.8 Discontinuous operation X.9 On-line reconfiguration X.10 Initialization X.11 Low power states X.12 Adaptation to the coaxial cable medium X.12.1 Application reference model X.12.2 Termination impedance X.12.3 Maximum aggregate transmit power X.12.4 MDU coaxial cable configurations (informative) Annex Y Upstream dynamic resource reports Annex Z Cross-layer traffic monitoring functions and link state control Z.0 Introduction Z.1 Definition of Terms Z.2 Abbreviations and acronyms Z.3 Reference models Z.4 Generic traffic monitoring functions Z.4.1 Traffic monitor function (TMF) Z.4.2 DRRUSF Z.5 Generic information flows Z.5.1 Data flows Z.5.1.1 The ( reference point Z.5.2 Control Flows Z.5.2.1 The O reference point Z.5.2.2 The R reference point Z.5.2.3 The (O reference point Z.5.2.4 The (R reference point Z.5.2.5 The γR reference point Z.6 Link state specific functions Z.6.1 LRCC-O function Z.6.2 Triggers for link state change – Principles of operation Z.6.2.1 Input information Z.6.2.2 Traffic information processing Z.6.2.2.1 Queue arrival processing Z.6.2.2.2 Queue fill processing Z.6.2.3 Trigger criteria – principles of operation Z.6.2.3.1 Traffic-driven link state transitions Z.6.2.3.2 Battery operation status driven link state transitions Z.7 Link state management and reporting parameters Appendix I Wiring topologies and reference loops I.1 Wiring topologies Figure I.1 – Modified star wiring topology Figure I.2 – Distributed wiring topology I.2 Reference loops I.2.1 The final drop Figure I.3 – Overview of the final drop Figure I.4 – Primary final drop loop (D5) I.2.2 In-premises wiring Figure I.6 – Overview of the in-premises wiring Figure I.7 – Illustration of in-premises loops I.2.3 Reference combinations Table I.3 – Reference combinations I.2.4 Wire types I.2.4.1 Cable model for wiring types B05a (CAD55), CAT5, T05u, T05b and T05h Appendix II Example OLR use cases II.1 Transmitter initiated gain adjustment (TIGA) II.1.1 Flow chart Appendix III Motivation of MTBE accelerated test Appendix IV Targeted generalized vectoring with active ITU-T G.9701 supporting lines (TGVA) IV.1 Scope IV.2 Definitions IV.3 Downstream TGVA (TGVAds) with active ITU-T G.9701 supporting lines IV.3.1 Functional reference model for downstream IV.3.2 Implementing TGVAds with active G.9701 supporting lines IV.3.2.1 Initialization IV.3.2.2 Showtime IV.4 Upstream TGVA (TGVAus) with active ITU-T G.9701 supporting lines IV.4.1 Functional reference model for upstream IV.4.2 Implementing TGVAus with active ITU-T G.9701 supporting lines Appendix V Retransmission buffer size and the achievable bit-rate V.1 Case 1: NSYMret+NSYMack+1 ≤ Mus V.2 Case 2: NSYMret+NSYMack+1≥Mus V.3 Case 3: Lower bound for the achievable net data rate V.4 Memory size example Appendix VI Example applications of discontinuous operation VI.1 Discontinuous operation with vectoring disabled VI.2 Examples of discontinuous operation with vectoring enabled Appendix VII Calculation of loop attenuation (LATN) Appendix VIII Impulse noise monitoring – detection and interpretation of impulse noise using clusters of corrupted DTUs VIII.1 Overview VIII.2 Expected accuracy of impulse noise events VIII.2.1 Case of small DTUs VIII.2.2 Case of large DTUs Appendix IX Examples of the cDTA procedure IX.1 Mds is increased IX.1.1 Example 1 IX.1.2 Example 2 IX.2 Mds is decreased IX.2.1 Example 1 IX.2.2 Example 2 Bibliography